Chromium Containing Patents (Class 420/436)
  • Patent number: 9949538
    Abstract: The present invention relates generally to a coated jewelry article or a coated component of a jewelry article, comprising a jewelry article or a component of a jewelry article, a first metallic coating, and a second metallic coating.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: April 24, 2018
    Assignee: Frederick Goldman, Inc.
    Inventor: Andrew Derrig
  • Patent number: 9888987
    Abstract: A dental blank is provided for yielding a metal frame having a desired shape according to a dental CAD/CAM system and a machining process. The dental blank is formed from a metal powder sintered body and contains Co as a main component, Cr in a proportion of 26% by mass or more and 35% by mass or less, Mo in a proportion of 5% by mass or more and 12% by mass or less, and Si in a proportion of 0.5% by mass or more and 1.0% by mass or less. Further, part of the Si is silicon oxide, and the ratio of the silicon oxide to the total amount of Si is preferably 10% by mass or more and 90% by mass or less.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: February 13, 2018
    Assignee: Seiko Epson Corporation
    Inventors: Hidefumi Nakamura, Yukihiko Shiohara
  • Patent number: 9752970
    Abstract: A method of testing the oxidation resistance of an alloy includes applying a layer of salt on the alloy's surface and placing the alloy in a furnace at a temperature of at least 1000° C. and containing an oxygen containing gas. The alloy is maintained in the furnace at the predetermined temperature for a period of time then the alloy is removed from the furnace and the alloy is to cool to ambient temperature or other suitable temperature. These steps are repeated for a number of times to maintain the salt on the alloy's surface at a level of 0.5 to 30 ?g cm?2 h?1. The alloy is weighed periodically to determine oxidation resistance. The addition of salt reduces the time to test the oxidation resistance of the alloy and the addition of the salt mimics the degradation of the alloy in a real working environment in a gas turbine engine.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: September 5, 2017
    Assignees: ROLLS-ROYCE PLC, THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE
    Inventors: Stephen Moray Bagnall, Julian Charles Mason-Flucke, Catherine Mary Fiona Rae, Siavash Pahlavanyali
  • Patent number: 9702764
    Abstract: In a thermocouple, a pair of thermoelements extend within a protective sheath. The thermoelements are spaced from the sheath by an insulator. The sheath comprises an outer sheath formed from a metal alloy adapted to provide mechanical support and corrosion resistance during use of the thermocouple, typically at elevated temperature. The sheath further comprises an inner sheath positioned between the outer sheath and the thermoelements and formed from a nickel-based alloy containing less than 10 wt % Cr, to prevent diffusion of Cr and/or Mn from the outer sheath to the thermoelements.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: July 11, 2017
    Assignee: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Michele Scervini, Cathie Rae
  • Patent number: 9655698
    Abstract: A blank material to be cut for dentistry includes: Co as a main component; Cr at a ratio equal to or higher than 26 mass % and equal to or less than 35 mass %; Mo at a ratio equal to or higher than 5 mass % and equal to or less than 12 mass %; Si at a ratio equal to or higher than 0.3 mass % and equal to or less than 2.0 mass %; and N at a ratio equal to or higher than 0.09 mass % and equal to or less than 0.5 mass %. The blank material is formed of a sintered body of a metal powder.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: May 23, 2017
    Assignee: Seiko Epson Corporation
    Inventors: Hidefumi Nakamura, Takayuki Tamura
  • Patent number: 9566147
    Abstract: Embodiments are directed to radiopaque implantable structures (e.g., stents) formed of cobalt-based alloys that comprise cobalt, chromium and one or more platinum group metals, refractory metals, precious metals, or combinations thereof. Platinum group metals include platinum, palladium, ruthenium, rhodium, osmium, and iridium. Refractory metals include zirconium, niobium, rhodium, molybdenum, hafnium, tantalum, tungsten, rhenium, and precious metals include silver and gold. In one embodiment, the one or more included platinum group or refractory metals substitute at least partially for nickel, such that the alloy exhibits reduced nickel content, or is substantially nickel free. The stents exhibit improved radiopacity as compared to similar alloys including greater amounts of nickel.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 14, 2017
    Assignee: Abbott Cardiovascular Systems, Inc.
    Inventors: Pamela A. Kramer-Brown, Kayla L. Calvert, John A. Simpson, Stephen D. Pacetti, Austin M. Leach
  • Patent number: 9051631
    Abstract: A wear- and corrosion-resistant alloy, and related application method, where the alloy has by approximate weight %, C 0.12-0.7, Cr 20-30, Mo 7-15, Ni 1-4, and Co balance, wherein the alloy further contains one or more carbide-former elements from the group consisting of Ti, Zr, Hf, V, Nb, and Ta in a cumulative concentration to stoichiometrically offset between about 30% and about 90% of the C in the alloy.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: June 9, 2015
    Assignee: Kennametal Inc.
    Inventors: James B. C. Wu, Matthew X. Yao
  • Publication number: 20150093721
    Abstract: A dental blank is provided for yielding a metal frame having a desired shape according to a dental CAD/CAM system and a machining process. The dental blank is formed from a metal powder sintered body and contains Co as a main component, Cr in a proportion of 26% by mass or more and 35% by mass or less, Mo in a proportion of 5% by mass or more and 12% by mass or less, and Si in a proportion of 0.5% by mass or more and 1.0% by mass or less. Further, part of the Si is silicon oxide, and the ratio of the silicon oxide to the total amount of Si is preferably 10% by mass or more and 90% by mass or less.
    Type: Application
    Filed: September 26, 2014
    Publication date: April 2, 2015
    Inventors: Hidefumi NAKAMURA, Yukihiko SHIOHARA
  • Patent number: 8962154
    Abstract: A pipe or pipe fitting for use in harsh environment such as in petroleum refinery processes for cracking petroleum feedstocks, the pipe or pipe fitting comprising a 0.25 to 2.5 mm thick Co-based metallic coating on an internal surface of the pipe body, the coating having a hypereutectic microstructure characterized by carbides in a cobalt matrix and an average carbide grain size of less than 50 microns, and the Co-based metallic composition overlays the pipe internal surface at an interface which is free of heat-affected zone and which has a diffusion zone which is less than 0.002 inches thick.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: February 24, 2015
    Assignee: Kennametal Inc.
    Inventors: Matthew Yao, Louw DeJong, Danie DeWet
  • Publication number: 20140220379
    Abstract: Known protective layers having a high Cr content and additionally a silicon form brittle phases which additionally become brittle under the influence of carbon during use. The protective layer hereof has a composition 22% to 24% cobalt (Co), 10.5% to 11.5% aluminum (AI), 0.2% to 0.4% yttrium (Y) and/or at least one equivalent metal from the group comprising scandium and the rare earth elements, 14% to 16% chrome (Cr), optionally 0.3% to 0.9% tantalum, the remainder nickel (Ni).
    Type: Application
    Filed: June 22, 2012
    Publication date: August 7, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Werner Stamm
  • Publication number: 20140220384
    Abstract: Known protective layers having a high Cr-content and a silicone in addition, form brittle phases that embrittle further under the influence of carbon during use. The protective layer according to the invention is composed of 22% to 26% cobalt (Co), 10.5% to 12% aluminum (Al), 0.2% to 0.4% Yttrium (Y) and/or at least one equivalent metal from the group comprising Scandium and the rare earth elements, 15% to 16% chrome (Cr), optionally 0.3% to 1.5% tantal, the remainder nickel (Ni).
    Type: Application
    Filed: August 3, 2012
    Publication date: August 7, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Werner Stamm
  • Patent number: 8791005
    Abstract: A structure formed in an opening having a substantially vertical sidewall defined by a non-metallic material and having a substantially horizontal bottom defined by a conductive pad, the structure including a diffusion barrier covering the sidewall and a fill composed of conductive material.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: July 29, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, John A. Fitzsimmons, Troy L. Graves-Abe
  • Patent number: 8763885
    Abstract: Cobalt-based solder alloys are proposed. The cobalt-based solder alloys have germanium. The germanium has a higher melting point than nickel-based alloys such that the germanium is used advantageously for repairing or treating components having the nickel-based alloys used at high temperatures. The components are repaired or treated by soldering using the cobalt-based solder alloys.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: July 1, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Sebastian Piegert, Peter Randelzhofer, Robert Singer
  • Publication number: 20140057122
    Abstract: An alloy for imparting wear- and corrosion-resistance to a metal component wherein the alloy comprises between about 0.12 wt % and about 0.7 wt % C, between about 20 wt % and about 30 wt % Cr, between about 10 wt % and about 15 wt % Mo, between about 1 wt % and about 4 wt % Ni, and balance of Co.
    Type: Application
    Filed: November 6, 2013
    Publication date: February 27, 2014
    Applicant: KENNAMETAL INC.
    Inventors: James B. C. Wu, Volker Hellinger, Matthew X. Yao
  • Patent number: 8623272
    Abstract: A non-magnetic cobalt based “noble” metal dental alloy is provided. The alloy generally contains at least 25 wt. % palladium, from 15 to 30 wt. % chromium and a balance of cobalt, where to ensure the alloy is non-magnetic the concentration of chromium in the alloy is at least 20 wt. %, or if the concentration of chromium is less than 20 wt. % the combined concentration of chromium, molybdenum, tungsten, niobium, tantalum vanadium and rhenium is greater than 20 wt. %.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: January 7, 2014
    Assignee: The Argen Corporation
    Inventors: Arun Prasad, Paul J. Cascone
  • Patent number: 8603264
    Abstract: A method for imparting wear- and corrosion-resistance to a metal component comprising overlaying the component with a ductile Co-based alloy comprising between about 0.12 wt % and about 0.7 wt % C, between about 20 wt % and about 30 wt % Cr, between about 10 wt % and about 15 wt % Mo, between about 1 wt % and about 4 wt % Ni, and balance of Co, without forming cracks during the alloy's solidification.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: December 10, 2013
    Assignee: Kennametal Inc.
    Inventors: James B. C. Wu, Volker Hellinger, Matthew X. Yao
  • Publication number: 20130306019
    Abstract: A surface hardening material being excellent in impact resistance and having abrasion resistance is provided. Provided are: a high-toughness cobalt-based alloy containing 25.0 to 40.0 mass % of Cr, 0.5 to 12.0 mass % of a sum of W and/or Mo, 0.8 to 5.5 mass % of Si, and 0.5 to 2.5 mass % of B, 8.0 mass % or less of each of Fe, Ni, Mn, and Cu, and 0.3 mass % or less of C, the sum amount of Fe, Ni, Mn, and C being 10.0 mass % or less, and the remainder comprising 48.0 to 68.0 mass % of Co and unavoidable impurities; and an engine valve coated with the same.
    Type: Application
    Filed: May 23, 2011
    Publication date: November 21, 2013
    Inventors: Katsunori Otobe, Shinichi Nishimura, Kazunori Kurahashi
  • Publication number: 20130287622
    Abstract: An article is formed of a metal alloy that includes the following constituents: (a) cobalt in an amount of between about 50.0% to about 51.0% by weight of the article; (b) tungsten in an amount of between about 21.0% to about 22.0% by weight of the article; (c) chromium in an amount of about 22.0% by weight of the article; (d) nickel in an amount of between about 2.5% to about 3.0% by weight; and (e) molybdenum in an amount of about 5.0% by weight. The article can be in the form of a jewelry article, such as a ring, a bracelet, a necklace, or an earring and can be formed by a shell casting process.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 31, 2013
    Applicant: Black & Blue
    Inventor: Asher C. Hoffman
  • Publication number: 20130243642
    Abstract: A metallic coating or alloy is provided, which is nickel based, and includes at least ? and ?? phases. The metallic coating or the alloy further includes tantalum (Ta) in the range of between 4 wt % to 7.5 wt %. The metallic coating or the alloy also includes cobalt (Co) in the range between 11 wt %-14.5 wt %.
    Type: Application
    Filed: November 7, 2011
    Publication date: September 19, 2013
    Inventors: Anand A. Kulkarni, Jonathan E. Shipper, JR., Werner Stamm
  • Publication number: 20130226281
    Abstract: Provided is a Co-based alloy for a living body based on Co—Cr—W—Fe, including a composition of Cr: 5% by mass to 30% by mass, W: 5% by mass to 20% by mass, Fe: 1% by mass to 15% by mass, Co as the remainder, and unavoidable impurities. In this alloy, when the content of W is 5% by mass to 10% by mass, the content of Fe can be set to be in a range of 1% by mass to 5% by mass, and when the content of W is 11% by mass to 20% by mass, the content of Fe can be set to be in a range of 3% by mass to 15% by mass.
    Type: Application
    Filed: February 20, 2013
    Publication date: August 29, 2013
    Applicants: TOHOKU UNIVERSITY, SEIKO INSTRUMENTS INC.
    Inventors: SEIKO INSTRUMENTS INC., TOHOKU UNIVERSITY
  • Publication number: 20130156555
    Abstract: Braze materials, brazing processes, and coatings produced therefrom, for example, a wear-resistant coating suitable for protecting surfaces subjected to wear at high temperatures. The braze material includes first particles formed of a metallic alloy and second particles formed of a cobalt-base braze alloy having a melting point below the melting point of the first particles. The braze alloy consists of, by weight, 3.5 to 15.0% silicon, 2.0 to 6.0% boron, and the balance cobalt and incidental impurities, and the second particles constitute at least 30 up to 90 weight percent of the first and second particles combined. Following a brazing cycle performed on the braze material, a wear-resistant coating is formed in which the first particles are dispersed in a matrix of the braze alloy.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: David Edwin Budinger, Jonathan Reid Biberstine
  • Publication number: 20130121871
    Abstract: A non-magnetic cobalt based “noble” metal dental alloy is provided. The alloy generally contains at least 25 wt. % palladium, from 15 to 30 wt. % chromium and a balance of cobalt, where to ensure the alloy is non-magnetic the concentration of chromium in the alloy is at least 20 wt.%, or if the concentration of chromium is less than 20 wt. % the combined concentration of chromium, molybdenum, tungsten, niobium, tantalum vanadium and rhenium is greater than 20 wt. %.
    Type: Application
    Filed: December 21, 2012
    Publication date: May 16, 2013
    Applicant: The Argen Corporation
    Inventor: The Argen Corporation
  • Publication number: 20130073028
    Abstract: A first object of the present invention is to provide Co-based alloys for biomedical applications which are Ni-free, high intensity and high elastic modulus and are suitable for plastic workability. Moreover, a second object of the present invention is to provide Co-based alloys for biomedical applications having X-ray visibility. Furthermore, a third object of the present invention is to provide a stent using the alloys. The Co-based alloys for biomedical applications according to the present invention is configured by adding alloy elements having biocompatibility and an effect of increasing stacking fault energy of the alloys.
    Type: Application
    Filed: September 19, 2012
    Publication date: March 21, 2013
    Applicant: SEIKO INSTRUMENTS INC.
    Inventor: SEIKO INSTRUMENTS INC.
  • Publication number: 20120288399
    Abstract: The present invention relates to a high-hardness hardfacing alloy powder, containing: 0.5<C?3.0 mass %, 0.5?Si?5.0 mass %, 10.0?Cr?30.0 mass %, and 16.0<Mo?40.0 mass %, with the balance being Co and unavoidable impurities, wherein a total amount of Mo and Cr satisfies 40.0?Mo+Cr?70.0 mass %. The high-hardness hardfacing alloy powder according to the present invention may further contain at least one element selected from the group consisting of: Ca?0.03 mass %, P?0.03 mass %, Ni?5.0 mass % and Fe?5.0 mass %. The high-hardness hardfacing alloy powder according to the present invention can be employed for build-up welding of a face part of a valve used in various internal combustion engines, automotive engines, steam turbines, heat exchangers, heating furnaces and the like.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 15, 2012
    Applicant: DAIDO STEEL CO., LTD.
    Inventors: Kaoru IMAIZUMI, Shigeki UETA
  • Publication number: 20120273153
    Abstract: A casting mold for a metal melt is provided. By coating a core of a casting mold, the core may be mechanically stabilized and an inner coating of the component to be cast may be obtained, wherein the coating preferably serves as an anti-corrosion layer. A method for producing a cast part using the casting mold is also provided.
    Type: Application
    Filed: May 31, 2010
    Publication date: November 1, 2012
    Inventors: Fathi Ahmad, Winfried Esser, Uwe Paul
  • Patent number: 8262964
    Abstract: An alloy, characterized in that it contains the following elements (the proportions being indicated in percentages by weight of the alloy): Cr: ?23 to 34% Ti: 0.2 to 5% Ta: 0.5 to 7% C: 0.2 to 1.2% Ni: less than 5% Fe: less than 3% Si: less than 1% Mn: less than 0.5%, the balance consisting of cobalt and inevitable impurities. An article for the manufacture of mineral wool, especially fiberizing spinner, made of such an alloy.
    Type: Grant
    Filed: November 27, 2008
    Date of Patent: September 11, 2012
    Assignees: Saint-Gobain Isover, Saint-Gobain Seva
    Inventors: Jean-Luc Bernard, Patrice Berthod, Ludovic Hericher, Christophe Liebaut, Sylvain Michon
  • Patent number: 8076261
    Abstract: The present invention features a method for preparing a PtCo nanocube catalyst, the method comprising dissolving a platinum (Pt) precursor, a cobalt (Co) precursor, a surface stabilizer and a reducing agent in a solvent to prepare a solution; heating the solution under an inert gas atmosphere; maintaining the temperature of the solution to obtain PtCo alloy nanocubes; adsorbing the PtCo alloy nanocubes on a carbon support to obtain a catalyst; and removing the surface stabilizer from the catalyst. The disclosed method for preparing a PtCo nanocube catalyst enables preparation of nanocubes with uniform size and cubic shape through a simple process and application for development of high-efficiency fuel cells by preventing change in shape, surface area and composition caused by agglomeration of the nanocubes.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: December 13, 2011
    Assignees: Hyundai Motor Company, Korea Advanced Institute of Science and Technology
    Inventors: Inchul Hwang, Nak Hyun Kwon, Jae Seung Lee, Joon Taik Park, Sang-Il Choi
  • Patent number: 8075839
    Abstract: A wroughtable, cobalt alloy capable of through thickness nitridation and strengthening using practical treatments and practical sheet thicknesses contains in weight percent about 23 to about 30% chromium, about 15 to about 25% iron, up to about 27.3% nickel, about 0.75 to about 1.7% titanium, about 0.85 to about 1.9% niobium or zirconium, up to 0.2% carbon, up to 0.015% boron, up to 0.015% rare earth elements, up to 0.5% aluminum, up to 1% manganese, up to 1% silicon, up to 1% tungsten, up to 1% molybdenum, and the balance cobalt plus impurities and the total weight percent of titanium plus niobium or equivalents is from about 1.6 to about 3.6.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: December 13, 2011
    Assignee: Haynes International, Inc.
    Inventor: S. Krishna Srivastava
  • Publication number: 20110275033
    Abstract: A nonmagnetic alloy is provided based on a palladium-cobalt binary system with the addition of gold, has a coefficient of thermal expansion (CTE) of about 13.8 to about 15 and may include one or more of the following additive metals: aluminum, boron, chromium, gallium, lithium, rhenium, ruthenium, silicon, tantalum, titanium, and tungsten.
    Type: Application
    Filed: July 12, 2011
    Publication date: November 10, 2011
    Applicant: IVOCLAR VIVADENT, INC.
    Inventors: Tridib Dasgupta, George Tysowsky
  • Patent number: 7981831
    Abstract: Catalysts are described in which an active catalyst is disposed on a low surface area, oxide support. Methods of forming catalysts are described in which a Cr-containing metal is oxidized to form a chromium oxide layer and an active catalyst is applied directly on the chromium oxide layer. Methods of making new catalysts are described in which the surface is sonicated prior to depositing the catalyst. Catalyst systems and methods of oxidation are also described. The inventive systems, catalysts and methods are, in some instances, characterized by surprisingly superior results.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: July 19, 2011
    Assignee: Velocys
    Inventors: Barry Lee-Mean Yang, Ruiqiang Long, Junko M. Watson, Abhishek Gupta
  • Patent number: 7927434
    Abstract: Provided is a Co—Cr—Pt—B alloy sputtering target comprising an island-shaped rolled structure formed from a Co-rich phase based on the primary crystal formed upon casting, and a Co—Cr—Pt—B alloy sputtering target in which the island-shaped rolled structure has an average size of 200 ?m or less. This Co—Cr—Pt—B alloy sputtering target has an uniform and fine rolled structure with minimal segregation and residual stress upon casting, and the present invention aims to enable the stable and inexpensive manufacture of the target, prevent or suppress the generation of particles, and to improve the production yield of deposition.
    Type: Grant
    Filed: February 15, 2005
    Date of Patent: April 19, 2011
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Nakamura, Akira Hisano
  • Patent number: 7910512
    Abstract: To provide a production process of an electrode catalyst for fuel cell whose initial voltage is high and whose endurance characteristics, especially, whose voltage drop being caused by high-potential application is less. A production process according to the present invention of an electrode catalyst for fuel cell is characterized in that: it includes: a dispersing step of dispersing a conductive support in a solution; a loading step of dropping a platinum-salt solution, a base-metal-salt solution and an iridium-salt solution to the resulting dispersion liquid, thereby loading respective metallic salts on the conductive support as hydroxides under an alkaline condition; and an alloying step of heating the conductive support with metallic hydroxides loaded in a reducing atmosphere to reduce them, thereby alloying them.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: March 22, 2011
    Assignee: Cataler Corporation
    Inventors: Hiroaki Takahashi, Sozaburo Ohashi, Tetsuo Kawamura, Yousuke Horiuchi, Toshiharu Tabata, Tomoaki Terada, Takahiro Nagata, Susumu Enomoto
  • Publication number: 20100329920
    Abstract: An article of jewelry and method of producing an article of jewelry, comprising providing a substrate made of a biocompatible medical grade cobalt-based alloy that includes cobalt, chromium and molybdenum. The cobalt-based alloy substrate is formed into a desired shape of the article of jewelry.
    Type: Application
    Filed: November 30, 2009
    Publication date: December 30, 2010
    Inventor: Edward Rosenberg
  • Patent number: 7857916
    Abstract: A Co—Cr—Mo alloy fine wire has superior biocompatibility, corrosion resistance, wear resistance, processability, and flexibility. A manufacturing method and a planar body or the like formed by processing this fine wire. This is a fine wire of diameter of 200 micrometers or less comprising 26 to 31 weight % of Cr, 8 to 16 weight % of Mo, and the remainder of Co and inevitable impurities, in which the degree of roundness (minor diameter/major diameter) of lateral cross section is 0.6 or more, and the internal structure is uniform with the concentration ratio of high Mo concentration phase to low Mo concentration phase of 1.8 or less.
    Type: Grant
    Filed: April 9, 2004
    Date of Patent: December 28, 2010
    Assignee: NHK Spring Co., Ltd
    Inventors: Akihiko Chiba, Yoshiki Ono, Shigemi Sato, Michihiko Ayada, Takeshi Suzuki, Morimichi Kai, Masashi Sakamoto
  • Patent number: 7794652
    Abstract: A dental prosthesis may be cast and machined from a cobalt-, iron- and/or nickel-chromium base dental alloy comprising at least 25% metal selected from the group consisting of ruthenium, platinum, palladium, iridium, osmium, rhodium, and gold wherein the major portion or at least 15%, whichever is larger, of metal in this group is ruthenium; from 15 to 30% chromium; and a principal balance of metal selected from the group consisting of iron. nickel and cobalt.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: September 14, 2010
    Assignee: The Argen Corporation
    Inventor: Paul J. Cascone
  • Publication number: 20100209284
    Abstract: A soft magnetic alloy for perpendicular magnetic recording medium excellent n saturation magnetic flux density, amorphousness and atmospheric corrosion resistance. The alloy is an Fe-Co based alloy and comprises Fe in an amount satisfying 0.25 to 0.65 of Fe/(Fe+Co) ratio, which is an atomic ratio of Fe and Fe+Co; Zr+Hf in an amount of 6 to 100 at %; Na+Ta in an amount of 0 to 2 at %; Al and/or Cr in an amount of 0 to 5 at %; and the balance Co and unavoidable impurities. A part of Zr and/or Hf can be replaced by B, provided that the amount of B to replace Zr and/or Hf is double in at % of the total amount of Zr and Hf to be replaced and that the total amount of Zr and Hf after replacement is 4 at % or more.
    Type: Application
    Filed: May 1, 2008
    Publication date: August 19, 2010
    Applicant: SANYO SPECIAL STEEL CO., LTD.
    Inventors: Toshiyuki Sawada, Akihiko Yanagitani
  • Publication number: 20100209286
    Abstract: A wear- and corrosion-resistant alloy, and related application method, where the alloy has by approximate weight %, C 0.12-0.7, Cr 20-30, Mo 7-15, Ni 1-4, and Co balance, wherein the alloy further contains one or more carbide-former elements from the group consisting of Ti, Zr, Hf, V, Nb, and Ta in a cumulative concentration to stoichiometrically offset between about 30% and about 90% of the C in the alloy.
    Type: Application
    Filed: July 11, 2008
    Publication date: August 19, 2010
    Applicant: DELORO STELLITE HOLDINGS CORPORATION
    Inventors: James B. C. Wu, Matthew X. Yao
  • Publication number: 20100104440
    Abstract: The present invention provides a coating material, a method of manufacturing the coating material and a coating method using the coating material that are capable of forming a coating film that retains high abrasion resistance while offering improved oxidation resistance at high temperatures, and also provides a moving blade fitted with a shroud. A coating material is used that comprises not less than 14% by mass and not more than 30% by mass of Mo, not less than 13% by mass and not more than 20% by mass of Cr, and not less than 0.5% by mass and not more than 4% by mass of Si, may further comprise not more than 1.5% by mass of Ni, not more than 1.5% by mass of Fe, and not more than 0.08% by mass of C, and comprises a balance of Co and unavoidable impurities, wherein the material further comprises at least one added component selected from the group consisting of not less than 0.01% by mass and not more than 3% by mass of Y, not less than 0.01% by mass and not more than 10% by mass of Al, and not less than 0.
    Type: Application
    Filed: March 28, 2009
    Publication date: April 29, 2010
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., TSINGHUA UNIVERSITY
    Inventors: Taiji Torigoe, Tomoaki Yunomura, Ikuo Okada, Zhi-Gang Yang
  • Publication number: 20100008812
    Abstract: A hard phase forming alloy powder, for forming a hard phase dispersed in a sintered alloy, consists of, by mass %, 15 to 35% of Mo, 1 to 10% of Si, 10 to 40% of Cr, and the balance of Co and inevitable impurities. A production method, for a wear resistant sintered alloy, includes preparing a matrix forming powder, the hard phase forming alloy powder, and a graphite powder. The production method further includes mixing 15 to 45% of the hard phase forming alloy powder and 0.5 to 1.5% of the graphite powder with the matrix forming powder into a raw powder. The production method further includes compacting the raw powder into a green compact having a predetermined shape and includes sintering the green compact. A wear resistant sintered alloy exhibits a metallic structure in which 15 to 45% of a hard phase is dispersed in a matrix. The hard phase consists of, by mass %, 15 to 35% of Mo, 1 to 10% of Si, 10 to 40% of Cr, and the balance of Co and inevitable impurities.
    Type: Application
    Filed: June 30, 2009
    Publication date: January 14, 2010
    Applicant: HITACHI POWDERED METALS CO., LTD.
    Inventor: Hideaki Kawata
  • Patent number: 7588650
    Abstract: A high-temperature member for use in a gas turbine, the member being formed from a new wear-resistant alloy having good wear resistance as well as good ductility, is disclosed. The member was developed to prevent wear and damage that occur due to vibration while the turbine is running. The high-temperature member for use in a gas turbine is formed from a new cobalt-based wear-resistant alloy which is composed of a cobalt-chromium matrix and refractory metals, with the content of hard particles (such as carbide) reduced. The refractory metals promote work hardening, thereby improving wear resistance. The reduced content of hard particles contributes to good ductility.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: September 15, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Noboru Baba, Kazuya Nishi
  • Patent number: 7572408
    Abstract: A Co—Mo—Cr Co-based alloy and overlay for wear and corrosion applications. The Mo:Si ratio is between about 15:1 and about 22:1 for enhanced ductility with a Laves phase.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: August 11, 2009
    Assignee: Deloro Stellite Holdings Corporation
    Inventors: James B. C. Wu, Matthew X. Yao
  • Patent number: 7569116
    Abstract: A Co—Cr—Mo-based alloy includes: 63 mass %?Co<68 mass %; 15 mass %?Cr<26 mass %; 10 mass %?Mo<19 mass %; and the balance of inevitable impurities, wherein the total amount of Cr and Mo is from 32 mass % to 37%. The mass magnetic susceptibility of the alloy is 7×4?·10?9 m3/kg or less at room temperature, and the Vickers hardness number (Hv) of the alloy is 400 or more.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: August 4, 2009
    Assignee: NHK Spring Co., Ltd.
    Inventors: Yoshiki Ono, Masashi Sakamoto
  • Publication number: 20090159645
    Abstract: Various braze alloy compositions are described, along with methods for using them. In one instance, a boron-free, high-temperature braze alloy includes selected amounts of chromium, hafnium, and nickel. The braze alloy can be used, for example, as a component in a wide gap braze mixture where a higher or lower melting point superalloy and/or brazing powder is used. The braze alloys may permit joining or repairing of superalloy articles with complex shapes, and may be used in high temperature applications. In some other braze alloy embodiments, a nickel- or cobalt-based braze composition can contain selected amounts of boron, but includes restricted amounts of chromium.
    Type: Application
    Filed: December 16, 2008
    Publication date: June 25, 2009
    Inventors: Laurent Cretegny, Ann Melinda Ritter, Shyh-Chin Huang, Liang Jiang, Warren Martin Andre Miglietti
  • Patent number: 7520947
    Abstract: Embodiments of the present invention provide methods of processing cobalt alloys including, in weight percent, from 26 to 30 chromium, from 5 to 7 molybdenum, and greater than 50 cobalt, the methods comprises cold working and aging the alloys such that after aging the cobalt alloys have a hardness of at least Rockwell C 50. Other embodiments provide methods of selectively cold working at least one portion of a cobalt alloy, and subsequently aging the alloy, such after aging, the selectively cold worked portions of the alloy have a higher hardness value then portions of the alloy that were not selectively cold worked. The present invention also discloses cobalt alloys, implants, and articles of manufacture made from cobalt alloys within the present invention.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: April 21, 2009
    Assignee: ATI Properties, Inc.
    Inventors: Richard L. Kennedy, Henry E. Lippard
  • Patent number: 7491361
    Abstract: A burning-on alloy for the production of ceramically veneered dental restorations, containing: cobalt 55-65 percent by weight, chromium 20-30 percent by weight, tungsten and/or where the sum of the content by weight molybdenum of molybdenum and half the content by weight of tungsten is in the range of 4-12 percent by weight, gallium 2-4 percent by weight, silicon 0-2 percent by weight, manganese 0.05-1.9 percent by weight, nitrogen 0-0.4 percent by weight, carbon 0-0.02 percent by weight, vanadium, niobium, in total 0-5 percent by weight, tantalum, iron, titanium, zirconium, hafnium nickel 0-0.1 percent by weight, rhenium, gold, in total 0-0.09 percent by weight, silver, copper other metals, 0-1 percent by weight, semi-metals and impurities where the percent by weight data are in each case based on the total weight of the alloy, is described.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: February 17, 2009
    Assignee: BEGO Bremer Goldschlägerei Wilh. Herbst GmbH & Co. KG
    Inventor: Roland Strietzel
  • Publication number: 20080251163
    Abstract: This invention provides a technique for rendering bio-toxicity such as allergy toxicity derived from Ni trace impurity, i.e., nickel toxicity, which is unavoidably present in a bio-Co—Cr—Mo alloy or an Ni-free stainless steel alloy unharmful, characterized in that an element selected from the group consisting of the group 4, 5 and 13 elements of the periodic table, particularly an element selected from the group consisting of the group 4 elements of the periodic table, is added to the alloy composition. The additive element is preferably an element selected from the group consisting of zirconium and titanium, more preferably zirconium.
    Type: Application
    Filed: March 28, 2005
    Publication date: October 16, 2008
    Applicant: IWATE UNIVERSITY
    Inventors: Akihiko Chiba, Shingo Kurosu, Naoyuki Nomura
  • Publication number: 20080232998
    Abstract: A non-magnetic cobalt based “noble” metal dental alloy is provided. The alloy generally contains at least 25 wt. % palladium, from 15 to 30 wt. % chromium and a balance of cobalt, where to ensure the alloy is non-magnetic the concentration of chromium in the alloy is at least 20 wt. %, or if the concentration of chromium is less than 20 wt. % the combined concentration of chromium, molybdenum, tungsten, niobium, tantalum vanadium and rhenium is greater than 20 wt. %.
    Type: Application
    Filed: March 17, 2008
    Publication date: September 25, 2008
    Inventors: Arun Prasad, Paul J. Cascone
  • Publication number: 20080193675
    Abstract: A method for imparting wear- and corrosion-resistance to a metal component comprising overlaying the component with a ductile Co-based alloy comprising between about 0.12 wt % and about 0.7 wt % C, between about 20 wt % and about 30 wt % Cr, between about 10 wt % and about 15 wt % Mo, between about 1 wt % and about 4 wt % Ni, and balance of Co, without forming cracks during the alloy's solidification.
    Type: Application
    Filed: May 30, 2007
    Publication date: August 14, 2008
    Applicant: DELORO STELLITE HOLDINGS CORPORATION
    Inventors: James B.C. Wu, Volker Hellinger, Matthew X. Yao
  • Publication number: 20080195214
    Abstract: In the field of biocompatible Co—Cr—Mo alloys for use in artificial joints or the like, the formation of wear debris in a living body is a matter of concern. The purpose of the invention is to provide a technique for improving the wear resistance of a Co—Cr—Mo alloy for use in an artificial joint to thereby prevent the formation of wear debris in a living body. The improvement in wear resistance of a Co—Cr—Mo alloy for use in an artificial joint can be achieved by finely dividing the crystal particles of the alloy, by preparing an alloy composition having a higher Mo content than any known standard Co—Cr—Mo alloy (e.g., Co-29Cr-6Mo alloy), by increasing the proportion of the ? phase that is dispersedly precipitated, by sintering an alloy powder produced by gas atomization technique to form pores on the surface of the alloy material, or the like.
    Type: Application
    Filed: March 28, 2005
    Publication date: August 14, 2008
    Inventors: Akihiko Chiba, Kazushige Kumagai, Naoyuki Nomura
  • Publication number: 20080070058
    Abstract: An alloy is provided based on a palladium-cobalt binary system, has a coefficient of thermal expansion (CTE) of about 14.0 to about 15.5 and may include one or more of the following additive metals: aluminum, boron, chromium, gallium, lithium, rhenium, ruthenium, silicon, tantalum, titanium, and tungsten.
    Type: Application
    Filed: August 28, 2007
    Publication date: March 20, 2008
    Applicant: Ivoclar Vivadent, Inc.
    Inventors: Tridib Dasgupta, Clyde Ingersoll, George Tysowsky