Zinc Base Patents (Class 420/513)
  • Patent number: 9023469
    Abstract: Basic zinc cyanurate fine particles are produced by subjecting a mixed slurry to wet dispersion using a dispersion medium at a temperature in the range of 5 to 55° C., the mixed slurry being formed by blending water, cyanuric acid, and at least one component selected from zinc oxide and basic zinc carbonate such that the cyanuric acid concentration is 0.1 to 10.0 mass % with respect to water.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: May 5, 2015
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Isao Oota, Masaki Oiwamoto, Takeshi Suwa
  • Publication number: 20150064483
    Abstract: A method of depositing a film of a metal having a volatilization temperature higher than 350° C., as well as, a composite material including the same are disclosed. The method can include providing the source material in a vacuum deposition processing chamber, and providing a substrate in the vacuum deposition processing chamber. The substrate can be spaced apart from, but in fluid communication with, the source material, and also maintained at a substrate temperature that is lower than the volatilization temperature. The method can also include reducing an internal pressure of the vacuum deposition processing chamber to a pressure between 0.1 and 14,000 pascals; volatilizing the source material into a volatilized metal by heating the source material to a first temperature that is higher than the volatilization temperature; and transporting the volatilized metal to the substrate using a heated carrier gas, whereby the volatilized metal deposits on the substrate and forms the metal film.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 5, 2015
    Inventors: Mark E. Thompson, Francisco F. Navarro
  • Publication number: 20150011749
    Abstract: Metal-accumulating plants for preparing compositions including a metal catalyst derived from the plants. The composition is substantially devoid of organic matter. Also, carrying out chemical reactions with the compositions prepared from metal-accumulating plants.
    Type: Application
    Filed: March 5, 2013
    Publication date: January 8, 2015
    Applicants: UNIVERSITE MONTPELLIER 2 SCIENCES ET TECHNIQUES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Claude Grison, Vincent Escande
  • Publication number: 20140352716
    Abstract: In a dry etching method for etching a metal film formed on a substrate by use of etching gas containing ?-diketone, the metal film contains at least one metal material that forms a penta- or hexa-coordinated complex structure with ?-diketone; the etching gas containing ?-diketone contains at least one additive among H2O or H2O2; and the additive is contained at a volume concentration of 1% or greater and 20% or less.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 4, 2014
    Applicant: CENTRAL GLASS COMPANY, LIMITED
    Inventors: Akiou KIKUCHI, Yuta TAKEDA
  • Publication number: 20140348203
    Abstract: Provided in one embodiment is a method of identifying a stable phase of an ordering binary alloy system comprising a solute element and a solvent element, the method comprising: determining at least three thermodynamic parameters associated with grain boundary segregation, phase separation, and intermetallic compound formation of the ordering binary alloy system; and identifying the stable phase of the ordering binary alloy system based on the first thermodynamic parameter, the second thermodynamic parameter and the third thermodynamic parameter by comparing the first thermodynamic parameter, the second thermodynamic parameter and the third thermodynamic parameter with a predetermined set of respective thermodynamic parameters to identify the stable phase; wherein the stable phase is one of a stable nanocrystalline phase, a metastable nanocrystalline phase, and a non-nanocrystalline phase.
    Type: Application
    Filed: May 20, 2014
    Publication date: November 27, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Heather A. Murdoch, Christopher A. Schuh
  • Patent number: 8841375
    Abstract: The instant invention relates to easily isolable and re-dispersible transition metal nanoparticles, their manufacture and use as IR-absorbers, in particular in transparent thermoplastic or crosslinkable polymers. A further aspect of the invention is a composition of these transition metal nanoparticles and thermoplastic or crosslinkable polymers and an architectural or automotive glazing containing these transition metal nanoparticles.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: September 23, 2014
    Assignee: BASF SE
    Inventors: Francesca Peri, Samanta Cimitan, Markus Grob
  • Publication number: 20140234654
    Abstract: The invention relates to a thermal spraying material (5) for the coating of a surface of a workpiece by means of a thermal spraying method, wherein the spraying material (5) contains zinc. The invention further relates to a thermal spraying method and to a thermally sprayed coating sprayed with the material (5).
    Type: Application
    Filed: January 13, 2014
    Publication date: August 21, 2014
    Applicant: Sulzer Metco AG
    Inventors: Arno Refke, Gerard Barbezat, Jacobus Cornelis Doesburg
  • Publication number: 20140225269
    Abstract: A solder includes zinc as a main component and the solder contains 6 to 8 mass percent of indium. A solder includes zinc as a main component, wherein the solder contains only indium. In a die-bonding structure in which a semiconductor chip is connected to a bonded member by a solder, the solder made of zinc as a main component and contains indium.
    Type: Application
    Filed: January 2, 2014
    Publication date: August 14, 2014
    Applicant: KABUSHIKI KAISHA TOYOTA JIDOSHOKKI
    Inventor: Kazuhiro MAENO
  • Patent number: 8802151
    Abstract: The instant invention relates to shaped transition metal particles, in particular in the form of a dispersion in an aqueous and/or organic medium, the manufacture thereof and their use as an infrared (IR) absorbing agent, an IR curing agent for coatings, an additive in conductive formulations, an antimicrobial agent or for sensoring organic and/or inorganic compounds. Further, the invention relates to dispersions comprising said shaped particles and an aqueous and/or organic medium, such as a thermoplastic or crosslinkable polymer, as well as to antimicrobial compositions and products.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: August 12, 2014
    Assignee: BASF SE
    Inventors: Nikolay A. Grigorenko, Michael Muehlebach, Florian Muehlebach
  • Patent number: 8668841
    Abstract: A pellet having a microstructure including a bismuth phase, a zinc solid solution phase, and a Zn3Hg phase is disclosed. A method of making a pellet including bismuth, zinc, and mercury is also disclosed. Moreover, a fluorescent lamp with a fill material including bismuth, zinc, and mercury is disclosed. Further, a method of dosing a fluorescent lamp with mercury is disclosed.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: March 11, 2014
    Assignee: Advanced Lighting Technologies, Inc.
    Inventor: Steven C. Hansen
  • Patent number: 8637163
    Abstract: An alloy with a high glass forming ability characterized by containing a group of elements A with atomic radii of less than 0.145 nm of a total of 20 to 85 atm %, a group of elements B with atomic radii of 0.145 nm to less than 0.17 nm of a total of 10 to 79.7 atm %, and a group of elements C with atomic radii of 0.17 nm or more of a total of 0.3 to 15 atm %; when the elements with the greatest contents in the group of elements A, group of elements B, and group of elements C are respectively designated as the “element a”, “element b”, and “element c”, by the ratio of the content of the element a in the group of elements A (for example, Zn and/or Al), the ratio of the content of the element b in the group of elements B (for example, Mg), and the ratio of the content of the element c in the group of elements C (for example, Ca) all being 70 atm % or more; and by the liquid forming enthalpy between any two elements selected from the element a, element b, and element c being negative.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: January 28, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Kohei Tokuda, Koichi Nose, Yuichi Sato, Makoto Nakazawa
  • Patent number: 8636927
    Abstract: A ZnO deposition material to be used for forming a transparent conductive film is composed of a ZnO pellet made of ZnO powder having a ZnO purity of 98% or more. The pellet includes one or more kinds of elements selected from the group consisting of Y, La, Sc, Ce, Pr, Nd, Pm and Sm. The ZnO pellet is polycrystal or monocrystal. The ZnO film formed by a vacuum film forming method employing the ZnO deposition material as a target material can exhibit excellent conductivity. The vacuum film forming method is preferably an electron beam vapor deposition method, an ion plating method or a sputtering method.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: January 28, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventor: Yoshitaka Mayuzumi
  • Patent number: 8546292
    Abstract: A zinc-carbon compound that is a reaction product of zinc and carbon, wherein the zinc and the carbon form a single phase material that is meltable. The compound is one in which the carbon does not phase separate from the zinc when the single phase material is heated to a melting temperature.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: October 1, 2013
    Assignee: Third Millennium Metals, LLC
    Inventors: Jason V. Shugart, Roger C. Scherer
  • Publication number: 20130239890
    Abstract: The present invention provides a process for coating a substrate. A metal alloy layer including at least two metallic elements is continuously deposited on the substrate by a vacuum deposition facility. The facility includes a vapor jet coater for spraying the substrate with a vapor containing the metallic elements in a constant and predetermined relative content, the vapor being sprayed at a sonic velocity. The process may advantageously be used for depositing Zn—Mg coatings. The invention also provides a vacuum deposition facility for continuously depositing coatings formed from metal alloys, for implementing the process.
    Type: Application
    Filed: April 25, 2013
    Publication date: September 19, 2013
    Applicant: ARCELORMITTAL FRANCE
    Inventors: Patrick Choquet, Eric Silberberg, Bruno Schmitz, Daniel Chaleix
  • Publication number: 20130110684
    Abstract: A forensic marker is disclosed including a marker that is added to the host material and is detectable for at least the expected life of the host material. The marker is inert with respect to the host material in that it does not significantly affect the desired qualities of the host material (e.g. weight, adhesive properties, structural integrity, etc). The marker is detectable, for example, by instruments, during the life of the host material.
    Type: Application
    Filed: October 27, 2011
    Publication date: May 2, 2013
    Inventor: Jorge G. Chiappo
  • Patent number: 8409477
    Abstract: A ZnO vapor deposition material for formation of a transparent conductive film or the like consists mainly of a porous ZnO sintered body containing one or more first additive elements selected from Ce, La, Y, Pr, Nd, Pm, and Sm, and second additive elements selected from Al, Ga, Sc, and B. The content of the first additive elements is higher than the content of the second additive elements. The content of the first additive elements is in a range of 0.1 to 14.9% by mass, and the content of the second additive elements is in a range of 0.1 to 10% by mass. The sintered body has a porosity of 3 to 50%.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: April 2, 2013
    Assignee: Mitsubishi Materials Corporation
    Inventor: Yoshitaka Mayuzumi
  • Publication number: 20120282132
    Abstract: Methods of the invention allow rapid production of high-porous, large-surface-area nanostructured metal and/or metal oxide at attractive low cost applicable to a wide variety of commercial applications such as sensors, catalysts and photovoltaics.
    Type: Application
    Filed: July 13, 2010
    Publication date: November 8, 2012
    Inventors: James J. Watkins, Christos Fotios Karanikas, David Reisner, Xinqing Ma, Jeff Roth, T. Danny Xiao, Stephen Paul Murphy
  • Publication number: 20120283336
    Abstract: The instant invention relates to shaped transition metal particles, in particular in the form of a dispersion in an aqueous and/or organic medium, the manufacture thereof and their use as an infrared (IR) absorbing agent, an IR curing agent for coatings, an additive in conductive formulations, an antimicrobial agent or for sensoring organic and/or inorganic compounds. Further, the invention relates to dispersions comprising said shaped particles and an aqueous and/or organic medium, such as a thermoplastic or crosslinkable polymer, as well as to antimicrobial compositions and products.
    Type: Application
    Filed: March 17, 2010
    Publication date: November 8, 2012
    Applicant: BASF SE
    Inventors: Nikolay A. Grigorenko, Andreas Muehlebach, Michael Muehlebach, Florian Muehlebach
  • Patent number: 8231812
    Abstract: A ZnO vapor deposition material for formation of a transparent conductive film or the like consists mainly of a porous ZnO sintered body containing one or more first additive elements selected from Ce, La, Y, Pr, Nd, Pm, and Sm, and second additive elements selected from Al, Ga, Sc, and B. The content of the first additive elements is higher than the content of the second additive elements. The content of the first additive elements is in a range of 0.1 to 14.9% by mass, and the content of the second additive elements is in a range of 0.1 to 10% by mass. The sintered body has a porosity of 3 to 50%.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: July 31, 2012
    Assignee: Mitsubishi Materials Corporation
    Inventor: Yoshitaka Mayuzumi
  • Publication number: 20120094271
    Abstract: The present invention provides method of identifying molecules that cooperatively and positively interact with either a ligand or a target molecule of a ligand/target molecule pair, or molecules that interact with a ligand/target molecule complex.
    Type: Application
    Filed: August 17, 2009
    Publication date: April 19, 2012
    Applicant: Arizona Board of Regents for and on behalf of Arizona State University
    Inventors: Jinglin Fu, Neal W. Woodbury, Stephen Albert Johnston
  • Patent number: 8128847
    Abstract: A ZnO vapor deposition material for formation of a transparent conductive film or the like consists mainly of a porous ZnO sintered body containing one or more first additive elements selected from Ce, La, Y, Pr, Nd, Pm, and Sm, and second additive elements selected from Al, Ga, Sc, and B. The content of the first additive elements is higher than the content of the second additive elements. The content of the first additive elements is in a range of 0.1 to 14.9% by mass, and the content of the second additive elements is in a range of 0.1 to 10% by mass. The sintered body has a porosity of 3 to 50%.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: March 6, 2012
    Assignee: Mitsubishi Materials Corporation
    Inventor: Yoshitaka Mayuzumi
  • Patent number: 8114527
    Abstract: A highly corrosion-resistant, rust-prevention coating material comprising: an inorganic binder; and Zn metal particles comprised of Zn and unavoidable impurities and dispersed in the binder at the rate of 30 mass % or greater based on a dry coating film, wherein (i) the Zn metal particles include (i-1) fine-grain Zn metal particles of 0.05 to 5 ?m peak grain diameter whose grain-diameter distribution has a grain-diameter frequency distribution with a single peak and a tail on either side of the peak and (i-2) coarse-grain Zn metal particles of 6 to 100 ?m peak grain diameter whose grain-diameter distribution has a grain-diameter frequency distribution with another single peak and a tail on either side of the peak, and wherein (ii) the percentage of all Zn metal particles accounted for by Zn metal particles of 0.05 to 5 ?m grain diameter expressed in volume percentage is 5 to 99%.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: February 14, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Makoto Nagasawa, Minoru Ito, Michio Kaneko, Kenji Katoh, Shiro Imai, Masatoshi Kominami, Toshiro Terakawa, Takashi Kumai
  • Patent number: 8105699
    Abstract: Zn alloy particles for high corrosion resistance rust prevention paint containing, by mass %, Mg: 0.01 to 30% and having a balance of Zn and unavoidable impurities, having physical fracture facets and/or cracks of a length of 0.01 ?m or more or cracks of a depth of 0.01 ?m or more, having an average particle size of 0.05 to 200 ?m, and having an aspect ratio of maximum size and minimum size (maximum size/minimum size) of an average value of 1 to 1.5. Also, a high corrosion resistance rust prevention paint containing these Zn alloy particles and a high corrosion resistance steel material and steel structure coated with that paint.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: January 31, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Kenji Katoh, Makoto Nagasawa, Minoru Ito, Michio Kaneko, Shiro Imai, Masatoshi Kominami, Toshiro Terakawa, Takashi Kumai
  • Patent number: 8092939
    Abstract: A virtually lead additive-free but highly reliable and practical anode zinc can for a battery with improved process-ability and corrosion resistance. A manganese dry battery comprising such a zinc can. A manufacturing method for making the zinc can and a battery.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: January 10, 2012
    Assignees: Toshiba Consumer Electronics Holdings Corporation, Kabushiki Kaisha Toshiba, Toshiba Home Appliances Corporation
    Inventors: Kazunari Kobayashi, Mutsuhiro Maeda
  • Publication number: 20110306508
    Abstract: The presence of mycotoxins in agricultural products necessitates large scale testing of a wide range of sample material to ensure the safety of food and feed. The mycotoxin ochratoxin A represents an enablement for all mycotoxins as the level of sensitivity necessary for regulatory requirements for this compound at the part per billion level are as low or lower than any other mycotoxin. This invention describes the identification of a set of DNA ligands with sufficiently high binding affinity and specificity for ochratoxin A to enable an improvement over existing methods for the separation, concentration and quantitative determination of ochratoxin A in sample material.
    Type: Application
    Filed: January 9, 2009
    Publication date: December 15, 2011
    Inventors: Gregory Allen Penner, Jorge Andres Cruz-Aguado
  • Publication number: 20110113844
    Abstract: A mobile energy carrier with which energy in the form of materials from zones distributed widely throughout the world, for example with a large amount of solar energy, wind energy or other CO2-neutral energy, for example the equator, can be transported to zones where there is a high energy requirement, for example Europe.
    Type: Application
    Filed: June 29, 2009
    Publication date: May 19, 2011
    Inventor: Günter Schmid
  • Patent number: 7910512
    Abstract: To provide a production process of an electrode catalyst for fuel cell whose initial voltage is high and whose endurance characteristics, especially, whose voltage drop being caused by high-potential application is less. A production process according to the present invention of an electrode catalyst for fuel cell is characterized in that: it includes: a dispersing step of dispersing a conductive support in a solution; a loading step of dropping a platinum-salt solution, a base-metal-salt solution and an iridium-salt solution to the resulting dispersion liquid, thereby loading respective metallic salts on the conductive support as hydroxides under an alkaline condition; and an alloying step of heating the conductive support with metallic hydroxides loaded in a reducing atmosphere to reduce them, thereby alloying them.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: March 22, 2011
    Assignee: Cataler Corporation
    Inventors: Hiroaki Takahashi, Sozaburo Ohashi, Tetsuo Kawamura, Yousuke Horiuchi, Toshiharu Tabata, Tomoaki Terada, Takahiro Nagata, Susumu Enomoto
  • Publication number: 20110048982
    Abstract: The present invention is a method and material for using a sorbent material to capture and stabilize mercury. The method for using sorbent material to capture and stabilize mercury contains the following steps. First, the sorbent material is provided. The sorbent material, in one embodiment, is nano-particles. In a preferred embodiment, the nano-particles are unstabilized nano-Se. Next, the sorbent material is exposed to mercury in an environment. As a result, the sorbent material captures and stabilizes mercury from the environment. In the preferred embodiment, the environment is an indoor space in which a fluorescent has broken.
    Type: Application
    Filed: October 7, 2008
    Publication date: March 3, 2011
    Applicant: BROWN UNIVERSITY
    Inventors: Robert H. Hurt, Steven P. Hamburg, Love Sarin, Indrek Kulaots
  • Publication number: 20110020666
    Abstract: In joining an Fe-based metallic member comprising an Fe-based material and an Al-based metallic member comprising an Al-based material by a Zn-based brazing filler metal, a joined part of the Fe-based metallic member is heated at a temperature higher than a melting point of the Fe-based material.
    Type: Application
    Filed: April 21, 2009
    Publication date: January 27, 2011
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Taisei Wakisaka, Tokuji Okumura, Takanori Suzuki
  • Publication number: 20100248297
    Abstract: Particles and manufacturing methods thereof are provided. The manufacturing method of the particle includes providing a precursor solution containing a precursor dissolved in a solution, and irradiating the precursor solution with a high energy and high flux radiation beam to convert the precursor to nano-particles. Particles with desired dispersion, shape, and size are manufactured without adding a stabilizer or surfactant to the precursor solution.
    Type: Application
    Filed: August 22, 2009
    Publication date: September 30, 2010
    Inventors: Yeu-Kuang Hwu, Chang-Hai Wang, Chi-Jen Liu, Cheng-Liang Wang, Chi-Hsiung Chen, Chung-Shi Yang, Hong-Ming Lin, Jung-Ho Je, Giorgio Margartondo
  • Publication number: 20100247956
    Abstract: Zn alloy particles for high corrosion resistance rust prevention paint containing, by mass %, Mg: 0.01 to 30% and having a balance of Zn and unavoidable impurities, having physical fracture facets and/or cracks of a length of 0.01 ?m or more or cracks of a depth of 0.01 ?m or more, having an average particle size of 0.05 to 200 ?m, and having an aspect ratio of maximum size and minimum size (maximum size/minimum size) of an average value of 1 to 1.5. Also, a high corrosion resistance rust prevention paint containing these Zn alloy particles and a high corrosion resistance steel material and steel structure coated with that paint.
    Type: Application
    Filed: September 7, 2007
    Publication date: September 30, 2010
    Inventors: Kenji Katoh, Makoto Nagasawa, Minoru Ito, Michio Kaneko, Shiro Imai, Masatoshi Kominami, Toshiro Terakawa, Takashi Kumai
  • Publication number: 20100233761
    Abstract: A method of fractionating biomass, by permeability conditioning biomass suspended in a pH adjusted solution of at least one water-based polar solvent to form a conditioned biomass, intimately contacting the pH adjusted solution with at least one non-polar solvent, partitioning to obtain an non-polar solvent solution and a polar biomass solution, and recovering cell and cell derived products from the non-polar solvent solution and polar biomass solution. Products recovered from the above method. A method of operating a renewable and sustainable plant for growing and processing algae.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 16, 2010
    Inventors: Thomas J. Czartoski, Robert Perkins, Jorge L. Villanueva, Glenn Richards
  • Publication number: 20100221574
    Abstract: A process for forming a zinc alloy coating on a metallic substrate is disclosed. The process includes the steps of (a) reacting a mixture including (i) a zinc powder and (ii) an oxide, a salt, or a combination thereof of an alloying metal more noble than zinc by heating the mixture at an elevated temperature for a time sufficient to form a zinc alloy powder including zinc and the alloying metal; and (b) mechanically depositing the zinc alloy powder on the metallic substrate, thereby forming the zinc alloy coating on the metallic substrate. The zinc alloy powder includes relatively high levels of the alloying metal, resulting in the ability to incorporate relatively high levels of the same into the zinc alloy coating during the mechanical deposition step.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 2, 2010
    Inventor: Thomas H. Rochester
  • Patent number: 7767140
    Abstract: A method for manufacturing ZnO nanowires with a small diameter and increased length and a device comprising the same. The manufacturing method includes: forming a ZnO seed layer containing a hydroxyl group on a substrate; and growing ZnO nanowires on the ZnO seed layer containing the hydroxyl group. Preferably, the ZnO seed layer is a thin ZnO seed layer containing more than 50% of the hydroxyl group.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: August 3, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yo-sep Min, Eun-ju Bae, Wan-jun Park
  • Publication number: 20100136359
    Abstract: The present application discloses (i) a coating composition comprising a particulate zinc-based alloyed material, said material comprising 0.05-0.7% by weight of bismuth (Bi), the D50 of the particulate material being in the range of 2.5-30 ?m; (ii) a coated structure comprising a metal structure having a first coating of the zinc-containing coating composition applied onto at least a part of the metal structure in a dry film thickness of 5-100 ?m; and an outer coating applied onto said zinc-containing coating in a dry film thickness of 30-200 ?m; (iii) a particulate zinc-based alloyed material, wherein the material comprises 0.05-0.7% (w/w) of bismuth (Bi), and wherein the D50 of the particulate material is in the range of 2.
    Type: Application
    Filed: April 11, 2008
    Publication date: June 3, 2010
    Applicants: Hempel A/S, UMICORE
    Inventors: Claus Erik Weinell, Jeroen Van Den Bosch, Pascal Verbiest, Hellen Fiedler, Torben Schandel, Gert Simonsen
  • Publication number: 20100104752
    Abstract: The invention relates to a process for coating a substrate (S) whereby a metal alloy layer comprising at least two metallic elements is continuously deposited on the substrate (S) by means of a vacuum deposition facility (1) comprising a vapor jet coater (7) for spraying the substrate (S) with a vapor containing the metallic elements in a constant and predetermined relative content, the vapor being sprayed at a sonic velocity. The process is more particularly intended for depositing Zn—Mg coatings. The invention also relates to a vacuum deposition facility (1) for continuously depositing coatings formed from metal alloys, for implementing the process.
    Type: Application
    Filed: March 19, 2008
    Publication date: April 29, 2010
    Applicant: Arcelormittal France
    Inventors: Patrick Choquet, Eric Silberberg, Bruno Schmitz, Daniel Chaleix
  • Publication number: 20090317281
    Abstract: This invention provides a method for atomic transformations carried out under conditions akin to chemical catalysis. Liquid and solid state catalysts are used in a two-step process. We have found that the high ionic/electric activity of concentrated sodium hydroxide solution in combination with heating is sufficient to induce atomic transformation and provide a solid phase catalyst of high aluminum and silicon content. This product when heated at a temperature of 1000° C. yields numerous elements of higher atomic masses.
    Type: Application
    Filed: June 18, 2008
    Publication date: December 24, 2009
    Inventor: Peter Grandics
  • Publication number: 20090246070
    Abstract: An alloy with a high glass forming ability characterized by containing a group of elements A with atomic radii of less than 0.145 nm of a total of 20 to 85 atm %, a group of elements B with atomic radii of 0.145 nm to less than 0.17 nm of a total of 10 to 79.7 atm %, and a group of elements C with atomic radii of 0.17 nm or more of a total of 0.3 to 15 atm %; when the elements with the greatest contents in the group of elements A, group of elements B, and group of elements C are respectively designated as the “element a”, “element b”, and “element c”, by the ratio of the content of the element a in the group of elements A (for example, Zn and/or Al), the ratio of the content of the element b in the group of elements B (for example, Mg), and the ratio of the content of the element c in the group of elements C (for example, Ca) all being 70 atm % or more; and by the liquid forming enthalpy between any two elements selected from the element a, element b, and element c being negative.
    Type: Application
    Filed: July 19, 2007
    Publication date: October 1, 2009
    Inventors: Kohei Tokuda, Koichi Nose, Yuichi Sato, Makoto Nakazawa
  • Patent number: 7569511
    Abstract: An alcohol steam reforming catalyst for generating hydrogen contains palladium, yttrium, and at least one of cerium and a metal oxide. The catalyst displays both an improved alcohol conversion rate and improved carbon dioxide selectivity. Methods of making and using the alcohol steam reforming catalyst are described.
    Type: Grant
    Filed: May 5, 2006
    Date of Patent: August 4, 2009
    Assignee: BASF Catalysts LLC
    Inventors: Christopher R. Castellano, Ye Liu, Ahmad Moini, Gerald Stephen Koermer, Robert Joseph Farrauto
  • Patent number: 7524582
    Abstract: The invention is directed to a zinc powder or zinc alloy powder for alkaline batteries, which powder has a grain size distribution wherein 60 to 100 wt.-% of the particles, relative to the zinc powder or zinc alloy powder, have a diameter of from 40 to 140 ?m. The invention is also directed to an alkaline battery.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: April 28, 2009
    Assignee: Grillo-Werke AG
    Inventors: Armin Melzer, Petra Merkel, Jochen Spiestersbach, Rudi Kube, Norbert Schulz
  • Publication number: 20090081412
    Abstract: A method of forming a thin film comprising the steps of: applying an inorganic salt solution for a thin film on a substrate to obtain a coated inorganic salt solution film; and subjecting the coated inorganic salt solution film to a plasma treatment under atmospheric pressure, wherein the plasma treatment is conducted by supplying a gas under atmospheric pressure or nearly atmospheric pressure between a pair of counter electrodes, and then generating a high frequency electric field between the electrodes so as to excite the gas followed by subjecting the coated inorganic salt solution film to the excited gas.
    Type: Application
    Filed: May 12, 2006
    Publication date: March 26, 2009
    Applicant: KONICA MINOLTA HOLDINGS, INC.
    Inventors: Kazuhiro Fukuda, Koji Ozaki
  • Publication number: 20080236033
    Abstract: Floating slow-release fertilizer is designed to significantly reduce carbon dioxide in the atmosphere. This granulated fertilizer has a density lighter than seawater. Therefore its pellets can float on the surface of seawater. After being dispensed into water, the pellets are able to continually release certain nutrients for a period of time. During this period, an otherwise inanimate water region is temporarily suitable for plant growth. Floating slow-release fertilizer enables the growth of planting phytoplankton in ocean to remove CO2 from atmosphere. The advantages of the fertilizer are as following: all nature, effective, no byproduct, no land using, no pollution, using solar energy mainly, small investment, easy to control, low operation cast.
    Type: Application
    Filed: March 24, 2008
    Publication date: October 2, 2008
    Inventors: Yao Sun, Sam Sun
  • Publication number: 20080190865
    Abstract: A stabilized, chemically reactive, metallic nano-material effective for degradation of chlorinated organic compounds in soils, sediments and groundwater. The nano-material is composed of a magnetic metal nanoparticle and a carbohydrate stabilizer bound to the nanoparticle. The preferred metal nanoparticle is iron and the preferred carbohydrate stabilizer is either a starch or a water soluble cellulose such as sodium carboxymethyl cellulose. The nanoparticle may be either mono-metallic, bi-metallic or multi-metallic in nature, but is preferably bi-metallic wherein it is coated with a secondary catalytic metal coating, preferably palladium. A method of making the metallic nano-material is further disclosed wherein a solution of the metal nanoparticle and carbohydrate stabilizer is prepared, and the nanoparticle is then reduced under inert conditions.
    Type: Application
    Filed: June 30, 2005
    Publication date: August 14, 2008
    Inventors: Dongye Zhao, Feng He
  • Publication number: 20080191347
    Abstract: There is disclosed a conductive ball- or pin-mounted semiconductor packaging substrate having a conductive ball or a conductive pin mounted on a conductive land or through-hole of the semiconductor packaging substrate, wherein the conductive ball or the conductive pin is electrically connected with the conductive land or through-hole through a reflow of a conductive bonding material comprising, at least, a low-melting point lead-free SnBi-based solder and a thermosetting adhesive resin exhibiting fluxing effects.
    Type: Application
    Filed: January 28, 2008
    Publication date: August 14, 2008
    Inventors: Kazunori Sawa, Shinichi Akaike
  • Publication number: 20080193849
    Abstract: An electrochemical cell with a blended zinc powder is disclosed. The blended zinc powder includes selected portions of a first zinc powder and a second zinc powder. In a preferred embodiment, the first and second powders are divided into groups based on ranges in their particle size distribution. Particle characteristics such as roughness and elongation are used to selected groups of both powders that are combined to produce the blended zinc powder. The blended zinc powders enable battery manufacturers to maximize the cell's run time while minimizing the cost of the zinc.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 14, 2008
    Inventor: Danan Fan
  • Publication number: 20080170962
    Abstract: An added element other than zinc is yielded at the grain boundaries of zinc forming a negative electrode zinc can. The added element includes at least one element selected from the group of Pb, Bi, Ca, Mg, Si, Al, and In. The zinc can is formed in such a manner that: melted zinc containing the added element is quenched at a quenching rate of 75 to 100° C./second for casting into a zinc plate; and the thus cast plate is subjected to impact molding at a temperature in the range between 20 and 30° C.
    Type: Application
    Filed: January 15, 2008
    Publication date: July 17, 2008
    Inventors: Harunari Shimamura, Jun Nunome, Fumio Kato
  • Patent number: 7374840
    Abstract: This invention relates to centrifugal atomized zinc alloy powders for alkaline batteries consisting of (a) 0.005-2% by weight of indium, and 0.005-0.2% by weight of either one of Al and Bi, or (b) 0.005-2% by weight of indium, and 0.005-0.2% by weight of Bi, and 0.001-0.5% of either one or both of Al and Ca, or (c) 0.005-2% by weight of either one or both of Bi and Al, and 0-0.5% by weight of Pb, the remainder being zinc. The powder is obtained by centrifugal atomisation in a protective atmosphere, where the oxygen content is less than 4% by volume. The resistance to corrosion in the electrolyte of the battery, especially after partial discharge, is markedly better than when the same alloys are prepared by the traditional production process. The capacity of batteries containing these powders is very good.
    Type: Grant
    Filed: February 3, 2000
    Date of Patent: May 20, 2008
    Assignee: Umicore
    Inventors: Yvan Strauven, Bruno Gay
  • Publication number: 20040166016
    Abstract: A high-purity metal (such as magnesium or zinc) containing Cl, F and S in a respective amount of no more than 0.1 ppm, with the total impurity content being no more than 1 ppm.
    Type: Application
    Filed: October 14, 2003
    Publication date: August 26, 2004
    Applicant: DOWA MINING CO., LTD.
    Inventors: Kishio Tayama, Shunichi Kimura
  • Publication number: 20040115532
    Abstract: A zinc powder for use in a zinc anode, negative electrode or electrochemical cell including zinc metal or zinc alloy particles. The zinc particles have a narrow particle size distribution and a major portion of the zinc particles having a well controlled chemistry and specific shape, such as teardrop, strand teardrop, acicular or spherical thereby providing improved discharge characteristics and reduced gassing.
    Type: Application
    Filed: August 5, 2003
    Publication date: June 17, 2004
    Inventors: Martin Malservisi, Jean-Yves Huot
  • Patent number: 6706220
    Abstract: In the mixture of metal and/or alloy particles and a liquid electrolytic medium, the metal and/or alloy particles are irregularly shaped, have a non-uniform surface and a bulk density of below 33% by weight of the specific density of the compact metal and/or the compact alloy, and the volume of the medium is larger than that which corresponds to the spaces between the particles in a dry packing.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: March 16, 2004
    Assignee: Grillo-Werke AG
    Inventor: Wolfgang Glaeser