Titanium Containing Patents (Class 420/439)
  • Patent number: 11702724
    Abstract: A wrought-able, cobalt-based alloy is disclosed which has extraordinary resistant to high speed/self-coupled sliding wear. This alloy contains about 0.83 wt. % nickel, about 0.125 wt. % nitrogen, about 26.85 wt. % chromium, about 4.58 wt. % molybdenum, about 2.33 wt. % tungsten, about 2.97 wt. % iron, about 0.84 wt. % manganese, about 0.27 wt. % silicon, about 0.065 wt. % carbon, and about 0.11 wt. % aluminum, with the balance cobalt plus impurities.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: July 18, 2023
    Assignee: Haynes International, Inc.
    Inventors: Paul Crook, Ramanathan Krishnamurthy
  • Patent number: 10760422
    Abstract: A pre-sintered preform (114) and a repair process (100) utilizing the pre-sintered preform (114) are disclosed, each of which result in a brazement (116) comprising a replacement protective coating (118) deposited on a component surface (110). The protective coating (118) exhibits excellent temperature and oxidation resistance, improved adhesion to superalloy surfaces, and reduced depletion over a service life of the associated component (102).
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: September 1, 2020
    Assignee: SIEMENS ENERGY, INC.
    Inventors: Somesh J. Ghunakikar, James A. Yarbrough, Mark A. Garcia
  • Patent number: 10605300
    Abstract: A thermal spray powder is provided that contains, as constituent elements, a first element selected from W and Mo; a second element selected from Co, Ni, and Fe; a third element selected from C and B; and a fourth element formed of Si. The amount of the second element in the thermal spray powder is 40% by mole or less. The mole ratio of the fourth element to the second element in the thermal spray powder is 0.002 or greater and 0.03 or less. The thermal spray powder has a crystal phase containing Co, Ni, or Fe; W; and C or a crystal phase containing Co, Ni, or Fe; W or Mo; and B. In an X-ray diffraction spectrum of the thermal spray powder, the peak intensity attributed to Co, Ni, or Fe is at most 0.1 times the largest peak intensity in the same X-ray diffraction spectrum.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: March 31, 2020
    Assignees: TOCALO CO., LTD., FUJIMI INCORPORATED
    Inventors: Noriyuki Yasuo, Takeshi Takabatake, Tatsuo Suidzu, Hiroaki Mizuno, Takaya Masuda, Tatsuya Kuno
  • Patent number: 9552911
    Abstract: An alloy composition is composed essentially of Hf2-XZrXCo11BY, wherein 0<X<2 and 0<Y?1.5. Moreover, an alloy composition is composed essentially of ferromagnetic Hf2-XZrXCo11BY, wherein 0?X<2 and 0<Y?1.5, and has a nanoscale crystalline structure comprising at least one non-equilibrium phase. The alloys can be melt-spun with in-situ and/or ex-situ annealing to produce the nanoscale crystalline structure.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: January 24, 2017
    Assignee: UT-Battelle, LLC
    Inventors: Michael Alan McGuire, Orlando Rios, Nirmal Jeevi Ghimire
  • Patent number: 9260769
    Abstract: A first object of the present invention is to provide Co-based alloys for biomedical applications which are Ni-free, high intensity and high elastic modulus and are suitable for plastic workability. Moreover, a second object of the present invention is to provide Co-based alloys for biomedical applications having X-ray visibility. Furthermore, a third object of the present invention is to provide a stent using the alloys. The Co-based alloys for biomedical applications according to the present invention is configured by adding alloy elements having biocompatibility and an effect of increasing stacking fault energy of the alloys.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: February 16, 2016
    Assignee: SEIKO INSTRUMENTS INC.
    Inventor: Akihiko Chiba
  • Publication number: 20140220384
    Abstract: Known protective layers having a high Cr-content and a silicone in addition, form brittle phases that embrittle further under the influence of carbon during use. The protective layer according to the invention is composed of 22% to 26% cobalt (Co), 10.5% to 12% aluminum (Al), 0.2% to 0.4% Yttrium (Y) and/or at least one equivalent metal from the group comprising Scandium and the rare earth elements, 15% to 16% chrome (Cr), optionally 0.3% to 1.5% tantal, the remainder nickel (Ni).
    Type: Application
    Filed: August 3, 2012
    Publication date: August 7, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Werner Stamm
  • Publication number: 20140220379
    Abstract: Known protective layers having a high Cr content and additionally a silicon form brittle phases which additionally become brittle under the influence of carbon during use. The protective layer hereof has a composition 22% to 24% cobalt (Co), 10.5% to 11.5% aluminum (AI), 0.2% to 0.4% yttrium (Y) and/or at least one equivalent metal from the group comprising scandium and the rare earth elements, 14% to 16% chrome (Cr), optionally 0.3% to 0.9% tantalum, the remainder nickel (Ni).
    Type: Application
    Filed: June 22, 2012
    Publication date: August 7, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Werner Stamm
  • Patent number: 8763885
    Abstract: Cobalt-based solder alloys are proposed. The cobalt-based solder alloys have germanium. The germanium has a higher melting point than nickel-based alloys such that the germanium is used advantageously for repairing or treating components having the nickel-based alloys used at high temperatures. The components are repaired or treated by soldering using the cobalt-based solder alloys.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: July 1, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Sebastian Piegert, Peter Randelzhofer, Robert Singer
  • Publication number: 20140060707
    Abstract: Alloys, processes for preparing the alloys, and manufactured articles including the alloys are described. The alloys include, by weight, about 10% to about 20% chromium, about 4% to about 7% titanium, about 1% to about 3% vanadium, 0% to about 10% iron, less than about 3% nickel, 0% to about 10% tungsten, less than about 1% molybdenum, and the balance of weight percent including cobalt and incidental elements and impurities.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Applicant: QuesTek Innovations LLC
    Inventors: James A. Wright, Jeremy Hoishun Li
  • Publication number: 20130299562
    Abstract: Cobalt-based solder alloys are proposed. The cobalt-based solder alloys have germanium. The germanium has a higher melting point than nickel-based alloys such that the germanium is used advantageously for repairing or treating components having the nickel-based alloys used at high temperatures. The components are repaired or treated by soldering using the cobalt-based solder alloys.
    Type: Application
    Filed: December 6, 2011
    Publication date: November 14, 2013
    Inventors: Sabastian Piegert, Peter Randelzhofer, Robert Singer
  • Publication number: 20130243642
    Abstract: A metallic coating or alloy is provided, which is nickel based, and includes at least ? and ?? phases. The metallic coating or the alloy further includes tantalum (Ta) in the range of between 4 wt % to 7.5 wt %. The metallic coating or the alloy also includes cobalt (Co) in the range between 11 wt %-14.5 wt %.
    Type: Application
    Filed: November 7, 2011
    Publication date: September 19, 2013
    Inventors: Anand A. Kulkarni, Jonathan E. Shipper, JR., Werner Stamm
  • Publication number: 20130224067
    Abstract: There is provided a soft magnetic alloy for a perpendicular magnetic recording medium having a low coercive force, high amorphous properties, high corrosion resistance, and a high hardness; and a sputtering target for producing a thin film of the alloy. The alloy comprises in at. %: 6 to 20% in total of one or two of Zr and Hf; 1 to 20% of B; and 0 to 7% in total of one or two or more of Ti, V, Nb, Ta, Cr, Mo, W, Ni, Al, Si, and P; and the balance Co and/or Fe and unavoidable impurities. The alloy further satisfies 6?2×(Zr%+Hf%)?B%?16 and 0?Fe%/(Fe%+Co%)<0.20.
    Type: Application
    Filed: August 19, 2011
    Publication date: August 29, 2013
    Applicant: SANYO SPECIAL STEEL CO., LTD.
    Inventors: Toshiyuki Sawada, Hiroyuki Hasegawa, Atsushi Kishida
  • Publication number: 20120273153
    Abstract: A casting mold for a metal melt is provided. By coating a core of a casting mold, the core may be mechanically stabilized and an inner coating of the component to be cast may be obtained, wherein the coating preferably serves as an anti-corrosion layer. A method for producing a cast part using the casting mold is also provided.
    Type: Application
    Filed: May 31, 2010
    Publication date: November 1, 2012
    Inventors: Fathi Ahmad, Winfried Esser, Uwe Paul
  • Patent number: 8262964
    Abstract: An alloy, characterized in that it contains the following elements (the proportions being indicated in percentages by weight of the alloy): Cr: ?23 to 34% Ti: 0.2 to 5% Ta: 0.5 to 7% C: 0.2 to 1.2% Ni: less than 5% Fe: less than 3% Si: less than 1% Mn: less than 0.5%, the balance consisting of cobalt and inevitable impurities. An article for the manufacture of mineral wool, especially fiberizing spinner, made of such an alloy.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: September 11, 2012
    Assignees: Saint-Gobain Isover, Saint-Gobain Seva
    Inventors: Jean-Luc Bernard, Patrice Berthod, Ludovic Hericher, Christophe Liebaut, Sylvain Michon
  • Patent number: 8075839
    Abstract: A wroughtable, cobalt alloy capable of through thickness nitridation and strengthening using practical treatments and practical sheet thicknesses contains in weight percent about 23 to about 30% chromium, about 15 to about 25% iron, up to about 27.3% nickel, about 0.75 to about 1.7% titanium, about 0.85 to about 1.9% niobium or zirconium, up to 0.2% carbon, up to 0.015% boron, up to 0.015% rare earth elements, up to 0.5% aluminum, up to 1% manganese, up to 1% silicon, up to 1% tungsten, up to 1% molybdenum, and the balance cobalt plus impurities and the total weight percent of titanium plus niobium or equivalents is from about 1.6 to about 3.6.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: December 13, 2011
    Assignee: Haynes International, Inc.
    Inventor: S. Krishna Srivastava
  • Patent number: 7910512
    Abstract: To provide a production process of an electrode catalyst for fuel cell whose initial voltage is high and whose endurance characteristics, especially, whose voltage drop being caused by high-potential application is less. A production process according to the present invention of an electrode catalyst for fuel cell is characterized in that: it includes: a dispersing step of dispersing a conductive support in a solution; a loading step of dropping a platinum-salt solution, a base-metal-salt solution and an iridium-salt solution to the resulting dispersion liquid, thereby loading respective metallic salts on the conductive support as hydroxides under an alkaline condition; and an alloying step of heating the conductive support with metallic hydroxides loaded in a reducing atmosphere to reduce them, thereby alloying them.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: March 22, 2011
    Assignee: Cataler Corporation
    Inventors: Hiroaki Takahashi, Sozaburo Ohashi, Tetsuo Kawamura, Yousuke Horiuchi, Toshiharu Tabata, Tomoaki Terada, Takahiro Nagata, Susumu Enomoto
  • Publication number: 20100244310
    Abstract: An alloy, characterized in that it contains the following elements (the proportions being indicated in percentages by weight of the alloy): Cr: ?23 to 34% Ti: 0.2 to 5% Ta: 0.5 to 7% C: 0.2 to 1.2% Ni: less than 5% Fe: less than 3% Si: less than 1% Mn: less than 0.5%, the balance consisting of cobalt and inevitable impurities. An article for the manufacture of mineral wool, especially fiberizing spinner, made of such an alloy.
    Type: Application
    Filed: November 27, 2008
    Publication date: September 30, 2010
    Applicants: Saint-Gobain Isover, Saint-Gobain Seva
    Inventors: Jean-Luc Bernard, Patrice Berthod, Ludovic Hericher, Christophe Liebaut, Sylvain Michon
  • Patent number: 7588650
    Abstract: A high-temperature member for use in a gas turbine, the member being formed from a new wear-resistant alloy having good wear resistance as well as good ductility, is disclosed. The member was developed to prevent wear and damage that occur due to vibration while the turbine is running. The high-temperature member for use in a gas turbine is formed from a new cobalt-based wear-resistant alloy which is composed of a cobalt-chromium matrix and refractory metals, with the content of hard particles (such as carbide) reduced. The refractory metals promote work hardening, thereby improving wear resistance. The reduced content of hard particles contributes to good ductility.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: September 15, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Noboru Baba, Kazuya Nishi
  • Patent number: 7491361
    Abstract: A burning-on alloy for the production of ceramically veneered dental restorations, containing: cobalt 55-65 percent by weight, chromium 20-30 percent by weight, tungsten and/or where the sum of the content by weight molybdenum of molybdenum and half the content by weight of tungsten is in the range of 4-12 percent by weight, gallium 2-4 percent by weight, silicon 0-2 percent by weight, manganese 0.05-1.9 percent by weight, nitrogen 0-0.4 percent by weight, carbon 0-0.02 percent by weight, vanadium, niobium, in total 0-5 percent by weight, tantalum, iron, titanium, zirconium, hafnium nickel 0-0.1 percent by weight, rhenium, gold, in total 0-0.09 percent by weight, silver, copper other metals, 0-1 percent by weight, semi-metals and impurities where the percent by weight data are in each case based on the total weight of the alloy, is described.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: February 17, 2009
    Assignee: BEGO Bremer Goldschlägerei Wilh. Herbst GmbH & Co. KG
    Inventor: Roland Strietzel
  • Publication number: 20090041611
    Abstract: A cobalt-based braze alloy composition comprises: 22 to 24.75% chromium by weight; 9 to 11% nickel by weight; 6.5 to 7.6% tungsten by weight; 3 to 4% tantalum by weight; 0.55 to 0.65% carbon by weight; 0.3 to 0.6% zirconium by weight; 0.15 to 0.3% titanium by weight; 1.5 to 2.6% boron by weight; 1 to 10% silicon by weight; and cobalt. There are also provided methods of using the same.
    Type: Application
    Filed: August 7, 2007
    Publication date: February 12, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Sujith Sathian, Gene A. Murphy
  • Publication number: 20080181810
    Abstract: A magnetic film of an oxide-containing cobalt base alloy has a smaller coercivity difference than conventional magnetic films. A target material and a sputtering target of the invention are capable of forming the magnetic film. A manufacturing method of the target material is also disclosed. The magnetic film of an oxide-containing cobalt base alloy and the oxide-containing cobalt base alloy target material each have a Fe content of 100 ppm or less. The sputtering target includes the target material bonded to a backing plate. The manufacturing method of the oxide-containing cobalt base alloy target material includes preparing a Co—Cr alloy by melting Cr ingot and at least one Co source selected from Co ingot and Co powder, preparing Co—Cr alloy powder by atomizing the Co—Cr alloy, preparing a mixed powder by mixing the Co—Cr alloy powder, Pt powder and oxide powder, and sintering the mixed powder after forming or simultaneously with forming.
    Type: Application
    Filed: September 18, 2007
    Publication date: July 31, 2008
    Applicant: MITSUI MINING & SMELTING CO., LTD.
    Inventor: Kazuteru Kato
  • Publication number: 20080066831
    Abstract: A wroughtable, cobalt alloy capable of through thickness nitridation and strengthening using practical treatments and practical sheet thicknesses contains in weight percent about 23 to about 30% chromium, about 15 to about 25% iron, up to about 27.3% nickel, about 0.75 to about 1.7% titanium, about 0.85 to about 1.9% niobium or zirconium, up to 0.2% carbon, up to 0.015% boron, up to 0.015% rare earth elements, up to 0.5% aluminum, up to 1% manganese, up to 1% silicon, up to 1% tungsten, up to 1% molybdenum, and the balance cobalt plus impurities and the total weight percent of titanium plus niobium or equivalents is from about 1.6 to about 3.6.
    Type: Application
    Filed: September 15, 2006
    Publication date: March 20, 2008
    Inventor: S. Krishna Srivastava
  • Patent number: 6986951
    Abstract: The present invention relates to a cobalt-based alloy for the coating of organs subject to erosion by liquid comprising chromium 28–32% by weight, tungsten 6–8% by weight, silicon 0.1–2% by weight, carbon 1.2–1.7% by weight, nickel 3–6% by weight, molybdenum 1–3%, cobalt the complement to 100%. The invention also relates to an application method of the alloy on organs subject to erosion by liquid, in particular vapour turbine blades, to reduce the metal erosion rate following impact with liquids.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: January 17, 2006
    Assignee: Nuovo Pignone Holdings S.p.A.
    Inventor: Massimo Giannozzi
  • Patent number: 6984458
    Abstract: The present invention relates to a method for treating organs subject to erosion by liquids, in particular vapour turbine components, which contemplates laser plating with a cobalt-based alloy comprising chromium from 28 to 32% by weight; tungsten from 5 to 7% by weight; silicon from 0.1 to 2% by weight; carbon from 1.2 to 1.7% by weight; nickel from 0.5 to 3% by weight; iron from 0.01 to 1% by weight; manganese from 0.01 to 1% by weight; molybdenum from 0.2 to 1% by weight; possible impurities or other elements from 0 to 0.5% by weight and cobalt the complement to 100%.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: January 10, 2006
    Assignee: Nuovo Pignone Holding S.p.A.
    Inventor: Massimo Giannozzi
  • Patent number: 6852176
    Abstract: A Co-based alloy comprising 13-16 wt % Cr, 20-30 wt % Mo, 2.2-3.2 wt % Si, and balance Co, with a Cr:Si ratio of between about 4.5 and about 7.5, a Mo:Si ratio of between about 9 and about 15, wear resistance, and corrosion resistance in both oxidizing and reducing acids.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: February 8, 2005
    Assignee: Deloro Stellite Holdings Corporation
    Inventors: James B. C. Wu, Matthew X. Yao
  • Patent number: 6613275
    Abstract: The present invention concerns a non-precious dental alloy, including the following components, with the approximate proportions, in weight, given in %: gold, between 0.5 and 4, molybdenum, between 4 and 6, tungsten, between 2 and 7, indium, between 0.5 and 4, gallium, between 0.5 and 4, tin, between 0 and 4, titanium, between 0 and 2, copper, between 0 and 2, the remainder being obtained with a mixture containing approximately 70% cobalt and 30% chromium.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: September 2, 2003
    Assignee: Metalor Technologies SA
    Inventor: Nicolas Vuilleme
  • Patent number: 6592811
    Abstract: A magnetic material includes a main component expressed by a general formula CoNiFeX, wherein X is at least one element selected from the group consisting of Cr, TI, V, Ru, Rh, Os, Ir and Pt, and wherein weight percentages a, b, c and d of Co, Ni, Fe and X contents, respectively, in the main component are such that 40%≦a≦75%, 5%≦b≦20%, 10%≦c≦30%, and 0%≦d≦10%.
    Type: Grant
    Filed: October 5, 2000
    Date of Patent: July 15, 2003
    Assignee: NEC Corporation
    Inventors: Mikiko Saito, Nobuyuki Ishiwata, Tsutomu Ishi, Hiroaki Honjo, Tamaki Toba, Shinsaku Saito, Yoshihiro Nonaka
  • Patent number: 6266979
    Abstract: Cobalt alloys are disclosed for use in the fabrication of spinner discs for fiberizing molten glass into fibers in rotary fiberizing processes. The cobalt alloys fall within the following ranges, in percentage by weight, Co 22.0-54.0; Cr 30.0-34.0; Ni 9.0-31.0; Mo 0.0-7.0; C 0.45-0.65; Si 0.25-1.0; Mn 0.30-0.80; precious metals (PM) 0.0-2.0; and carbide forming metals (CFM) 0.0-1.3.
    Type: Grant
    Filed: September 2, 1999
    Date of Patent: July 31, 2001
    Assignee: Johns Manville International, Inc.
    Inventors: Walter A. Johnson, Gary W. Smiley, Robert Rushforth, John Strothers
  • Patent number: 6077615
    Abstract: A Co-base alloy including, by weight, 0.03-0.10% C, not more than 1.0% Si, not more than 1.0% Mn, 20-30% Cr, 15-23% Ni, 3-10% W, 5-10% Ta and 0.05-0.7% Zr, is used as a welding material. A gas turbine nozzle has a crack repaired with a multi-layer weld using the Co-base alloy and a gas turbine for power generation employs the nozzle.
    Type: Grant
    Filed: December 16, 1997
    Date of Patent: June 20, 2000
    Assignee: Hitachi, Ltd.
    Inventors: Masami Yada, Takao Funamoto, Takamitsu Nakazaki, Kei Kobayashi, Norio Yokoba, Nobuyuki Iizuka, Kazuhiko Kumata
  • Patent number: 5968450
    Abstract: The present invention provides a scandium containing hydrogen absorption alloy having an alloy phase which is represented by the following formula;(Sc.sub.x A.sub.1-x)(B'.sub.y B".sub.2-y).sub.zwherein A is at least one of Ti, Zr, rare-earth elements, a mixture of Ti and at least one of Zr, Ta, Nb, Hf, Ca and rare-earth elements, and a mixture of Zr and at least one of Ti, Ta, Nb, Hf, Ca and rare-earth elements; B'is at least one of Ni, Fe, Co and a mixture of at least one of Ni, Fe and Co and at least one of Al, Ga, Si and In; B" is at least one of Mn, V, Cr, Nb, Ti and a mixture of at least one of Mn, V, Cr, Nb and Ti and at least one of Al, Ga, Si and In; x represents 0<x.ltoreq.1; y represents 0<y<2; and z represents 0.75.ltoreq.z.ltoreq.1.2, and the alloy phase includes at least one of a part which belongs to a C15 type Laves phase and a part which belongs to a C14 type Laves phase, and a hydrogen absorption electrode which includes the alloy.
    Type: Grant
    Filed: September 14, 1994
    Date of Patent: October 19, 1999
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Masato Yoshida, Takitaro Yamaguchi, Takao Ogura
  • Patent number: 5916518
    Abstract: An improved cobalt-base braze alloy composition and method for diffusion brazing are provided for use in repairing superalloy articles, such as gas turbine engines, power generation turbines, refinery equipment, and heat exchangers. The improved cobalt-base braze alloy composition includes nickel; at least one element selected from the group of rhenium, palladium, and platinum; at least one element selected from the group of boron and silicon; and the remaining balance consists of cobalt. This composition may also include aluminum, and the composition may be combined with one or more powdered base metal superalloy compositions to form an improved diffusion braze alloy mixture. In the improved method for repairing superalloy articles, the foregoing mixture is applied to a region of the superalloy article to be repaired. The mixture is then heated to melt the cobalt-base braze alloy, thereby joining the base metal superalloy powder particles together, and joining the entire mixture to the region being repaired.
    Type: Grant
    Filed: April 8, 1997
    Date of Patent: June 29, 1999
    Assignee: Allison Engine Company
    Inventor: Richard Patrick Chesnes
  • Patent number: 5908514
    Abstract: A new magnetic alloy exhibits high Hc and Ms while exhibiting excellent corrosion resistance, thereby providing ideal physical properties for high density recording applications. Other parameters of the media, such as SNR, PW50, and S are at least maintained, if not also improved. The alloy contains cobalt and up to 10 at. % Ni, up to 20 at. % Pt, up to 10 at. % Ta, up to 10 at. % Ti, and optionally up to 6 at. % B. The ratio of the tantalum to titanium in the alloy is between 3:1 and 1:3. The alloy is deposited by vacuum deposition (typically sputtering) on a similarly deposited non-magnetic alloy under layer. Nitrogen and/or oxygen may be introduced into the alloy during deposition to improve SNR. Other corrosion-resistant thin film alloys may also be obtained by the inclusion of Ta and Ti.
    Type: Grant
    Filed: October 24, 1996
    Date of Patent: June 1, 1999
    Inventors: Rajiv Yadav Ranjan, Tu Chen, Tsutomu Tom Yamashita, John Ko-Jen Chen
  • Patent number: 5631094
    Abstract: A new magnetic alloy exhibits high Hc and Ms while exhibiting excellent corrosion resistance, thereby providing ideal physical properties for high density recording applications. Other parameters of the media, such as SNR, PW50, and S are at least maintained, if not also improved. The alloy contains cobalt and up to 10 at. % Ni, up to 20 at. % Pt, up to 10 at. % Ta, up to 10 at. % Ti, and optionally up to 6 at. % B. The ratio of the tantalum to titanium in the alloy is between 3:1 and 1:3. The alloy is deposited by vacuum deposition (typically sputtering) on a similarly deposited non-magnetic Ni alloy under layer. Nitrogen and/or oxygen may be introduced into the alloy during deposition to improve SNR. Other corrosion-resistant thin film alloys may also be obtained by the inclusion of Ta and Ti.
    Type: Grant
    Filed: December 1, 1994
    Date of Patent: May 20, 1997
    Assignee: Komag, Incorporated
    Inventors: Rajiv Y. Ranjan, Tu Chen, Tsutomu T. Yamashita, John K.-J. Chen
  • Patent number: 5282946
    Abstract: A sputtering target of platinum-cobalt alloy is disclosed which contains 10 to 55% by weight of platinum; 1 to 15% by weight of a first additional element selected from the group consisting of nickel and tantalum; no more than 1.5% by weight of a second additional element selected from the group consisting of boron, titanium, lanthanum, cerium, neodymium, beryllium, calcium, zirconium, and silicon; no more than 20% by weight of chromium; and balance cobalt. A method for manufacturing the sputtering target is also disclosed. In the method, a platinum-cobalt alloy containing specific ingredients in predetermined amounts is first prepared. Then, the platinum-cobalt alloy is subjected to hot plastic working with a thickness reduction of no less than 30%. Subsequently, the alloy thus hot worked is subjected to a cold plastic working with a thickness reduction of no less than 5% at a temperature less than the recrystallization temperature of the alloy.
    Type: Grant
    Filed: June 25, 1992
    Date of Patent: February 1, 1994
    Assignee: Mitsubishi Materials Corporation
    Inventors: Makoto Kinoshita, Jun Tamura, Masaki Morikawa, Kunio Kishida, Toshinori Ishii, Akifumi Mishima
  • Patent number: 5182080
    Abstract: A cobalt base, high temperature brazing alloy having a composition, by weight of:______________________________________ Nickel from about 8.5% to about 12.5% Chromium from about 24% to about 40% Tungsten from about 0% to about 9% Carbon from about 0.03% to about 0.6% Boron from about 0.01% to about 3.5% Silicon from about 1.0% to about 11% Manganese up to about 2% Cobalt Balance ______________________________________is provided for use in the repair of Co-base turbine component superalloys.
    Type: Grant
    Filed: December 27, 1990
    Date of Patent: January 26, 1993
    Assignee: General Electric Company
    Inventors: Adrian M. Beltran, Charles H. Kreischer
  • Patent number: 5139738
    Abstract: A corrosion resistant filler weld alloy is provided for use in repairing a preselected article alloy of predetermined composition range at a temperature equal to or greater than the incipient melting temperature of the article alloy, the filler weld alloy having a composition, by weight of:Chromium--from about 20% to about 48%Nickel--about 20%Tungsten--from about 0% to about 4%Carbon--about 0.1%Silicon--about 0.9%Manganese--about 0.6%Tantalum--from about 0% to about 3.5%Titanium--from about 1% to about 2.25%Cobalt--Balance.
    Type: Grant
    Filed: December 18, 1990
    Date of Patent: August 18, 1992
    Assignee: General Electric Company
    Inventors: Adrian M. Beltran, James J. Frawley
  • Patent number: 4938267
    Abstract: A series of glassy metal alloys with near zero magnetostriction and Perminvar characteristics of relatively constant permeability at low magnetic field excitations and constricted hysteresis loops is disclosed. The glassy alloys have the compositions Co.sub.a Fe.sub.b Ni.sub.c M.sub.d B.sub.e Si.sub.f where M is at least one member selected from the group consisting of Cr, Mo, Mn and Nb, and "a-f" are in atom percent where "a" ranges from about 66 to 71, "b" ranges from about 2.5 to 4.5, "c" ranges from about 0 to 3, "d" ranges from about 0 to 2 except when M.dbd.Mn in which case "d" ranges from about 0 to 4, "e" ranges from about 6 to 24 and "f" ranges from about 0 to 19, with the proviso that the sum of "a", "b" and "c" ranges from about 72 to 76 and the sum of "e" and "f" ranges from about 25 to 27. The glassy alloy has a value of magnetostriction ranging from about -1.times.10.sup. -6 to about +1.times.10.sup.-6, a saturation induction ranging from about 0.
    Type: Grant
    Filed: August 18, 1988
    Date of Patent: July 3, 1990
    Assignee: Allied-Signal Inc.
    Inventor: Ryusuke Hasegawa
  • Patent number: 4874577
    Abstract: Disclosed is a wear-resistant intermetallic compound alloy having superior machineability which consists essentially of: 45-60% of either Ni or Co or both with cobalt content of at least 5%, at least one of 0.1-2% of Hf and 0.05-2% of Re, 0-2% of at least one element selected from the group consisting of Si, P, Cu, Zn, Ga, Ge, Cd, In, Sn, Sb, Pb and Bi, 0-2% of C, and 0-5% of at least one element selected from the group consisting of Zr, Fe, V, Nb, Ta, Cr, Mo, W and Mn, the balance being Ti and incidental impurities, the percent being atomic percent.
    Type: Grant
    Filed: November 9, 1987
    Date of Patent: October 17, 1989
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Saburo Wakita, Junji Hoshi
  • Patent number: 4863526
    Abstract: A fine crystalline thin wire of a cobalt base alloy having a composition of the formula;CokMlBmSinwhere Co is cobalt; M is at least one of the transition metals of groups IV, V and VI of the periodic table; B is boron; Si is silicon; K, l, m and n represent atom percent of Co, M, B and Si, respectively, and have the following values:k=40-78l=10-50m=2-15n=8-20and the fine crystal grains in the thin wire having an average size of no more than 5 .mu.m.
    Type: Grant
    Filed: July 10, 1987
    Date of Patent: September 5, 1989
    Assignee: Pilot Man-Nen-Hitsu Kabushiki Kaisha
    Inventors: Yukio Miyagawa, Zenzo Kitayama, Ikuo Ishiguro, Yoshimasa Suzuki
  • Patent number: 4837389
    Abstract: A dimensional composition, a dimensionally restored alloy structure and a method of dimensionally restoring gas turbine and the like components that will be subsequently coated which includes low-pressure plasma spraying onto a damaged vane or other components, an alloy composition consisting essentially by weight of 1 to 4% aluminum, 0 to 1.5% hafnium and 0 to 20% nickel in the base composition of the cobalt alloy component, grinding to final dimension and diffusion coating. Tantalum is substituted for columbium where the base composition of the alloy contains columbium.
    Type: Grant
    Filed: June 4, 1984
    Date of Patent: June 6, 1989
    Assignee: Turbine Components Corporation
    Inventors: Srinivasan Shankar, George W. Goward
  • Patent number: 4761169
    Abstract: An alloy suitable for use as a spinner in forming glass fibers, the alloy being cobalt-based and including the following elements in percent by weight: chromium--about 34.0 to about 38.0; nickel--about 10.0 to about 15.0; wolfram--about 4.0 to about 7.0; tantalum--about 2.0 to about 5.0; zirconium--about 0.1 to about 0.4: silicon--present but about 0.15 max; carbon--about 0.65 to about 0.95; boron--about 0.005 to about 0.02; hafnium--about 0.4 to about 1.0; aluminum--0.0 to about 0.2; titanium--0.0 to about 0.2; manganese--0.0 to about 0.5; molybdenum--0.0 toabout 0.1; iron--0.0 to about 2.0; and cobalt--balance; and further that: ##EQU1## said percents of the elements in equation Nos. 1 and 2 each being atom percent.
    Type: Grant
    Filed: October 3, 1986
    Date of Patent: August 2, 1988
    Assignee: Owens-Corning Fiberglas Corporation
    Inventor: David J. Gaul
  • Patent number: 4728495
    Abstract: The invention relates to removable dental appliances made of cobalt-chromium-cast alloys containing (in % by weight) 0,1 to 1,0% C, 0,05 to 0,5% N, 0,5 to 3,0% Si, 0,3 to 10,0% Mn, 20 to 35% Cr, 2 to 10% Mo, 5 to 40% Fe, at least 20% Cobalt as rest including incidental impurities.
    Type: Grant
    Filed: March 20, 1986
    Date of Patent: March 1, 1988
    Assignee: Thyssen Edelstahlwerke AG
    Inventor: Leo Rademacher
  • Patent number: 4714468
    Abstract: A dispersion strengthened cobalt-chromium-molybdenum alloy produced by gas atomization containing a fine oxide dispersion, and characterized, after fabrication by gas atomization, thermomechanical processing and further high temperature exposure, by excellent corrosion resistance, high fatigue strength, high ductility and high temperature stability; a process for producing said alloy and prostheses formed from said alloy.
    Type: Grant
    Filed: January 27, 1987
    Date of Patent: December 22, 1987
    Assignee: Pfizer Hospital Products Group Inc.
    Inventors: Kathy K. Wang, Larry J. Gustavson, John H. Dumbleton
  • Patent number: 4692305
    Abstract: A novel alloy is disclosed which is characterized by high resistance to wear and corrosion. The alloy consists essentially of 2 to 25% chromium, 5 to 30% molybdenum, 3 to 15% tungsten, 2 to 8% copper, 2 to 8% boron, and 0.2 to 2% carbon; the balance being incidental impurities and at least 30% of a metal selected from the group consisting of nickel, cobalt and combinations thereof, with the total of molybdenum and tungsten being at least 16%. The alloy is preferably in the form of a powder for thermal spraying, and coating produced thereby generally have an amorphous structure.
    Type: Grant
    Filed: November 5, 1985
    Date of Patent: September 8, 1987
    Assignee: Perkin-Elmer Corporation
    Inventors: Subramaniam Rangaswamy, John H. Harrington
  • Patent number: 4668290
    Abstract: A dispersion strengthened cobalt-chromium-molybdenum alloy produced by gas atomization containing a fine oxide dispersion, and characterized, after fabrication by gas atomization, thermomechanical processing and further high temperature exposure, by excellent corrosion resistance, high fatigue strength, high ductility and high temperature stability; a process for producing said alloy and prostheses formed from said alloy.
    Type: Grant
    Filed: August 13, 1985
    Date of Patent: May 26, 1987
    Assignee: Pfizer Hospital Products Group Inc.
    Inventors: Kathy K. Wang, Larry J. Gustavson, John H. Dumbleton
  • Patent number: 4594104
    Abstract: The present invention provides a method for producing a consolidated article composed of a transition metal alloy. The method includes the step of selecting a rapidly solidified alloy which is at least about 50% glassy. The alloy is formed into a plurality of alloy bodies, and these alloy bodies are compacted at a pressing temperature of not more than about 0.6 Ts (solidus temperature in .degree.C.) to consolidate and bond the alloy bodies together into a glassy metal compact having a density of at least about 90% T.D. (theoretical density). The compacted glassy alloy bodies are then heat treated at a temperature generally ranging from about 0.55-0.85 Ts, but, in any case, above the alloy crystallization temperature, for a time sufficient to produce a fine grain crystalline alloy structure in the compacted article.
    Type: Grant
    Filed: April 26, 1985
    Date of Patent: June 10, 1986
    Assignee: Allied Corporation
    Inventor: Derek Reybould
  • Patent number: 4582536
    Abstract: The present invention provides a method for consolidating rapidly solidified, transition metal alloys which includes the step of compacting a plurality of alloy bodies at a temperature ranging from about 0.90-0.99 Tm (melting temperature in .degree.C.) for a time period ranging from about 1 min to 24 hours. The alloy bodies contain at least two transition metal elements and consist essentially of the formula (Fe,Co and/or Ni).sub.bal (W, Mo, Nb and/or Ta).sub.a (Al and/or Ti).sub.b (Cr).sub.c (B and/or C).sub.d (Si and/or P).sub.e, wherein "a" ranges from about 0-40 at. %, "b" ranges from about 0-40 at. %, "c" ranges from about 0-40 at. %, "d" ranges from about 5-25 at. %, and "e" ranges from about 0-15 at. %. The alloy bodies also have a substantially homogeneous and optically featureless structure.
    Type: Grant
    Filed: December 7, 1984
    Date of Patent: April 15, 1986
    Assignee: Allied Corporation
    Inventor: Derek Raybould