Magnesium Containing Patents (Class 420/519)
  • Patent number: 10370753
    Abstract: The invention relates to a method for applying a protective coating (10) to a flat steel product (100), wherein the protective coating (10) is produced by guiding the flat steel product (100) having a strip entry temperature of 400-490 degrees Celsius through a molten zinc alloy bath. The molten zinc alloy bath (11) has a bath temperature of 400-480 degrees Celsius and contains an aluminum fraction and a magnesium fraction. In particular, the molten zinc alloy bath (11) has the following composition: the aluminum fraction is in the range between 1.8 and 3.0 weight percent; the magnesium fraction is in the range between 1.3 and 2.7 weight percent; the aluminum fraction in weight percent is greater than the magnesium fraction in weight percent; the ratio of the magnesium fraction in weight percent to the sum of the aluminum fraction in weight percent and the magnesium fraction in weight percent is in the range between 0.31 and 0.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: August 6, 2019
    Assignee: VOESTALPINE STAHL GMBH
    Inventors: Christian K. Riener, Gerhard Angeli, Klaus Hofer, Wilhelm Fischer
  • Patent number: 10280484
    Abstract: The present invention provides a zinc alloy with improved alloy characteristics such as fluidity, castability, mechanical properties, corrosion resistance and elongation, and a preparation method therefor. The method for preparing the zinc alloy, according to one aspect of the present invention, comprising the steps of: providing zinc and a magnesium master alloy including a calcium-based compound; and forming a molten metal in which the magnesium master alloy and the zinc are melted; and casting the molten metal. The zinc alloy, according to another aspect of the present invention, includes a zinc base and the calcium-based compound present in the zinc base, wherein magnesium is applied to the zinc base.
    Type: Grant
    Filed: November 19, 2013
    Date of Patent: May 7, 2019
    Assignee: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY
    Inventor: Shae K. Kim
  • Patent number: 9246167
    Abstract: A method for forming a zinc alloy powder for use in an alkaline battery includes: obtaining a zinc molten metal in which zinc is melted; melting a zinc-aluminum master alloy in the zinc molten metal, thereby obtaining an aluminum-contained zinc alloy molten metal; and producing an aluminum-contained zinc alloy powder by powdering the aluminum-contained zinc alloy molten metal.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: January 26, 2016
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kenji Yamamoto, Shunsuke Uzuka
  • Patent number: 8974728
    Abstract: The invention relates to hot-dip cast aluminum alloy for anticorrosion treatment on engineering parts resistant to marine climate and a preparation method thereof, wherein said cast aluminum alloy contains Al, Zn, Si, Mg, RE, Ti, Ni and nanometer oxide particle reinforcing agent, said nanometer oxide particle reinforcing agent is selected from one or two of TiO2 and CeO2, the mass percentage of the components is as follows: Zn: 35-58%, Si: 0.3-4.0%, Mg: 0.1-5.0%, RE: 0.02-1.0%, Ti: 0.01-0.5%, Ni: 0.1-3.0%, and the total content of the nanometer oxide particle reinforcing agent: 0.01-1.0%; and the balance consists of Al and unavoidable impurities. The coating using cast aluminum alloy prepared by the invention has sufficient corrosion resistance and scour resistance in marine climate.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: March 10, 2015
    Assignee: Jiangsu Linlong New Materials Co., Ltd.
    Inventors: Lixin Feng, Minyan Zhang, Qiang Miao
  • Publication number: 20150004427
    Abstract: A solder may include zinc, aluminum, magnesium and gallium. The zinc may be present in an amount from about 82% to 96% by weight of the solder. The aluminum may be present in an amount from about 3% to about 15% by weight of the solder. The magnesium may be present in an amount from about 0.5% to about 1.5% by weight of the solder. The gallium may be present in an amount between about 0.5% to about 1.5% by weight of the solder.
    Type: Application
    Filed: August 15, 2014
    Publication date: January 1, 2015
    Inventors: Jianxing Li, Michael R. Pinter, David E. Steele
  • Patent number: 8845828
    Abstract: There is provided a high-temperature Zn-based Pb free solder alloy having a melting point of approximately 300 to 400° C. and is excellent in wettability, joinability, workability and reliability. The Pb-free solder alloy mainly containing Zn consists of: 1.0 to 9.0 mass %, preferably 3.0 to 7.0 mass % of Al, 0.002 to 0.800 mass %, preferably 0.005 to 0.500 mass % of P, and a balance being Zn except for inevitable impurities incorporated during a manufacturing stage. The Pb-free solder alloy may include at least one of 0.3 to 4.0 mass % of Mg or 0.3 to 3.0 mass % of Ge.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: September 30, 2014
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventor: Takashi Iseki
  • Publication number: 20130251587
    Abstract: There is provided a high-temperature Zn-based Pb free solder alloy having a melting point of approximately 300 to 400° C. and is excellent in wettability, joinability, workability and reliability. The Pb-free solder alloy mainly containing Zn consists of: 1.0 to 9.0 mass %, preferably 3.0 to 7.0 mass % of Al, 0.002 to 0.800 mass %, preferably 0.005 to 0.500 mass % of P, and a balance being Zn except for inevitable impurities incorporated during a manufacturing stage. The Pb-free solder alloy may include at least one of 0.3 to 4.0 mass % of Mg or 0.3 to 3.0 mass % of Ge.
    Type: Application
    Filed: October 20, 2011
    Publication date: September 26, 2013
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventor: Takashi Iseki
  • Publication number: 20130045131
    Abstract: A solder may include zinc, aluminum, magnesium and gallium. The zinc may be present in an amount from about 82% to 96% by weight of the solder. The aluminum may be present in an amount from about 3% to about 15% by weight of the solder. The magnesium may be present in an amount from about 0.5% to about 1.5% by weight of the solder. The gallium may be present in an amount between about 0.5% to about 1.5% by weight of the solder.
    Type: Application
    Filed: August 15, 2012
    Publication date: February 21, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Jianxing Li, Michael R. Pinter, David E. Steele
  • Publication number: 20120313230
    Abstract: A solder alloy is providing, the solder alloy including zinc, aluminum, magnesium and gallium, wherein the aluminum constitutes by weight 8% to 20% of the alloy, the magnesium constitutes by weight 0.5% to 20% of the alloy and the gallium constitutes by weight 0.5% to 20% of the alloy, the rest of the alloy including zinc.
    Type: Application
    Filed: June 7, 2011
    Publication date: December 13, 2012
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Manfred MENGEL, Alexander HEINRICH, Steffen ORSO, Thomas BEHRENS, Oliver EICHINGER, Lim FONG, Evelyn NAPETSCHNIG, Edmund RIEDL
  • Publication number: 20110293467
    Abstract: The invention relates to hot-dip cast aluminum alloy for anticorrosion treatment on engineering parts resistant to marine climate and a preparation method thereof, wherein said cast aluminum alloy contains Al, Zn, Si, Mg, RE, Ti, Ni and nanometer oxide particle reinforcing agent, said nanometer oxide particle reinforcing agent is selected from one or two of TiO2 and CeO2, the mass percentage of the components is as follows: Zn: 35-58%, Si: 0.3-4.0%, Mg: 0.1-5.0%, RE: 0.02-1.0%, Ti: 0.01-0.5%, Ni: 0.1-3.0%, and the total content of the nanometer oxide particle reinforcing agent: 0.01-1.0%; and the balance consists of Al and unavoidable impurities.
    Type: Application
    Filed: March 31, 2010
    Publication date: December 1, 2011
    Applicant: JIANGSU LINLONG NEW MATERIALS CO., LTD.
    Inventors: Lixin Feng, Minyan Zhang, Qiang Miao
  • Publication number: 20100247956
    Abstract: Zn alloy particles for high corrosion resistance rust prevention paint containing, by mass %, Mg: 0.01 to 30% and having a balance of Zn and unavoidable impurities, having physical fracture facets and/or cracks of a length of 0.01 ?m or more or cracks of a depth of 0.01 ?m or more, having an average particle size of 0.05 to 200 ?m, and having an aspect ratio of maximum size and minimum size (maximum size/minimum size) of an average value of 1 to 1.5. Also, a high corrosion resistance rust prevention paint containing these Zn alloy particles and a high corrosion resistance steel material and steel structure coated with that paint.
    Type: Application
    Filed: September 7, 2007
    Publication date: September 30, 2010
    Inventors: Kenji Katoh, Makoto Nagasawa, Minoru Ito, Michio Kaneko, Shiro Imai, Masatoshi Kominami, Toshiro Terakawa, Takashi Kumai
  • Patent number: 7524582
    Abstract: The invention is directed to a zinc powder or zinc alloy powder for alkaline batteries, which powder has a grain size distribution wherein 60 to 100 wt.-% of the particles, relative to the zinc powder or zinc alloy powder, have a diameter of from 40 to 140 ?m. The invention is also directed to an alkaline battery.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: April 28, 2009
    Assignee: Grillo-Werke AG
    Inventors: Armin Melzer, Petra Merkel, Jochen Spiestersbach, Rudi Kube, Norbert Schulz
  • Publication number: 20080153003
    Abstract: Zinc alloy for use in an alkaline battery, the alloy including aluminium, bismuth, indium, magnesium, strontium and optionally lead, besides the unavoidable impurities in the aforementioned metals. The alloy can be made by adding pre-alloys of some of the alloying elements or of zinc. The alloy proves useful in reducing the hydrogen gas evolution of the battery.
    Type: Application
    Filed: February 20, 2006
    Publication date: June 26, 2008
    Applicant: CELAYA, EMPARANZA Y GALDOS, S.A. (CEGASA)
    Inventor: Francisco Javier Alday Lesaga
  • Publication number: 20030017396
    Abstract: A zinc alloy containing Al, Bi and In is reduced to particles by gas atomization and sieved to prepare a zinc alloy powder. A polyacrylic acid powder and a magnesium hydroxide powder are added to the zinc alloy powder and the ingredients are mixed to make an anode composition. Zinc oxide is added to an aqueous KOH solution to prepare a liquid electrolyte which is mixed with the anode composition under stirring to make a gelled anode composition that has improved performance in pulsed discharge to get large current without increasing the evolution of hydrogen gas.
    Type: Application
    Filed: June 11, 2002
    Publication date: January 23, 2003
    Applicant: DOWA MINING CO., LTD.
    Inventors: Kenichi Harigae, Masayuki Nishina
  • Patent number: 6379820
    Abstract: A hot-dip Zn—Al—Mg plated steel sheet good in corrosion resistance and surface appearance that is a hot-dip Zn-base plated steel sheet obtained by forming on a surface of a steel sheet a hot-dip Zn—Al—Mg plating layer composed of Al: 4.0-10 wt. %, Mg: 1.0-4.0 wt. % and the balance of Zn and unavoidable impurities, the plating layer having a metallic structure including a primary crystal Al phase or a primary crystal Al phase and a Zn single phase in a matrix of Al/Zn/Zn2Mg ternary eutectic structure. To obtain a plating layer possessing this metallic structure, the cooling rate of the plating layer adhering to a steel strip extracted from a plating bath and the plating bath temperature are appropriately controlled in a continuous hot-dip plating machine and/or appropriate amounts of Ti and B are added to the bath.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: April 30, 2002
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Atsushi Komatsu, Takao Tsujimura, Kouichi Watanabe, Nobuhiko Yamaki, Atsushi Andoh, Toshiharu Kittaka
  • Patent number: 6235410
    Abstract: A hot-dip Zn—Al—Mg plated steel sheet good in corrosion resistance and surface appearance that is a hot-dip Zn-base plated steel sheet obtained by forming on a surface of a steel sheet a hot-dip Zn—Al—Mg plating layer composed of Al: 4.0-10 wt. %, Mg: 1.0-4.0 wt. % and the balance of Zn and unavoidable impurities, the plating layer having a metallic structure including a primary crystal Al phase or a primary crystal Al phase and a Zn single phase in a matrix of Al/Zn/Zn2Mg ternary eutectic structure. To obtain a plating layer possessing this metallic structure, the cooling rate of the plating layer adhering to a steel strip extracted from a plating bath and the plating bath temperature are appropriately controlled in a continuous hot-dip plating machine and/or appropriate amounts of Ti and B are added to the bath.
    Type: Grant
    Filed: August 6, 1998
    Date of Patent: May 22, 2001
    Assignee: Nisshin Steel Co., Ltd.
    Inventors: Atsushi Komatsu, Takao Tsujimura, Kouichi Watanabe, Nobuhiko Yamaki, Atsushi Andoh, Toshiharu Kittaka
  • Patent number: 6187116
    Abstract: This disclosure relates to an Sn-containing and/or Bi-containing zinc alloy for hot galvanizing steel, more particularly for component galvanizing. The alloy is composed of 1 to 5% by weight of Sn+Bi, 0 to saturation of Pb, 0.025 to 0.200% by weight of at least one of Ni, Cr or Mn, 0 to 0.030% by weight of at least one of Al, Ca and Mg, the remainder being zinc and unavoidable impurities.
    Type: Grant
    Filed: November 19, 1999
    Date of Patent: February 13, 2001
    Assignee: N.V. Union Minere S.A.
    Inventor: Michael Gilles
  • Patent number: 5091150
    Abstract: Zinc-aluminum based alloy containing magnesium and silicon, both present in quantities up to 0.5% by weight, characterized by very good corrosion resistance and suitable for coating steel products, the resulting coatings being extremely durable and highly flexible.
    Type: Grant
    Filed: September 6, 1990
    Date of Patent: February 25, 1992
    Assignee: Nuova Italsider SpA
    Inventors: Massimo Memmi, Gelasio Giardetti
  • Patent number: 5071620
    Abstract: A zinc/low aluminum alloy with lithium additions demonstrating improved creep resistance and suitable for hot chamber pressure die casting. The alloy preferably contains from about 0.1-2% Al, 0.07-0.19% Li, the balance zinc. The alloy also may contain Cu, Mn and Mg.
    Type: Grant
    Filed: August 31, 1990
    Date of Patent: December 10, 1991
    Assignee: International Lead Zinc Research Organization, Inc.
    Inventor: Cedric H. Thornton
  • Patent number: 4990310
    Abstract: A creep-resistant die casting is formed of a zinc-base alloy comprising about 4 to 12 percent copper and about 2 to 4 percent aluminum. The die casting is characterized by an intimate dispersion of fine epsilon and eta phases effective to retard slip and thereby enhance creep resistance.
    Type: Grant
    Filed: September 11, 1989
    Date of Patent: February 5, 1991
    Assignee: General Motors Corporation
    Inventors: Moinuddin S. Rashid, M. David Hanna
  • Patent number: 4965046
    Abstract: A creep resistant zinc-aluminum based casting alloy comprises in weight percent 3-18% aluminum, 0.01-0.15% magnesium, 0.01-0.05% or manganese or manganese and lithium in the concentrations between 0.01-0.05% Mn and 0.02-0.1% Li, the balance being zinc except for impurities commonly found in zinc alloys.
    Type: Grant
    Filed: April 6, 1989
    Date of Patent: October 23, 1990
    Assignee: Noranda Inc.
    Inventor: Robert J. Barnhurst
  • Patent number: 4812371
    Abstract: A Zn-Al hot-dip galvanized coating on a steel sheet may exhibit intergranular corrosion and be degraded due to the Al's secular enrichment in the grain boundaries of coating. This is prevented in accordance with the present invention by the galvanizing bath composition which contains from 0.15 to 10% of Al, from 0.1 to 1% of Sb, from 0.01 to 2% of Si, and the balance being Zn and unavoidable impurities such as Pb, Sn, and Cd in an amount less than 0.02%, and additionally contains at least from 0.01 to 1% of at least one member selected from the group consisting of Mg and mischmetal.
    Type: Grant
    Filed: August 4, 1987
    Date of Patent: March 14, 1989
    Assignee: Nippon Steel Corporation
    Inventors: Yoshio Shindou, Motoo Kabeya
  • Patent number: 4789522
    Abstract: An improved castable hypereutectic zinc-aluminum alloy which is free from underside shrinkage is described. Small additions, from about 0.25% and up to about 2 wt% of rare earth metal, preferably in the form of misch metal, to known zinc-aluminum alloys containing from about 20% and up to about 40 wt% aluminum have been found to prevent underside shrinkage in castings with a cross section up to about six inches.
    Type: Grant
    Filed: November 24, 1987
    Date of Patent: December 6, 1988
    Assignee: Queen's University at Kingston
    Inventors: Reginald W. Smith, Mansor Ghoreshy
  • Patent number: 4610936
    Abstract: Hot-dip zinc alloy coated steel products coated with a Zn-Al-Si-Mg alloy having a composition of between 3.5 and 5.0 wt % aluminum, between 0.02 and 0.5 wt % silicon, between 0.01 and less than 0.05 wt % magnesium, and remainder zinc with unavoidable impurities.
    Type: Grant
    Filed: November 19, 1984
    Date of Patent: September 9, 1986
    Assignee: Nippon Soda Co., Ltd.
    Inventors: Takehiro Isobe, Tatsuji Hashimoto
  • Patent number: 4462960
    Abstract: A zinc anode alloy for sacrificial anodes, for preventing intercrystalline corrosion, comprises 0.10-0.50% by weight Al, 0.025-1.15% by weight Cd, and the remainder zinc and impurities caused by the production method, wherein the alloy also contains 0.01-1.0% magnesium.
    Type: Grant
    Filed: December 27, 1982
    Date of Patent: July 31, 1984
    Assignee: Norzink A/S
    Inventor: Torleif N. Jore
  • Patent number: 4448748
    Abstract: There is disclosed an alloy for use in a zinc galvanizing bath comprising zinc, aluminum and a rare earth-containing alloy such as mischmetal. According to the preferred embodiments, the alloy contains from about 85% to about 97% zinc, from about 3% to about 15% aluminum and from about 5 ppm to about 1.0% mischmetal. The alloy may also contain one or more of the elements Fe, Pb, Sb, Mg, Sn, Cu and Si.
    Type: Grant
    Filed: August 2, 1982
    Date of Patent: May 15, 1984
    Assignee: International Lead Zinc Research Organization, Inc.
    Inventors: Schrade F. Radtke, Dimitri Coutsouradis, Jacques Pelerin
  • Patent number: 4439397
    Abstract: Process for adjusting the composition of a zinc alloy for the galvanization of steels, the alloy having a composition including the following components expressed in ppm (by weight): lead: 1,000 to 15,000, and as additives aluminium: 100 to 5,000, tin: 300 to 20,000, and magnesium: 10 to 1,000 and being deficient in at least one of said additives, said process comprising adding to the zinc alloy one or more metal compositions which are soluble in molten zinc and which contain a relatively high proportion of the additive in which the alloy is deficient, the amount of the or each metal composition being sufficient to compensate the deficit of the additive. The tin composition is virtually pure tin; the magnesium composition is a ternary alloy of zinc, magnesium (5,000 to 50,000 ppm) and aluminium (10 to 500 ppm); and the aluminium composition is a binary zinc/aluminium alloy containing about 5% of aluminium.
    Type: Grant
    Filed: March 23, 1982
    Date of Patent: March 27, 1984
    Inventor: Noel Dreulle