Zinc Base Patents (Class 420/513)
-
Patent number: 9023469Abstract: Basic zinc cyanurate fine particles are produced by subjecting a mixed slurry to wet dispersion using a dispersion medium at a temperature in the range of 5 to 55° C., the mixed slurry being formed by blending water, cyanuric acid, and at least one component selected from zinc oxide and basic zinc carbonate such that the cyanuric acid concentration is 0.1 to 10.0 mass % with respect to water.Type: GrantFiled: June 23, 2011Date of Patent: May 5, 2015Assignee: Nissan Chemical Industries, Ltd.Inventors: Isao Oota, Masaki Oiwamoto, Takeshi Suwa
-
Publication number: 20150064483Abstract: A method of depositing a film of a metal having a volatilization temperature higher than 350° C., as well as, a composite material including the same are disclosed. The method can include providing the source material in a vacuum deposition processing chamber, and providing a substrate in the vacuum deposition processing chamber. The substrate can be spaced apart from, but in fluid communication with, the source material, and also maintained at a substrate temperature that is lower than the volatilization temperature. The method can also include reducing an internal pressure of the vacuum deposition processing chamber to a pressure between 0.1 and 14,000 pascals; volatilizing the source material into a volatilized metal by heating the source material to a first temperature that is higher than the volatilization temperature; and transporting the volatilized metal to the substrate using a heated carrier gas, whereby the volatilized metal deposits on the substrate and forms the metal film.Type: ApplicationFiled: September 3, 2014Publication date: March 5, 2015Inventors: Mark E. Thompson, Francisco F. Navarro
-
Publication number: 20150011749Abstract: Metal-accumulating plants for preparing compositions including a metal catalyst derived from the plants. The composition is substantially devoid of organic matter. Also, carrying out chemical reactions with the compositions prepared from metal-accumulating plants.Type: ApplicationFiled: March 5, 2013Publication date: January 8, 2015Applicants: UNIVERSITE MONTPELLIER 2 SCIENCES ET TECHNIQUES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUEInventors: Claude Grison, Vincent Escande
-
Publication number: 20140352716Abstract: In a dry etching method for etching a metal film formed on a substrate by use of etching gas containing ?-diketone, the metal film contains at least one metal material that forms a penta- or hexa-coordinated complex structure with ?-diketone; the etching gas containing ?-diketone contains at least one additive among H2O or H2O2; and the additive is contained at a volume concentration of 1% or greater and 20% or less.Type: ApplicationFiled: May 29, 2014Publication date: December 4, 2014Applicant: CENTRAL GLASS COMPANY, LIMITEDInventors: Akiou KIKUCHI, Yuta TAKEDA
-
Publication number: 20140348203Abstract: Provided in one embodiment is a method of identifying a stable phase of an ordering binary alloy system comprising a solute element and a solvent element, the method comprising: determining at least three thermodynamic parameters associated with grain boundary segregation, phase separation, and intermetallic compound formation of the ordering binary alloy system; and identifying the stable phase of the ordering binary alloy system based on the first thermodynamic parameter, the second thermodynamic parameter and the third thermodynamic parameter by comparing the first thermodynamic parameter, the second thermodynamic parameter and the third thermodynamic parameter with a predetermined set of respective thermodynamic parameters to identify the stable phase; wherein the stable phase is one of a stable nanocrystalline phase, a metastable nanocrystalline phase, and a non-nanocrystalline phase.Type: ApplicationFiled: May 20, 2014Publication date: November 27, 2014Applicant: Massachusetts Institute of TechnologyInventors: Heather A. Murdoch, Christopher A. Schuh
-
Patent number: 8841375Abstract: The instant invention relates to easily isolable and re-dispersible transition metal nanoparticles, their manufacture and use as IR-absorbers, in particular in transparent thermoplastic or crosslinkable polymers. A further aspect of the invention is a composition of these transition metal nanoparticles and thermoplastic or crosslinkable polymers and an architectural or automotive glazing containing these transition metal nanoparticles.Type: GrantFiled: September 19, 2008Date of Patent: September 23, 2014Assignee: BASF SEInventors: Francesca Peri, Samanta Cimitan, Markus Grob
-
Publication number: 20140234654Abstract: The invention relates to a thermal spraying material (5) for the coating of a surface of a workpiece by means of a thermal spraying method, wherein the spraying material (5) contains zinc. The invention further relates to a thermal spraying method and to a thermally sprayed coating sprayed with the material (5).Type: ApplicationFiled: January 13, 2014Publication date: August 21, 2014Applicant: Sulzer Metco AGInventors: Arno Refke, Gerard Barbezat, Jacobus Cornelis Doesburg
-
Publication number: 20140225269Abstract: A solder includes zinc as a main component and the solder contains 6 to 8 mass percent of indium. A solder includes zinc as a main component, wherein the solder contains only indium. In a die-bonding structure in which a semiconductor chip is connected to a bonded member by a solder, the solder made of zinc as a main component and contains indium.Type: ApplicationFiled: January 2, 2014Publication date: August 14, 2014Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKIInventor: Kazuhiro MAENO
-
Patent number: 8802151Abstract: The instant invention relates to shaped transition metal particles, in particular in the form of a dispersion in an aqueous and/or organic medium, the manufacture thereof and their use as an infrared (IR) absorbing agent, an IR curing agent for coatings, an additive in conductive formulations, an antimicrobial agent or for sensoring organic and/or inorganic compounds. Further, the invention relates to dispersions comprising said shaped particles and an aqueous and/or organic medium, such as a thermoplastic or crosslinkable polymer, as well as to antimicrobial compositions and products.Type: GrantFiled: March 17, 2010Date of Patent: August 12, 2014Assignee: BASF SEInventors: Nikolay A. Grigorenko, Michael Muehlebach, Florian Muehlebach
-
Patent number: 8668841Abstract: A pellet having a microstructure including a bismuth phase, a zinc solid solution phase, and a Zn3Hg phase is disclosed. A method of making a pellet including bismuth, zinc, and mercury is also disclosed. Moreover, a fluorescent lamp with a fill material including bismuth, zinc, and mercury is disclosed. Further, a method of dosing a fluorescent lamp with mercury is disclosed.Type: GrantFiled: June 11, 2007Date of Patent: March 11, 2014Assignee: Advanced Lighting Technologies, Inc.Inventor: Steven C. Hansen
-
Patent number: 8637163Abstract: An alloy with a high glass forming ability characterized by containing a group of elements A with atomic radii of less than 0.145 nm of a total of 20 to 85 atm %, a group of elements B with atomic radii of 0.145 nm to less than 0.17 nm of a total of 10 to 79.7 atm %, and a group of elements C with atomic radii of 0.17 nm or more of a total of 0.3 to 15 atm %; when the elements with the greatest contents in the group of elements A, group of elements B, and group of elements C are respectively designated as the “element a”, “element b”, and “element c”, by the ratio of the content of the element a in the group of elements A (for example, Zn and/or Al), the ratio of the content of the element b in the group of elements B (for example, Mg), and the ratio of the content of the element c in the group of elements C (for example, Ca) all being 70 atm % or more; and by the liquid forming enthalpy between any two elements selected from the element a, element b, and element c being negative.Type: GrantFiled: July 19, 2007Date of Patent: January 28, 2014Assignee: Nippon Steel & Sumitomo Metal CorporationInventors: Kohei Tokuda, Koichi Nose, Yuichi Sato, Makoto Nakazawa
-
Patent number: 8636927Abstract: A ZnO deposition material to be used for forming a transparent conductive film is composed of a ZnO pellet made of ZnO powder having a ZnO purity of 98% or more. The pellet includes one or more kinds of elements selected from the group consisting of Y, La, Sc, Ce, Pr, Nd, Pm and Sm. The ZnO pellet is polycrystal or monocrystal. The ZnO film formed by a vacuum film forming method employing the ZnO deposition material as a target material can exhibit excellent conductivity. The vacuum film forming method is preferably an electron beam vapor deposition method, an ion plating method or a sputtering method.Type: GrantFiled: April 19, 2007Date of Patent: January 28, 2014Assignee: Mitsubishi Materials CorporationInventor: Yoshitaka Mayuzumi
-
Patent number: 8546292Abstract: A zinc-carbon compound that is a reaction product of zinc and carbon, wherein the zinc and the carbon form a single phase material that is meltable. The compound is one in which the carbon does not phase separate from the zinc when the single phase material is heated to a melting temperature.Type: GrantFiled: November 15, 2012Date of Patent: October 1, 2013Assignee: Third Millennium Metals, LLCInventors: Jason V. Shugart, Roger C. Scherer
-
Publication number: 20130239890Abstract: The present invention provides a process for coating a substrate. A metal alloy layer including at least two metallic elements is continuously deposited on the substrate by a vacuum deposition facility. The facility includes a vapor jet coater for spraying the substrate with a vapor containing the metallic elements in a constant and predetermined relative content, the vapor being sprayed at a sonic velocity. The process may advantageously be used for depositing Zn—Mg coatings. The invention also provides a vacuum deposition facility for continuously depositing coatings formed from metal alloys, for implementing the process.Type: ApplicationFiled: April 25, 2013Publication date: September 19, 2013Applicant: ARCELORMITTAL FRANCEInventors: Patrick Choquet, Eric Silberberg, Bruno Schmitz, Daniel Chaleix
-
Publication number: 20130110684Abstract: A forensic marker is disclosed including a marker that is added to the host material and is detectable for at least the expected life of the host material. The marker is inert with respect to the host material in that it does not significantly affect the desired qualities of the host material (e.g. weight, adhesive properties, structural integrity, etc). The marker is detectable, for example, by instruments, during the life of the host material.Type: ApplicationFiled: October 27, 2011Publication date: May 2, 2013Inventor: Jorge G. Chiappo
-
Patent number: 8409477Abstract: A ZnO vapor deposition material for formation of a transparent conductive film or the like consists mainly of a porous ZnO sintered body containing one or more first additive elements selected from Ce, La, Y, Pr, Nd, Pm, and Sm, and second additive elements selected from Al, Ga, Sc, and B. The content of the first additive elements is higher than the content of the second additive elements. The content of the first additive elements is in a range of 0.1 to 14.9% by mass, and the content of the second additive elements is in a range of 0.1 to 10% by mass. The sintered body has a porosity of 3 to 50%.Type: GrantFiled: January 27, 2012Date of Patent: April 2, 2013Assignee: Mitsubishi Materials CorporationInventor: Yoshitaka Mayuzumi
-
Publication number: 20120283336Abstract: The instant invention relates to shaped transition metal particles, in particular in the form of a dispersion in an aqueous and/or organic medium, the manufacture thereof and their use as an infrared (IR) absorbing agent, an IR curing agent for coatings, an additive in conductive formulations, an antimicrobial agent or for sensoring organic and/or inorganic compounds. Further, the invention relates to dispersions comprising said shaped particles and an aqueous and/or organic medium, such as a thermoplastic or crosslinkable polymer, as well as to antimicrobial compositions and products.Type: ApplicationFiled: March 17, 2010Publication date: November 8, 2012Applicant: BASF SEInventors: Nikolay A. Grigorenko, Andreas Muehlebach, Michael Muehlebach, Florian Muehlebach
-
Publication number: 20120282132Abstract: Methods of the invention allow rapid production of high-porous, large-surface-area nanostructured metal and/or metal oxide at attractive low cost applicable to a wide variety of commercial applications such as sensors, catalysts and photovoltaics.Type: ApplicationFiled: July 13, 2010Publication date: November 8, 2012Inventors: James J. Watkins, Christos Fotios Karanikas, David Reisner, Xinqing Ma, Jeff Roth, T. Danny Xiao, Stephen Paul Murphy
-
Patent number: 8231812Abstract: A ZnO vapor deposition material for formation of a transparent conductive film or the like consists mainly of a porous ZnO sintered body containing one or more first additive elements selected from Ce, La, Y, Pr, Nd, Pm, and Sm, and second additive elements selected from Al, Ga, Sc, and B. The content of the first additive elements is higher than the content of the second additive elements. The content of the first additive elements is in a range of 0.1 to 14.9% by mass, and the content of the second additive elements is in a range of 0.1 to 10% by mass. The sintered body has a porosity of 3 to 50%.Type: GrantFiled: September 29, 2008Date of Patent: July 31, 2012Assignee: Mitsubishi Materials CorporationInventor: Yoshitaka Mayuzumi
-
Publication number: 20120094271Abstract: The present invention provides method of identifying molecules that cooperatively and positively interact with either a ligand or a target molecule of a ligand/target molecule pair, or molecules that interact with a ligand/target molecule complex.Type: ApplicationFiled: August 17, 2009Publication date: April 19, 2012Applicant: Arizona Board of Regents for and on behalf of Arizona State UniversityInventors: Jinglin Fu, Neal W. Woodbury, Stephen Albert Johnston
-
Patent number: 8128847Abstract: A ZnO vapor deposition material for formation of a transparent conductive film or the like consists mainly of a porous ZnO sintered body containing one or more first additive elements selected from Ce, La, Y, Pr, Nd, Pm, and Sm, and second additive elements selected from Al, Ga, Sc, and B. The content of the first additive elements is higher than the content of the second additive elements. The content of the first additive elements is in a range of 0.1 to 14.9% by mass, and the content of the second additive elements is in a range of 0.1 to 10% by mass. The sintered body has a porosity of 3 to 50%.Type: GrantFiled: September 29, 2008Date of Patent: March 6, 2012Assignee: Mitsubishi Materials CorporationInventor: Yoshitaka Mayuzumi
-
Patent number: 8114527Abstract: A highly corrosion-resistant, rust-prevention coating material comprising: an inorganic binder; and Zn metal particles comprised of Zn and unavoidable impurities and dispersed in the binder at the rate of 30 mass % or greater based on a dry coating film, wherein (i) the Zn metal particles include (i-1) fine-grain Zn metal particles of 0.05 to 5 ?m peak grain diameter whose grain-diameter distribution has a grain-diameter frequency distribution with a single peak and a tail on either side of the peak and (i-2) coarse-grain Zn metal particles of 6 to 100 ?m peak grain diameter whose grain-diameter distribution has a grain-diameter frequency distribution with another single peak and a tail on either side of the peak, and wherein (ii) the percentage of all Zn metal particles accounted for by Zn metal particles of 0.05 to 5 ?m grain diameter expressed in volume percentage is 5 to 99%.Type: GrantFiled: September 26, 2007Date of Patent: February 14, 2012Assignee: Nippon Steel CorporationInventors: Makoto Nagasawa, Minoru Ito, Michio Kaneko, Kenji Katoh, Shiro Imai, Masatoshi Kominami, Toshiro Terakawa, Takashi Kumai
-
Patent number: 8105699Abstract: Zn alloy particles for high corrosion resistance rust prevention paint containing, by mass %, Mg: 0.01 to 30% and having a balance of Zn and unavoidable impurities, having physical fracture facets and/or cracks of a length of 0.01 ?m or more or cracks of a depth of 0.01 ?m or more, having an average particle size of 0.05 to 200 ?m, and having an aspect ratio of maximum size and minimum size (maximum size/minimum size) of an average value of 1 to 1.5. Also, a high corrosion resistance rust prevention paint containing these Zn alloy particles and a high corrosion resistance steel material and steel structure coated with that paint.Type: GrantFiled: September 7, 2007Date of Patent: January 31, 2012Assignee: Nippon Steel CorporationInventors: Kenji Katoh, Makoto Nagasawa, Minoru Ito, Michio Kaneko, Shiro Imai, Masatoshi Kominami, Toshiro Terakawa, Takashi Kumai
-
Patent number: 8092939Abstract: A virtually lead additive-free but highly reliable and practical anode zinc can for a battery with improved process-ability and corrosion resistance. A manganese dry battery comprising such a zinc can. A manufacturing method for making the zinc can and a battery.Type: GrantFiled: November 12, 2009Date of Patent: January 10, 2012Assignees: Toshiba Consumer Electronics Holdings Corporation, Kabushiki Kaisha Toshiba, Toshiba Home Appliances CorporationInventors: Kazunari Kobayashi, Mutsuhiro Maeda
-
Publication number: 20110306508Abstract: The presence of mycotoxins in agricultural products necessitates large scale testing of a wide range of sample material to ensure the safety of food and feed. The mycotoxin ochratoxin A represents an enablement for all mycotoxins as the level of sensitivity necessary for regulatory requirements for this compound at the part per billion level are as low or lower than any other mycotoxin. This invention describes the identification of a set of DNA ligands with sufficiently high binding affinity and specificity for ochratoxin A to enable an improvement over existing methods for the separation, concentration and quantitative determination of ochratoxin A in sample material.Type: ApplicationFiled: January 9, 2009Publication date: December 15, 2011Inventors: Gregory Allen Penner, Jorge Andres Cruz-Aguado
-
Publication number: 20110113844Abstract: A mobile energy carrier with which energy in the form of materials from zones distributed widely throughout the world, for example with a large amount of solar energy, wind energy or other CO2-neutral energy, for example the equator, can be transported to zones where there is a high energy requirement, for example Europe.Type: ApplicationFiled: June 29, 2009Publication date: May 19, 2011Inventor: Günter Schmid
-
Patent number: 7910512Abstract: To provide a production process of an electrode catalyst for fuel cell whose initial voltage is high and whose endurance characteristics, especially, whose voltage drop being caused by high-potential application is less. A production process according to the present invention of an electrode catalyst for fuel cell is characterized in that: it includes: a dispersing step of dispersing a conductive support in a solution; a loading step of dropping a platinum-salt solution, a base-metal-salt solution and an iridium-salt solution to the resulting dispersion liquid, thereby loading respective metallic salts on the conductive support as hydroxides under an alkaline condition; and an alloying step of heating the conductive support with metallic hydroxides loaded in a reducing atmosphere to reduce them, thereby alloying them.Type: GrantFiled: September 26, 2008Date of Patent: March 22, 2011Assignee: Cataler CorporationInventors: Hiroaki Takahashi, Sozaburo Ohashi, Tetsuo Kawamura, Yousuke Horiuchi, Toshiharu Tabata, Tomoaki Terada, Takahiro Nagata, Susumu Enomoto
-
Publication number: 20110048982Abstract: The present invention is a method and material for using a sorbent material to capture and stabilize mercury. The method for using sorbent material to capture and stabilize mercury contains the following steps. First, the sorbent material is provided. The sorbent material, in one embodiment, is nano-particles. In a preferred embodiment, the nano-particles are unstabilized nano-Se. Next, the sorbent material is exposed to mercury in an environment. As a result, the sorbent material captures and stabilizes mercury from the environment. In the preferred embodiment, the environment is an indoor space in which a fluorescent has broken.Type: ApplicationFiled: October 7, 2008Publication date: March 3, 2011Applicant: BROWN UNIVERSITYInventors: Robert H. Hurt, Steven P. Hamburg, Love Sarin, Indrek Kulaots
-
Publication number: 20110020666Abstract: In joining an Fe-based metallic member comprising an Fe-based material and an Al-based metallic member comprising an Al-based material by a Zn-based brazing filler metal, a joined part of the Fe-based metallic member is heated at a temperature higher than a melting point of the Fe-based material.Type: ApplicationFiled: April 21, 2009Publication date: January 27, 2011Applicant: HONDA MOTOR CO., LTD.Inventors: Taisei Wakisaka, Tokuji Okumura, Takanori Suzuki
-
Publication number: 20100248297Abstract: Particles and manufacturing methods thereof are provided. The manufacturing method of the particle includes providing a precursor solution containing a precursor dissolved in a solution, and irradiating the precursor solution with a high energy and high flux radiation beam to convert the precursor to nano-particles. Particles with desired dispersion, shape, and size are manufactured without adding a stabilizer or surfactant to the precursor solution.Type: ApplicationFiled: August 22, 2009Publication date: September 30, 2010Inventors: Yeu-Kuang Hwu, Chang-Hai Wang, Chi-Jen Liu, Cheng-Liang Wang, Chi-Hsiung Chen, Chung-Shi Yang, Hong-Ming Lin, Jung-Ho Je, Giorgio Margartondo
-
Publication number: 20100247956Abstract: Zn alloy particles for high corrosion resistance rust prevention paint containing, by mass %, Mg: 0.01 to 30% and having a balance of Zn and unavoidable impurities, having physical fracture facets and/or cracks of a length of 0.01 ?m or more or cracks of a depth of 0.01 ?m or more, having an average particle size of 0.05 to 200 ?m, and having an aspect ratio of maximum size and minimum size (maximum size/minimum size) of an average value of 1 to 1.5. Also, a high corrosion resistance rust prevention paint containing these Zn alloy particles and a high corrosion resistance steel material and steel structure coated with that paint.Type: ApplicationFiled: September 7, 2007Publication date: September 30, 2010Inventors: Kenji Katoh, Makoto Nagasawa, Minoru Ito, Michio Kaneko, Shiro Imai, Masatoshi Kominami, Toshiro Terakawa, Takashi Kumai
-
Publication number: 20100233761Abstract: A method of fractionating biomass, by permeability conditioning biomass suspended in a pH adjusted solution of at least one water-based polar solvent to form a conditioned biomass, intimately contacting the pH adjusted solution with at least one non-polar solvent, partitioning to obtain an non-polar solvent solution and a polar biomass solution, and recovering cell and cell derived products from the non-polar solvent solution and polar biomass solution. Products recovered from the above method. A method of operating a renewable and sustainable plant for growing and processing algae.Type: ApplicationFiled: March 10, 2010Publication date: September 16, 2010Inventors: Thomas J. Czartoski, Robert Perkins, Jorge L. Villanueva, Glenn Richards
-
Publication number: 20100221574Abstract: A process for forming a zinc alloy coating on a metallic substrate is disclosed. The process includes the steps of (a) reacting a mixture including (i) a zinc powder and (ii) an oxide, a salt, or a combination thereof of an alloying metal more noble than zinc by heating the mixture at an elevated temperature for a time sufficient to form a zinc alloy powder including zinc and the alloying metal; and (b) mechanically depositing the zinc alloy powder on the metallic substrate, thereby forming the zinc alloy coating on the metallic substrate. The zinc alloy powder includes relatively high levels of the alloying metal, resulting in the ability to incorporate relatively high levels of the same into the zinc alloy coating during the mechanical deposition step.Type: ApplicationFiled: February 26, 2010Publication date: September 2, 2010Inventor: Thomas H. Rochester
-
Patent number: 7767140Abstract: A method for manufacturing ZnO nanowires with a small diameter and increased length and a device comprising the same. The manufacturing method includes: forming a ZnO seed layer containing a hydroxyl group on a substrate; and growing ZnO nanowires on the ZnO seed layer containing the hydroxyl group. Preferably, the ZnO seed layer is a thin ZnO seed layer containing more than 50% of the hydroxyl group.Type: GrantFiled: July 12, 2006Date of Patent: August 3, 2010Assignee: Samsung Electronics Co., Ltd.Inventors: Yo-sep Min, Eun-ju Bae, Wan-jun Park
-
Publication number: 20100136359Abstract: The present application discloses (i) a coating composition comprising a particulate zinc-based alloyed material, said material comprising 0.05-0.7% by weight of bismuth (Bi), the D50 of the particulate material being in the range of 2.5-30 ?m; (ii) a coated structure comprising a metal structure having a first coating of the zinc-containing coating composition applied onto at least a part of the metal structure in a dry film thickness of 5-100 ?m; and an outer coating applied onto said zinc-containing coating in a dry film thickness of 30-200 ?m; (iii) a particulate zinc-based alloyed material, wherein the material comprises 0.05-0.7% (w/w) of bismuth (Bi), and wherein the D50 of the particulate material is in the range of 2.Type: ApplicationFiled: April 11, 2008Publication date: June 3, 2010Applicants: Hempel A/S, UMICOREInventors: Claus Erik Weinell, Jeroen Van Den Bosch, Pascal Verbiest, Hellen Fiedler, Torben Schandel, Gert Simonsen
-
Publication number: 20100104752Abstract: The invention relates to a process for coating a substrate (S) whereby a metal alloy layer comprising at least two metallic elements is continuously deposited on the substrate (S) by means of a vacuum deposition facility (1) comprising a vapor jet coater (7) for spraying the substrate (S) with a vapor containing the metallic elements in a constant and predetermined relative content, the vapor being sprayed at a sonic velocity. The process is more particularly intended for depositing Zn—Mg coatings. The invention also relates to a vacuum deposition facility (1) for continuously depositing coatings formed from metal alloys, for implementing the process.Type: ApplicationFiled: March 19, 2008Publication date: April 29, 2010Applicant: Arcelormittal FranceInventors: Patrick Choquet, Eric Silberberg, Bruno Schmitz, Daniel Chaleix
-
Publication number: 20090317281Abstract: This invention provides a method for atomic transformations carried out under conditions akin to chemical catalysis. Liquid and solid state catalysts are used in a two-step process. We have found that the high ionic/electric activity of concentrated sodium hydroxide solution in combination with heating is sufficient to induce atomic transformation and provide a solid phase catalyst of high aluminum and silicon content. This product when heated at a temperature of 1000° C. yields numerous elements of higher atomic masses.Type: ApplicationFiled: June 18, 2008Publication date: December 24, 2009Inventor: Peter Grandics
-
Publication number: 20090246070Abstract: An alloy with a high glass forming ability characterized by containing a group of elements A with atomic radii of less than 0.145 nm of a total of 20 to 85 atm %, a group of elements B with atomic radii of 0.145 nm to less than 0.17 nm of a total of 10 to 79.7 atm %, and a group of elements C with atomic radii of 0.17 nm or more of a total of 0.3 to 15 atm %; when the elements with the greatest contents in the group of elements A, group of elements B, and group of elements C are respectively designated as the “element a”, “element b”, and “element c”, by the ratio of the content of the element a in the group of elements A (for example, Zn and/or Al), the ratio of the content of the element b in the group of elements B (for example, Mg), and the ratio of the content of the element c in the group of elements C (for example, Ca) all being 70 atm % or more; and by the liquid forming enthalpy between any two elements selected from the element a, element b, and element c being negative.Type: ApplicationFiled: July 19, 2007Publication date: October 1, 2009Inventors: Kohei Tokuda, Koichi Nose, Yuichi Sato, Makoto Nakazawa
-
Patent number: 7569511Abstract: An alcohol steam reforming catalyst for generating hydrogen contains palladium, yttrium, and at least one of cerium and a metal oxide. The catalyst displays both an improved alcohol conversion rate and improved carbon dioxide selectivity. Methods of making and using the alcohol steam reforming catalyst are described.Type: GrantFiled: May 5, 2006Date of Patent: August 4, 2009Assignee: BASF Catalysts LLCInventors: Christopher R. Castellano, Ye Liu, Ahmad Moini, Gerald Stephen Koermer, Robert Joseph Farrauto
-
Patent number: 7524582Abstract: The invention is directed to a zinc powder or zinc alloy powder for alkaline batteries, which powder has a grain size distribution wherein 60 to 100 wt.-% of the particles, relative to the zinc powder or zinc alloy powder, have a diameter of from 40 to 140 ?m. The invention is also directed to an alkaline battery.Type: GrantFiled: June 5, 2006Date of Patent: April 28, 2009Assignee: Grillo-Werke AGInventors: Armin Melzer, Petra Merkel, Jochen Spiestersbach, Rudi Kube, Norbert Schulz
-
Publication number: 20090081412Abstract: A method of forming a thin film comprising the steps of: applying an inorganic salt solution for a thin film on a substrate to obtain a coated inorganic salt solution film; and subjecting the coated inorganic salt solution film to a plasma treatment under atmospheric pressure, wherein the plasma treatment is conducted by supplying a gas under atmospheric pressure or nearly atmospheric pressure between a pair of counter electrodes, and then generating a high frequency electric field between the electrodes so as to excite the gas followed by subjecting the coated inorganic salt solution film to the excited gas.Type: ApplicationFiled: May 12, 2006Publication date: March 26, 2009Applicant: KONICA MINOLTA HOLDINGS, INC.Inventors: Kazuhiro Fukuda, Koji Ozaki
-
Publication number: 20080236033Abstract: Floating slow-release fertilizer is designed to significantly reduce carbon dioxide in the atmosphere. This granulated fertilizer has a density lighter than seawater. Therefore its pellets can float on the surface of seawater. After being dispensed into water, the pellets are able to continually release certain nutrients for a period of time. During this period, an otherwise inanimate water region is temporarily suitable for plant growth. Floating slow-release fertilizer enables the growth of planting phytoplankton in ocean to remove CO2 from atmosphere. The advantages of the fertilizer are as following: all nature, effective, no byproduct, no land using, no pollution, using solar energy mainly, small investment, easy to control, low operation cast.Type: ApplicationFiled: March 24, 2008Publication date: October 2, 2008Inventors: Yao Sun, Sam Sun
-
Publication number: 20080193849Abstract: An electrochemical cell with a blended zinc powder is disclosed. The blended zinc powder includes selected portions of a first zinc powder and a second zinc powder. In a preferred embodiment, the first and second powders are divided into groups based on ranges in their particle size distribution. Particle characteristics such as roughness and elongation are used to selected groups of both powders that are combined to produce the blended zinc powder. The blended zinc powders enable battery manufacturers to maximize the cell's run time while minimizing the cost of the zinc.Type: ApplicationFiled: February 21, 2008Publication date: August 14, 2008Inventor: Danan Fan
-
Publication number: 20080191347Abstract: There is disclosed a conductive ball- or pin-mounted semiconductor packaging substrate having a conductive ball or a conductive pin mounted on a conductive land or through-hole of the semiconductor packaging substrate, wherein the conductive ball or the conductive pin is electrically connected with the conductive land or through-hole through a reflow of a conductive bonding material comprising, at least, a low-melting point lead-free SnBi-based solder and a thermosetting adhesive resin exhibiting fluxing effects.Type: ApplicationFiled: January 28, 2008Publication date: August 14, 2008Inventors: Kazunori Sawa, Shinichi Akaike
-
Publication number: 20080190865Abstract: A stabilized, chemically reactive, metallic nano-material effective for degradation of chlorinated organic compounds in soils, sediments and groundwater. The nano-material is composed of a magnetic metal nanoparticle and a carbohydrate stabilizer bound to the nanoparticle. The preferred metal nanoparticle is iron and the preferred carbohydrate stabilizer is either a starch or a water soluble cellulose such as sodium carboxymethyl cellulose. The nanoparticle may be either mono-metallic, bi-metallic or multi-metallic in nature, but is preferably bi-metallic wherein it is coated with a secondary catalytic metal coating, preferably palladium. A method of making the metallic nano-material is further disclosed wherein a solution of the metal nanoparticle and carbohydrate stabilizer is prepared, and the nanoparticle is then reduced under inert conditions.Type: ApplicationFiled: June 30, 2005Publication date: August 14, 2008Inventors: Dongye Zhao, Feng He
-
Publication number: 20080170962Abstract: An added element other than zinc is yielded at the grain boundaries of zinc forming a negative electrode zinc can. The added element includes at least one element selected from the group of Pb, Bi, Ca, Mg, Si, Al, and In. The zinc can is formed in such a manner that: melted zinc containing the added element is quenched at a quenching rate of 75 to 100° C./second for casting into a zinc plate; and the thus cast plate is subjected to impact molding at a temperature in the range between 20 and 30° C.Type: ApplicationFiled: January 15, 2008Publication date: July 17, 2008Inventors: Harunari Shimamura, Jun Nunome, Fumio Kato
-
Patent number: 7374840Abstract: This invention relates to centrifugal atomized zinc alloy powders for alkaline batteries consisting of (a) 0.005-2% by weight of indium, and 0.005-0.2% by weight of either one of Al and Bi, or (b) 0.005-2% by weight of indium, and 0.005-0.2% by weight of Bi, and 0.001-0.5% of either one or both of Al and Ca, or (c) 0.005-2% by weight of either one or both of Bi and Al, and 0-0.5% by weight of Pb, the remainder being zinc. The powder is obtained by centrifugal atomisation in a protective atmosphere, where the oxygen content is less than 4% by volume. The resistance to corrosion in the electrolyte of the battery, especially after partial discharge, is markedly better than when the same alloys are prepared by the traditional production process. The capacity of batteries containing these powders is very good.Type: GrantFiled: February 3, 2000Date of Patent: May 20, 2008Assignee: UmicoreInventors: Yvan Strauven, Bruno Gay
-
Publication number: 20040166016Abstract: A high-purity metal (such as magnesium or zinc) containing Cl, F and S in a respective amount of no more than 0.1 ppm, with the total impurity content being no more than 1 ppm.Type: ApplicationFiled: October 14, 2003Publication date: August 26, 2004Applicant: DOWA MINING CO., LTD.Inventors: Kishio Tayama, Shunichi Kimura
-
Publication number: 20040115532Abstract: A zinc powder for use in a zinc anode, negative electrode or electrochemical cell including zinc metal or zinc alloy particles. The zinc particles have a narrow particle size distribution and a major portion of the zinc particles having a well controlled chemistry and specific shape, such as teardrop, strand teardrop, acicular or spherical thereby providing improved discharge characteristics and reduced gassing.Type: ApplicationFiled: August 5, 2003Publication date: June 17, 2004Inventors: Martin Malservisi, Jean-Yves Huot
-
Patent number: 6706220Abstract: In the mixture of metal and/or alloy particles and a liquid electrolytic medium, the metal and/or alloy particles are irregularly shaped, have a non-uniform surface and a bulk density of below 33% by weight of the specific density of the compact metal and/or the compact alloy, and the volume of the medium is larger than that which corresponds to the spaces between the particles in a dry packing.Type: GrantFiled: March 11, 2002Date of Patent: March 16, 2004Assignee: Grillo-Werke AGInventor: Wolfgang Glaeser