Palladium Containing Patents (Class 420/508)
-
Patent number: 5298219Abstract: Bonding wire for a semiconductor device contains high purity Au or Au alloy as a base metal and 25-10000 atppm of low boiling point element I having a boiling point lower than a melting point of the base metal and soluble in Au, or contains high purity Au or Au alloy as a base metal and 5-500 atppm of low boiling point element II having a boiling point lower than a melting point of the base metal and insoluble in Au, or contains high purity Au or Au alloy as a base metal and 5-10000 atppm of a mixture of low boiling point element I having a boiling point lower than a melting point of the base metal and soluble in Au and low boiling point element II having a boiling point lower than the melting point of the base metal and insoluble in Au under the condition of (content of the low boiling point element I)/25+(content of the low boiling point element II)/5.gtoreq.1.gtoreq.(content of the low boiling point element I)/10000+(content of the low boiling point element II)/500.Type: GrantFiled: May 31, 1991Date of Patent: March 29, 1994Assignee: Tanaka Denshi Kogyo Kabushiki KaishaInventors: Katsuyuki Toyofuku, Ichiro Nagamatsu, Shinji Shirakawa, Hiroto Iga, Takeshi Kujiraoka, Kensei Murakami
-
Patent number: 5240172Abstract: White solder alloys for dental and jewelry parts, with working temperatures around 1000.degree. C., contain 38 to 70% by weight gold, 6 to 20% by weight palladium, 8 to 40% by weight silver, 1 to 6% by weight iron and/or cobalt, 0 to 10% by weight copper, 0-5% each by weight indium, zinc and tin, 0 to 4% each by weight gallium and germanium, ruthenium and/or rhenium. The sum of the contents of tin, zinc, indium, gallium and germanium can be between 1 and 5% by weight.Type: GrantFiled: July 6, 1992Date of Patent: August 31, 1993Assignee: Degussa AktiengesellschaftInventors: Rudi Steinke, Stefan Schittny, Bernd Kempf, Werner Groll
-
Patent number: 5139739Abstract: A gold alloy for black coloring comprising gold and at least one coloring metallic element selected from the group consisting of Cu, Fe, Co, and Ti, a gold alloy for black coloring having the composition described above and further comprising at least one alloying element selected from the group consisting of Pt, Pd, Rh, Ir, Ru, Os, Ag, and Ni; a method for the production of a processed article of gold alloy possessing a black surface layer by the steps of shaping the gold alloy mentioned above, heat-treating the shaped gold alloy, and cooling; and processed article of gold alloy obtained by the method.Type: GrantFiled: April 9, 1991Date of Patent: August 18, 1992Assignees: Agency of Industrial Science and Technology, Ministry of International Trade and Industry, Seki CompanyInventors: Takeshi Takayanagi, Noboru Morita, Chusei Seki
-
Patent number: 4997723Abstract: A metal foil is provided for use in a metal-porcelain dental restoration, which metal foil provides improved color qualities to the finished restoration and improved bonding of the metal to the porcelain. The metal foil is made of an alloy comprising a major amount of gold, an amount of platinum or palladium, and an amount of a non-precious metal. An improved dental veneer and dental bridge can also be made using the metal foil of the invention.Type: GrantFiled: February 14, 1990Date of Patent: March 5, 1991Assignee: Tanaka Dental EnterprisesInventor: Asami Tanaka
-
Patent number: 4938922Abstract: A brazing alloy in accordance with this invention has the following composition, by weight: 91 to 99% gold, 0.5 to 7% nickel; 0.10 to 2% titanium. Alternatively, with palladium present, the composition is as follows, by weight: 83 to 96% gold; 3 to 10% palladium; 0.5 to 5% nickel; 0.10 to 2% titanium.Type: GrantFiled: June 23, 1989Date of Patent: July 3, 1990Assignee: GTE Products CorporationInventor: Howard Mizuhara
-
Patent number: 4938923Abstract: The gold wire used for the wire bonding of a semiconductor device comprises at least three kinds of elements selected from rare earth elements such as La, Ce and Pr: Be, Ca, Mg, Ag, Fe: and platinum group elements; and the balance of Au at high purity.Type: GrantFiled: October 31, 1989Date of Patent: July 3, 1990Inventors: Takeshi Kujiraoka, Koichiro Mukoyama, Hiromi Yamamoto, Kenichi Kurihara
-
Patent number: 4808373Abstract: A multiple-substance alloy used as a target in a cathode sputtering apparatus, and having a gold content most preferably in the range of 94-98 percent by weight, is disclosed. The alloy further contains non-gold alloys of aluminum, copper and preferably an element of the group of Co, Ni, Ga, Ti, In, Cd, Sn, Fe and Pd.Type: GrantFiled: October 20, 1986Date of Patent: February 28, 1989Assignee: Leybold-Heraeus GmbHInventors: Dieter Hoffman, Wolf-Dieter Munz, G. A. Hoist Siewert, Horst Dietrich
-
Patent number: 4752442Abstract: A bonding wire for use in semiconductor devices which consists essentially of 0.0003 to 0.01 wt. % of barium and the balance gold, the gold purity of said bonding wire being at least 99.99%. The bonding wire may further contain at least one element selected from the group consisting of 0.0005 to 0.005 wt. % of aluminum, 0.0001 to 0.003 wt. % of calcium, 0.0005 to 0.005 wt. % of silver and 0.0005 to 0.005 wt. % of palladium. The total content of the elements and barium in the bonding wire should not exceed 0.01 wt. % based on the weight of the bonding wire so that the gold purity of the bonding wire is at least 99.99%. The use of the additive elements improve the mechanical strength and wire-bondability, making the bonding wire highly suitable for use in wire bonding of semiconductor elements, especially for high-speed bonding.Type: GrantFiled: July 16, 1987Date of Patent: June 21, 1988Assignee: Shoei Chemical Inc.Inventors: Eiichi Asada, Kazuo Yokoyama, Masahiro Yata, Kenichi Hirano
-
Patent number: 4726508Abstract: A method of brazing corrosion resistant, nickel-based, thin-walled tubing which includes substantial proportions of nickel, chromium and molybdenum to a stainless steel base member using a filler metal, principally comprising gold as a major constituent and nickel as a minor constituent, in a vacuum furnace without introducing stress corrosion cracks in the brazed tubing and also avoiding carbon precipitation. The brazing is conducted at a temperature of at least about 1900.degree. F. (1038.degree. C.) for a sufficient period of time to allow any carbide precipitation formed during the heating to redissolve and also to permit full, uniform flow of the filler metal. The heated members are rapidly quenched in an inert atmosphere to a temperature at least sufficiently low to avoid carbon precipitation in the tubing.Type: GrantFiled: July 21, 1986Date of Patent: February 23, 1988Assignee: Micro Motion, Inc.Inventor: Brent L. Carpenter
-
Patent number: 4678636Abstract: Reactive metal-precious metal ductile alloys containing controlled amounts of Cu and Ni and mixtures thereof are suitable for brazing ceramics, other non-metallic and metallic materials.Type: GrantFiled: January 31, 1986Date of Patent: July 7, 1987Assignee: GTE Products CorporationInventor: Howard Mizuhara
-
Patent number: 4628149Abstract: In a wired substrate, a conductive pattern is formed of an alloy of gold, a base matal, and a noble metal and is contiguous to an insulating layer of a mixture of oxides of the base and the noble metals. The alloy preferably includes the base and the noble metals to a total amount of 0.2 to 2 percent by weight. More preferably, the base metal is titanium, aluminium, or copper. The noble metal is palladium, ruthenium, rhodium, or nickel. The wired substrate is manufactured by forming a first layer of the base metal, a second layer of the noble metal, and a selectively formed gold layer successively on the substrate and by heat treating at least the first, the second, and the gold layers to convert the gold layer and those portions of the first and the second layers on which the gold layer is formed, to the conductive pattern and to concurrently convert other portions of the first and the second layers to the insulating layer. The first, the second, and the gold layers are preferably 0.025 to 0.4, 0.025 to 0.Type: GrantFiled: November 24, 1982Date of Patent: December 9, 1986Assignee: Nippon Electric Co., Ltd.Inventor: Akihiro Dohya
-
Patent number: 4604328Abstract: Reactive metal-precious metal ductile alloys containing controlled amounts of Cu and Ni and mixtures thereof are suitable for brazing ceramics, other non-metallic and metallic materials.Type: GrantFiled: November 16, 1984Date of Patent: August 5, 1986Assignee: GTE Products CorporationInventor: Howard Mizuhara
-
Patent number: 4591483Abstract: There are described noble metal alloys for dental purposes, especially for firing on dental porcelain which are low melting, do not discolor the porcelain, are repeatedly castable, and making possible brazing joints. These alloys containing 20 to 65% gold, 25 to 65% palladium, 0 to 7% gallium, 0.2 to 11% indium and/or tin, 0 to 2% copper, 0.05 to 1% ruthenium, iridium and/or rhenium, 0 to 1% vanadium, 0 to 1% iron and additionally 0.5 to 15% cobalt, with the proviso that the content of base metals must exceed 5%.Type: GrantFiled: February 22, 1985Date of Patent: May 27, 1986Assignee: Degussa AktiengesellschaftInventor: M. H. A Nawaz
-
Patent number: 4522783Abstract: The present invention relates to a method for obtaining metallic alloys, to be used particularly in the field of dentistry.This method allows to accomplish a basic face-centered cubic lattice adapted to form the alloys, in which a homogeneous distribution of the atoms of the different elements is obtained, by precisely determining the number of atoms of each element forming the alloy, in close numerical relationship with the number of atoms of the other elements; it also allows the achievement of a plurality of alloys consisting of at least three among the following elements: gold, platinum, palladium, silver and copper, these alloys respecting the physico-chemical specifications necessary in the particular field of dentistry.Type: GrantFiled: May 11, 1983Date of Patent: June 11, 1985Inventor: Gian F. Menicucci
-
Patent number: 4486386Abstract: Reactive metal-palladium-gold ductile alloys are suitable for brazing ceramics, other non-metallic and metallic materials.Type: GrantFiled: March 14, 1983Date of Patent: December 4, 1984Assignee: GTE Products CorporationInventor: Howard Mizuhara
-
Patent number: 4451639Abstract: A dental alloy for use in porcelain-fused-to-metal restorations including palladium, cobalt, gallium, gold, aluminum, copper, zinc and ruthenium or rhenium. The cobalt controls the coefficient of thermal expansion of the alloy to permit the use of the alloy with commercially available porcelains having a variety of thermal coefficients. The zinc serves as a scavenger during formation and casting of the alloy. The aluminum protects the alloy from absorbing gases during torch melting and during the porcelain firing process. The ruthenium or rhenium provides grain refining for the alloy to increase its elongation, tensile strength, and thus toughness. The alloy with ruthenium or rhenium as a grain refining agent must be made in a protective environment to avoid the formation of bubbles in the procelain during the procelain firing process.Type: GrantFiled: August 31, 1983Date of Patent: May 29, 1984Assignee: Jeneric Industries, Inc.Inventor: Arun Prasad
-
Patent number: 4447391Abstract: Brazing alloys containing specified amounts of a reactive metal, specified amounts of boron, specified amount of gold, palladium and mixtures thereof and specified amounts of nickel, are ductile, have relatively low melting points. Chromium and silicon are optional metals which can also be utilized in this invention.Type: GrantFiled: December 10, 1982Date of Patent: May 8, 1984Assignee: GTE Products CorporationInventor: Howard Mizuhara
-
Patent number: 4419325Abstract: A dental alloy for use in porcelain-fused-to-metal restorations including palladium, cobalt, gallium, gold, aluminum, copper and ruthenium or rhenium. The cobalt controls the coefficient of thermal expansion of the alloy to permit the use of the alloy with commercially available porcelains having a variety of thermal coefficients. The ruthenium of rhenium provides grain refining for the alloy to increase its elongation, tensile strength, and thus toughness. The alloy with ruthenium or rhenium as a grain refining agent must be made under vacuum or in an inert atmosphere to avoid the formation of bubbles in the porcelain during the porcelain firing process.Type: GrantFiled: July 21, 1982Date of Patent: December 6, 1983Assignee: Jeneric Industries, Inc.Inventor: Arun Prasad
-
Patent number: 4385029Abstract: Gold-based intermetallic compounds suitable as a contact material for electrical contacts are presented. The gold-based electrical compounds are selected from a group consisting of Au.sub.4 In, Au.sub.10 Sn, and AuPd or from intermetallic compounds having an ordered hexagonal crystal structure and of the type Au.sub.n X where n is at least 3 and X is selected from a group consisting of In, Sn, and Pd.Type: GrantFiled: April 27, 1981Date of Patent: May 24, 1983Assignee: The United States of America as represented by the Secretary of the NavyInventor: Jaydev D. Desai