Tin Containing Patents (Class 420/530)
-
Patent number: 10478911Abstract: A method for the joining of material including metal and non-metals employing foil positioned between as well as structures produced thereby is provided. Such a method may employ thermal plasma as a means to produce the heat necessary for such joining methods. The method may also entail the treating of surfaces of objects by the positioning of materials, including foil, on a surface and subsequent application of thermal plasma.Type: GrantFiled: October 18, 2016Date of Patent: November 19, 2019Assignee: MHI Health Devices, LLCInventor: Jainagesh Sekhar
-
Patent number: 10081054Abstract: A die-casting process method for die-cast molding of a metal in a semi-solid state, wherein a semi-solid state die-casting machine is used as a processing device and a pulper is used as a device for preparing and delivering a slurry in a semi-solid state; the method comprises the steps: spraying a mold release agent and mold clamping; melting the raw material and keeping the temperature; adding a metal modificator into the molten raw material to prepare the slurry in a semi-solid state; transferring the slurry in a semi-solid state into a mold by the pulper; die-casting, opening the mold and exporting a die-cast; removing the sprue to obtain the final die-cast.Type: GrantFiled: September 17, 2015Date of Patent: September 25, 2018Assignee: Zhuhai Runxingtai Electrical Co., LtdInventors: Huaide Ren, Victor Wang, Gunan Li, Ying Zhang
-
Publication number: 20140334970Abstract: A wear-resistant aluminum alloy having a complex microstructure may include a range of about 19 to 27 wt % of zinc (Zn); a range of about 3 to 5 wt % of tin (Sn); a range of about 0.6 to 2.0 wt % of iron (Fe); and a balance of aluminum (Al).Type: ApplicationFiled: May 6, 2014Publication date: November 13, 2014Applicant: Hyundai Motor CompanyInventor: Hee Sam Kang
-
Publication number: 20140334969Abstract: A wear-resistant alloy having a complex microstructure is provided. from the microstructure includes a range of about 19 to about 27 wt % of zinc (Zn), a range of about 3 to about 5 wt % of tin (Sn), a range of about 7.6 to about 11 wt % of silicon (Si), and a balance of aluminum (Al).Type: ApplicationFiled: May 6, 2014Publication date: November 13, 2014Applicant: HYUNDAI MOTOR COMPANYInventor: Hee Sam Kang
-
Publication number: 20140334971Abstract: A wear-resistant alloy having a complex microstructure is provided. The microstructure includes a range of about 28 to about 38 wt % of zinc (Zn),a range of about 1 to about 3 wt % of tin (Sn), a range of about 6.2 to about 9.4 wt % of silicon (Si), and a balance of aluminum (Al).Type: ApplicationFiled: May 6, 2014Publication date: November 13, 2014Applicant: Hyundai Motor CompanyInventor: Hee Sam Kang
-
Publication number: 20140334972Abstract: A wear-resistant alloy having a complex microstructure, which may include a range of about 28 to 38 wt % of zinc (Zn), a range of about 1 to 3 wt % of tin (Sn), a range of about 0.4 to 1.4 wt of iron (Fe) and a balance of aluminum (Al), is provided.Type: ApplicationFiled: May 7, 2014Publication date: November 13, 2014Applicant: HYUNDAI MOTOR COMPANYInventor: Hee Sam Kang
-
Publication number: 20140334973Abstract: A wear-resistant alloy is provided that has a complex microstructure. from the microstructure includes a range of about 8 to about 17 wt % of zinc (Zn), a range of about 5 to about 8 wt % of tin (Sn), a range of about 1.0 to about 2.0 wt % of iron (Fe), and a balance of aluminum (Al).Type: ApplicationFiled: May 7, 2014Publication date: November 13, 2014Applicant: Hyundai Motor CompanyInventor: Hee Sam Kang
-
Publication number: 20140272459Abstract: Components of semiconductor material processing chambers are disclosed, which may include a substrate and at least one corrosion-resistant coating formed on a surface thereof. The at least one corrosion-resistant coating is a high purity metal coating formed by a cold-spray technique. An anodized layer can be formed on the high purity metal coating. The anodized layer comprises a process-exposed surface of the component. Semiconductor material processing apparatuses including one or more of the components are also disclosed, the components being selected from the group consisting of a chamber liner, an electrostatic chuck, a focus ring, a chamber wall, an edge ring, a plasma confinement ring, a substrate support, a baffle, a gas distribution plate, a gas distribution ring, a gas nozzle, a heating element, a plasma screen, a transport mechanism, a gas supply system, a lift mechanism, a load lock, a door mechanism, a robotic arm and a fastener.Type: ApplicationFiled: March 12, 2013Publication date: September 18, 2014Applicant: LAM RESEARCH CORPORATIONInventors: John Daugherty, Hong Shih, Lin Xu, Anthony Amadio, Robert G. O'Neill, Peter Holland, Sivakami Ramanathan, Tae Won Kim, Duane Outka, John Michael Kerns, Sonia Castillo
-
Publication number: 20140130944Abstract: The present invention relates to an AlMgSi-based aluminum alloy comprising 1.0-1.4 wt % of silicon (Si), 0.70-0.85 wt % of magnesium (Mg), 0.8-1.20 wt % of tin (Sn), 0.01-0.4 wt % of manganese (Mn), 0.001-0.50 wt % of iron (Fe), 0.01-0.10 wt % of copper (Cu), 0.01-0.25 wt % of chromium (Cr), 0.01-0.20 wt % of zinc (Zn), and the balance of unavoidable impurities and aluminum (Al), and to a manufacturing method thereof.Type: ApplicationFiled: November 7, 2013Publication date: May 15, 2014Applicant: HYUNDAI MOBIS CO., LTD.Inventor: Doo Yeon KIM
-
Publication number: 20130333870Abstract: An aluminum alloy powder metal is disclosed. A sintered part made from the aluminum alloy powder has a thermal conductivity comparable to or exceeding parts made from wrought aluminum materials.Type: ApplicationFiled: June 13, 2013Publication date: December 19, 2013Applicant: GKN Sinter Metals, LLCInventors: Donald Paul Bishop, Richard L. Hexemer, JR., Ian W. Donaldson
-
Publication number: 20130209311Abstract: Provided are a metal alloy and more particularly, to an aluminum alloy used for electrical, electronic, and mechanical components, and an aluminum alloy casting manufactured using the aluminum alloy. The aluminum alloy according to an embodiment includes 4 to 13 wt % of silicon (Si), 1 to 5 wt % of copper (Cu), 26 wt % or more and less than 40 wt % of zinc (Zn), and a balance being aluminum (Al) and unavoidable impurities.Type: ApplicationFiled: May 12, 2011Publication date: August 15, 2013Inventors: Seoung-Jin Lee, Hyung-Chul Lee
-
Publication number: 20120275948Abstract: A wiring material which is easy to handle and also exhibits excellent conductivity even in a strong magnetic field of, for example, a magnetic flux density of 1 T or more is provided. A wiring material to be used in the magnetic field of a magnetic flux density of 1 T or more comprises aluminum having a purity of 99.999% by mass or more.Type: ApplicationFiled: April 27, 2012Publication date: November 1, 2012Applicants: SUMITOMO CHEMICAL COMPANY, LIMITED, INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATIONInventors: Takayuki TOMARU, Kenichi SASAKI, Hiroaki HOSHIKAWA, Hiroshi TABUCHI
-
Publication number: 20120273154Abstract: Aluminum alloys are provided that have improved fluidity and elongation, as well as freedom of die soldering. The aluminum alloys are particularly suitable for die-casting of structural components. The aluminum alloy includes silicon at from about 8 weight % to about 11 weight %, manganese at from about 0.8 weight % to about 1.9 weight %, iron at from about 0.1 weight % to about 0.5 weight %, magnesium at from about 0.2 weight % to about 0.7 weight %, boron at from about 0.002 weight % to about 0.15 weight %, strontium at from about 0.006 weight % to about 0.017 weight %, less than about 0.25 weight % copper, less than about 0.35 weight % zinc, less than about 0.25 weight % titanium, and a balance of aluminum. Methods related to the aluminum alloys are also provided.Type: ApplicationFiled: April 3, 2012Publication date: November 1, 2012Inventor: Warren G. Williamson
-
Patent number: 8182742Abstract: An aluminum-based bearing alloy material and a bearing made therefrom is described, the bearing material having a composition comprising in weight %: 5-10 tin; 0.8-1.3 copper; 0.8-1.3 nickel; 1.5-3 silicon; 0.13-0.19 vanadium; 0.8-1.2 manganese; 0.4-0.6 chromium; balance aluminum apart from incidental impurities.Type: GrantFiled: July 5, 2007Date of Patent: May 22, 2012Assignee: Mahle International GmbHInventors: Kenneth Macleod Mcmeekin, Patricia Morton McMeekin, legal representative, Raymond Bridgeman
-
Publication number: 20120027639Abstract: An alloy for use in die casting having improved thermal conductivity and strength includes at least about 86.0 percent aluminum by weight, from about 9.70 to about 10.70 percent silicon, by weight, from about 0.40 to about 0.70 percent iron, by weight, about 0.25 percent copper, by weight, about 0.50 percent manganese, by weight, from about 0.10 to about 0.20 percent titanium, by weight; and from about 0.010 to about 0.025 percent strontium, by weight.Type: ApplicationFiled: July 29, 2010Publication date: February 2, 2012Applicant: GIBBS DIE CASTING CORPORATIONInventor: James M. Evans
-
Publication number: 20120000578Abstract: Aluminum alloys having improved properties are provided. The alloy includes about 0 to 2 wt % rare earth elements, about 0.5 to about 14 wt % silicon, about 0.25 to about 2.0 wt % copper, about 0.1 to about 3.0 wt % nickel, approximately 0.1 to 1.0% iron, about 0.1 to about 2.0 wt % zinc, about 0.1 to about 1.0 wt % magnesium, 0 to about 1.0 wt % silver, about 0.01 to about 0.2 wt % strontium, 0 to about 1.0 wt % scandium, 0 to about 1.0 wt % manganese, 0 to about 0.5 wt % calcium, 0 to about 0.5 wt % germanium, 0 to about 0.5 wt % tin, 0 to about 0.5 wt % cobalt, 0 to about 0.2 wt % titanium, 0 to about 0.1 wt % boron, 0 to about 0.2 wt % zirconium, 0 to 0.5% yttrium, 0 to about 0.3 wt % cadmium, 0 to about 0.3 wt % chromium, 0 to about 0.5 wt % indium, and the balance aluminum. Methods of making cast aluminum parts are also described.Type: ApplicationFiled: June 30, 2010Publication date: January 5, 2012Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.Inventors: Qigui Wang, Wenying Yang, Yucong Wang, Patricia E. Shaw
-
Patent number: 7897065Abstract: A polycrystalline aluminum thin film is made of polycrystals of an alloy of aluminum. The polycrystalline aluminum thin film includes a first additive which is distributed with even concentration over an inside of each crystal grain and an interface of the crystal grain and a second additive which is distributed with higher concentration in the interface of the crystal grain than in the inside of the crystal grain.Type: GrantFiled: June 18, 2010Date of Patent: March 1, 2011Assignee: Pioneer CorporationInventors: Takanobu Higuchi, Yasuo Hosoda
-
Publication number: 20110017055Abstract: Improved 5xxx aluminum alloys and products made therefrom are disclosed. The new 5xxx aluminum alloy products may achieve an improved combination of properties due to, for example, the presence of copper. In one embodiment, the new 5xxx aluminum alloy products are able to achieve an improved combination of properties by solution heat treatment.Type: ApplicationFiled: July 23, 2010Publication date: January 27, 2011Applicant: Alcoa Inc.Inventors: Dirk C. Mooy, Roberto J. Rioja, Ralph R. Sawtell, Francine S. Bovard, Gregory B. Venema, David A. Linde
-
Publication number: 20100224291Abstract: An Al—Si—Mg-based aluminum alloy includes about 1.2 to about 1.4 wt % of Si, about 0.6 to about 0.75 wt % of Mg, about 0.8 to about 1.0 wt % of Sn, and Al and impurities as the balance on the basis of the total weight of the aluminum alloy.Type: ApplicationFiled: January 20, 2010Publication date: September 9, 2010Applicants: HYUNDAI MOBIS CO., LTD., DONGYANG GANGCHUL CO., LTD.Inventors: GYEWON JANG, DAEUP KIM, WOOSIK LEE, SANGWOO PARK, KAEHEE OH
-
Publication number: 20100068090Abstract: Aluminum-zinc-magnesium-scandium alloys containing controlled amounts of alloying additions such as silver and tin are disclosed. The presence of Ag and/or Sn alloying additions improves fabrication characteristics of the alloys, such as the ability to be extruded at high temperatures and very high extrusion rates. The Al—Zn—Mg—Sc alloys may optionally include other alloying additions such as Cu, Mn, Zr, Ti and the like. The alloys possess good properties such as relatively high strength and excellent corrosion resistance. The alloys may be fabricated into various product forms such as extrusions, forgings, plate, sheet and weldments.Type: ApplicationFiled: February 1, 2006Publication date: March 18, 2010Inventor: Timothy Langan
-
Publication number: 20090297392Abstract: An aluminium-based bearing alloy material and a bearing made therefrom is described, the bearing material having a composition comprising in weight %: 5-10 tin; 0.8-1.3 copper; 0.8-1.3 nickel; 1.5-3 silicon; 0.13-0.19 vanadium; 0.8-1.2 manganese; 0.4-0.6 chromium; balance aluminium apart from incidental impurities.Type: ApplicationFiled: July 5, 2007Publication date: December 3, 2009Inventors: Kenneth Macleod McMeekin, Raymond Bridgeman
-
Publication number: 20090252642Abstract: An aluminum alloy sheet for a lithographic printing plate which allows pits to be more uniformly formed by an electrochemical surface-roughening treatment and exhibits more excellent adhesion to a photosensitive film and water retention properties, and a method of producing the same are disclosed. The aluminum alloy sheet includes 0.1 to 1.5% of Mg, more than 0.05% and 0.5% or less of Zn, 0.1 to 0.6% of Fe, 0.03 to 0.15% of Si, 0.0001 to 0.10% of Cu, and 0.0001 to 0.05% of Ti, with the balance being aluminum and impurities, the Mg content and the Zn content satisfying a relationship “4×Zn %?1.4%?Mg %?4×Zn %+0.6%”, and the amount of aluminum powder on the surface of the aluminum alloy sheet being 0.1 to 3.0 mg/m2. It is more effective when precipitates with a diameter (circle equivalent diameter) of 0.1 to 1.0 ?m are dispersed on the surface of the sheet in a number of 10,000 to 100,000 per square millimeter (mm2).Type: ApplicationFiled: August 16, 2006Publication date: October 8, 2009Inventors: Akio Uesugi, Hirokazu Sawada, Hiroshi Ougi, Atsushi Hibino
-
Patent number: 7572521Abstract: The invention relates to an aluminium alloy used as a coating for surfaces subjected to extreme friction stress, with an aluminium matrix incorporating at least a soft phase and a hard phase, as well as a process for producing the coating. The soft phase and/or the hard phase is essentially finely distributed in the aluminium matrix (20) and at least 80%, preferably at least 90%, of the soft phase or soft phase particles (18) have a mean diameter of a maximum of 3 ?m. The aluminium alloy is produced by depositing it on the base (11) by a process of deposition from a gas phase.Type: GrantFiled: August 3, 2005Date of Patent: August 11, 2009Assignee: Miba Gleitlager GmbHInventors: Robert Mergen, Walter Gärtner
-
Publication number: 20080233000Abstract: An aluminum alloy for a tire mold comprises Mg: 3.0-6.0 mass %, Si: 0.2-4.5 mass % and the balance being Al and inevitable impurities.Type: ApplicationFiled: March 5, 2008Publication date: September 25, 2008Applicant: BRIDGESTONE CORPORATIONInventor: Masashi Yano
-
Patent number: 6899844Abstract: A method of producing a fine TiC particle-dispersing type Al—Sn based aluminum alloy includes the steps of: preparing either Al mother-alloy or metallic raw materials of the Al alloy and a green compact, in which TiC is dispersed; melting the Al mother-alloy or the metallic raw materials of the Al alloy to form an Al alloy melt; bringing the Al alloy melt and the green compact, in which TiC is dispersed, into contact with one another, thereby dispersing the TiC in the Al-alloy melt; casting the Al alloy melt, in which TiC is dispersed, into an aluminum-alloy ingot, in which TiC is dispersed; and rolling the aluminum-alloy ingot.Type: GrantFiled: April 4, 2003Date of Patent: May 31, 2005Assignees: Taiho Kogyo Co., Ltd., Toyota Jidosha Kabushiki KaishaInventors: Toru Desaki, Soji Kamiya, Kazuaki Sato, Yukio Okouchi, Tetsuya Nukami
-
Publication number: 20040213694Abstract: The invention relates to an improved cast Al alloy designed to provide an accelerated response to heat treatment; specifically, the alloy's response to thermal growth during aging is accelerated, leading to a dimensionally more stable casting. This improvement is achieved by the addition of trace amounts of Sn, In, Ge or Cd to an Al—Si—Cu cast alloy. The improved alloy has particular application for cast Al engine blocks and cylinder heads.Type: ApplicationFiled: February 27, 2004Publication date: October 28, 2004Applicant: FORD GLOBAL TECHNOLOGIES, LLCInventors: Christopher Wolverton, Jacob Zindel, Larry Godlewski
-
Patent number: 6780375Abstract: An aluminum alloy with good cuttability, containing 3 to 6 mass % of Cu, 0.2 to 1.2 mass % of Sn, 0.3 to 1.5 mass % of Bi, and 0.5 to 1.0 mass % of Zn, with the balance being aluminum and inevitable impurities. A method for producing a forged article, in which the aluminum alloy is utilized. A forged article obtained by the method.Type: GrantFiled: April 21, 2003Date of Patent: August 24, 2004Assignee: The Furukawa Electric Co., Ltd.Inventors: Yoji Hirano, Ryo Shoji
-
Patent number: 6743396Abstract: The present invention relates to a method for producing AlMn strips or sheets for producing components by soldering, wherein a precursor material is produced from a melt which contains (in weight-percent) Si: 0.3-1.2%, Fe: ≦0.5%, Cu: ≦0.1%, Mn: 1.0-1.8%, Mg: ≦0.3%, Cr+Zr: 0.05-0.4%, Zn: ≦0.1% , Ti: ≦0.1% , Sn: ≦0.15%, and unavoidable companion elements, whose individual amounts are at most 0.05% and whose sum is at most 0.15%, as well as aluminum as the remainder, wherein the precursor material is preheated at a preheating temperature of less than 520° C. over a dwell time of at most 12 hours, wherein the preheated precursor material is hot rolled into a hot strip using a final hot rolling temperature of at least 250° C., wherein the hot strip is cold rolled into a cold strip without intermediate annealing.Type: GrantFiled: April 2, 2002Date of Patent: June 1, 2004Assignee: Hydro Aluminium Deutschland GmbHInventors: Pascal Wagner, Wolf-Dieter Finkelnburg, Dietrich Wieser, Manfred Mrotzek
-
Patent number: 6723184Abstract: An aluminum alloy which is able to use not only expensive TiC particles, but also inexpensive dispersed reinforcing particles and which is further raised in high temperature strength without requiring an increase in dispersed reinforcing particles, comprised of Sn: 2 to 20 wt %, Cu: 0.1 to 3 wt %, Ca: 0.02 to 1.5 wt %, at least one element selected from the group comprised of Mg, Cr, Zr, Mn, V, Ni, and Fe: not more than 2 wt % in total, at least one type of reinforcing particle selected from the group comprised of TiC particles, ZrC particles, and Al2O3 particles: 0.1 to 5 vol % in total, and the balance of Al and unavoidable impurities; a slide bearing comprised of that aluminum alloy; and a slide bearing comprised of a bearing body made of that aluminum alloy provided on its surface with a resin coating layer comprised of a heat-curing resin and a solid lubricant.Type: GrantFiled: February 25, 2003Date of Patent: April 20, 2004Assignee: Taiho Kogyo Co., Ltd.Inventors: Kazuaki Sato, Yoshio Fuwa, Takashi Tomikawa, Shinichiro Sakamoto
-
Patent number: 6706126Abstract: Aluminum alloy, which consists of from 2 to 20% by weight of Sn, from 3% by weight or less of Cu, and from 0.3 to 5% by volume of TiC particles, the balance being Al and unavoidable impurities, exhibits improved fatigue resistance at a high temperature region, while maintaining compatibility at low temperature notwithstanding improved fatigue resistance.Type: GrantFiled: April 25, 2001Date of Patent: March 16, 2004Assignees: Taiho Kogyo Co., Ltd., Toyota Jidosha Kabushiki KaishaInventors: Toru Desaki, Soji Kamiya, Kazuaki Sato, Yukio Okouchi, Tetsuya Nukami
-
Publication number: 20040022663Abstract: A method of producing a fine TiC particle-dispersing type Al—Sn based aluminum alloy includes the steps of: preparing either Al mother-alloy or metallic raw materials of the Al alloy and a green compact, in which TiC is dispersed; melting the Al mother-alloy or the metallic raw materials of the Al alloy to form an Al alloy melt; bringing the Al alloy melt and the green compact, in which TiC is dispersed, into contact with one another, thereby dispersing the TiC in the Al-alloy melt; casting the Al alloy melt, in which TiC is dispersed, into an aluminum-alloy ingot, in which TiC is dispersed; and rolling the aluminum-alloy ingot.Type: ApplicationFiled: April 4, 2003Publication date: February 5, 2004Applicants: Taiho Kogyo Co., Ltd., Toyota Jidosha Kabushiki KaishaInventors: Toru Desaki, Soji Kamiya, Kazuaki Sato, Yukio Okouchi, Tetsuya Nukami
-
Patent number: 6676898Abstract: A bearing and a bearing alloy composition are described, the bearing alloy comprising in weight %: tin 5-10; copper 0.7-1.3; nickel 0.7-1.3; silicon 1.5-3.5; vanadium 0.1-0.3; manganese 0.1-0.3; and the balance being aluminium apart from unavoidable impurities.Type: GrantFiled: December 11, 2000Date of Patent: January 13, 2004Assignee: Dana CorporationInventors: Kenneth Macleod McMeekin, Ian David Massey
-
Publication number: 20030202899Abstract: An aluminum alloy with good cuttability, containing 3 to 6 mass % of Cu, 0.2 to 1.2 mass % of Sn, 0.3 to 1.5 mass % of Bi, and 0.5 to 1.0 mass % of Zn, with the balance being aluminum and inevitable impurities. A method for producing a forged article, in which the aluminum alloy is utilized. A forged article obtained by the method.Type: ApplicationFiled: April 21, 2003Publication date: October 30, 2003Applicant: The Furukawa Electric Co., Ltd.Inventors: Yoji Hirano, Ryo Shoji
-
Publication number: 20030170470Abstract: An aluminum alloy which is able to use not only expensive TiC particles, but also inexpensive dispersed reinforcing particles and which is further raised in high temperature strength without requiring an increase in dispersed reinforcing particles, comprised of Sn: 2 to 20 wt %, Cu: 0.1 to 3 wt %, Ca: 0.02 to 1.5 wt %, at least one element selected from the group comprised of Mg, Cr, Zr, Mn, v, Ni, and Fe: not more than 2 wt % in total, at least one type of reinforcing particle selected from the group comprised of TiC particles, ZrC particles, and Al2O3 particles: 0.1 to 5 vol % in total, and the balance of Al and unavoidable impurities; a slide bearing comprised of that aluminum alloy; and a slide bearing comprised of a bearing body made of that aluminum alloy provided on its surface with a resin coating layer comprised of a heat-curing resin and a solid lubricant.Type: ApplicationFiled: February 25, 2003Publication date: September 11, 2003Applicant: TAIHO KOGYO CO., TLD.Inventors: Kazuaki Sato, Yoshio Fuwa, Takashi Tomikawa, Shinichiro Sakamoto
-
Patent number: 6596412Abstract: The invention relates to an aluminum alloy, to a plain bearing and to a method of manufacturing a layer, particularly for a plain bearing, to which there is added as a main alloy component tin (14) and a hard material (15) from at least one first element group containing iron, manganese, nickel, chromium, cobalt, copper or platinum, magnesium, or antimony. Added to the aluminum alloy from the first elementary group is a quantity of elements for forming inter-metallic phases, e.g. aluminide formation, in the boundary areas of the matrix, and further at least one further element from a second element group containing manganese, antimony, chromium, tungsten, niobium, vanadium, cobalt, silver, molybdenum of zirconium, for substituting a portion at least of a hard material of the first element group in order to form approximately spherical or cuboid aluminides (7).Type: GrantFiled: June 15, 1998Date of Patent: July 22, 2003Assignee: Miba Gleitlager AktiengesellschaftInventor: Robert Mergen
-
Patent number: 6517954Abstract: The invention relates to an aluminium alloy, in particular for a layer of a friction bearing, for example, which, apart from aluminium and smelt-related impurities, additionally contains soft-phase formers, e.g. Sn, Pb, Bi, Sb or similar. The alloy contains added quantities of at least one element from the group of elements consisting of Sc, Y, Hf, Nb, Ta, La, lanthanides and actinides in a maximum of 10% by weight, preferably 4% by weight, in particular between 0.015% by weight and 3.25% by weight, relative to 100% by weight of alloy, the remainder being aluminium with smelt-related impurities.Type: GrantFiled: December 8, 2000Date of Patent: February 11, 2003Assignee: Miba Gleitlager AktiengesellschaftInventors: Robert Mergen, Markus Manner
-
Publication number: 20020192105Abstract: Aluminum alloy, which consists of from 2 to 20% by weight of Sn, from 3% by weight or less of Cu, and from 0.3 to 5% by volume of TiC particles, the balance being Al and unavoidable impurities, exhibits improved fatigue resistance at a high temperature region, while maintaining compatibility at low temperature notwithstanding improved fatigue resistance.Type: ApplicationFiled: April 25, 2001Publication date: December 19, 2002Applicant: TAIHO KOGYO CO., LTD.Inventors: Toru Desaki, Soji Kamiya, Kazuaki Sato, Yukio Okouchi, Tetsuya Nukami
-
Patent number: 6409966Abstract: One free machining aluminum alloy includes bismuth as a free machining elemental constituent that functions as a discontinuity in the aluminum alloy matrix rather than a low melting point compound. Using bismuth in weight percents of the total composition ranging between 0.1% and 3.0% improves both machinability and mechanical properties. The bismuth can act as a substitute for another free machining constituent in a free machining aluminum alloy or can be added to an aluminum alloy to improve its machinability. Another free machining aluminum alloy has bismuth and tin as free machining constituents for improved machining. When using bismuth and tin, the bismuth ranges between 0.1 and 3.0% by weight and the tin ranges between 0.1 and 1.5% by weight.Type: GrantFiled: May 23, 2000Date of Patent: June 25, 2002Assignee: Reynolds Metals CompanyInventor: Subhasish Sircar
-
Patent number: 6379819Abstract: The invention relates to a sliding bearing composite material with a hard metal support layer and a metallic sliding coating which is roll-bonded onto said support layer. The inventive sliding bearing composite is made of an aluminum alloy with tin comprising 10 to 20 percent by mass and with additions of copper and nickel. The sliding layer is in direct contact with the sliding mate. The sliding bearing composite material is thus improved with respect to the loading capacity and plasticity in that the aluminum alloy is comprised of tin, copper, nickel and remaining aluminum, the copper and nickel each have a percentage by mass of 0.2 to 2, and the ratio of percentage by mass of copper to the percentage by mass of nickel is between 0.6 and 1.5.Type: GrantFiled: July 17, 2000Date of Patent: April 30, 2002Assignee: KS Gleitlager GmbHInventors: Thomas Steffens, Werner Schubert
-
Publication number: 20020037424Abstract: The invention relates to a sliding bearing composite material with a hard metal support layer and a metallic sliding coating which is roll-bonded onto said support layer. The inventive sliding bearing composite is made of an aluminum alloy with tin comprising 10 to 20 percent by mass and with additions of copper and nickel. The sliding layer is in direct contact with the sliding mate. The sliding bearing composite material is thus improved with respect to the loading capacity and plasticity in that the aluminum alloy is comprised of tin, copper, nickel and remaining aluminum, the copper and nickel each have a percentage by mass of 0.2 to 2, and the ratio of percentage by mass of copper to the percentage by mass of nickel is between 0.6 and 1.5.Type: ApplicationFiled: July 17, 2000Publication date: March 28, 2002Inventors: THOMAS STEFFENS, WERNER SCHUBERT
-
Patent number: 6335106Abstract: The invention relates to an aluminium-based slide bearing material, comprising an aluminium alloy with 10-25% wt. tin, as well as copper, nikel and manganese additions. The invention seeks to provide a material with improved load-bearing capacity and formability. To this end, copper, nickel and manganese are each present at a portion of 0.2 to 2% wt., and 0.2 to 2% wt. silicon is added. Furthermore, the ratio of the percentage by weight of copper to the percentage by weight of nickel, and the ratio of the percentage by weight of manganese to the percentage by weight of silicon is between 0.6 and 1.5.Type: GrantFiled: January 14, 2000Date of Patent: January 1, 2002Assignee: KS Gleitlager GmbHInventors: Thomas Steffens, Werner Schubert
-
Publication number: 20010020500Abstract: A free-cutting aluminum alloy without lead as an alloy element, containing: (a) as alloy elements: 0.5 to 1.0 wt. % Mn; 0.4 to 1.8 wt. % Mg; 3.3 to 4.6 wt. % Cu; 0.4 to 1.9 wt. % Sn; 0 to 0.1 wt. % Cr; 0 to 0.2 wt. % Ti; (b) as impurities: up to 0.8 wt. % Si; up to 0.7 wt. % Fe; up to 0.8 wt. % Zn; up to 0.1 wt. % Pb; up to 0.1 wt. % Bi; up to 0.3 wt. % total of other impurities; and (c) the balance being substantially aluminum. The process includes the steps of semicontinuously casting the above alloy composition followed by homogenization annealing, cooling, heating to a working temperature for extrusion, extruding at a maximum temperature of 380° C., followed by press-quenching and aging. The aging may be a natural aging or an artificial aging. A cold working step and/or a tension straightening step also may be conducted after the press-quenching step. The extruding step includes indirectly extruding.Type: ApplicationFiled: May 1, 2001Publication date: September 13, 2001Inventors: Anton Smolej, Vukasin Dragojevic, Edvard Slacek, Tomaz Smolar
-
Patent number: 6248188Abstract: A free-cutting aluminum alloy without lead as an alloy element, containing: (a) as alloy elements: 0.5 to 1.0 wt. % Mn; 0.4 to 1.8 wt. % Mg; 3.3 to 4.6 wt. % Cu; 0.4 to 1.9 wt. % Sn; 0 to 0.1 wt. % Cr; 0 to 0.2 wt. % Ti; (b) as impurities: up to 0.8 wt. % Si; up to 0.7 wt. % Fe; up to 0.8 wt. % Zn; up to 0.1 wt. % Pb; up to 0.1 wt. % Bi; up to 0.3 wt. % total of other impurities; and (c) the balance being substantially aluminum. The process includes the steps of semicontinuously casting the above alloy composition followed by homogenization annealing, cooling, heating to a working temperature for extrusion, extruding at a maximum temperature of 380° C., followed by press-quenching and aging. The aging may be a natural aging or an artificial aging. A cold working step and/or a tension straightening step also may be conducted after the press-quenching step. The extruding step includes indirectly extruding.Type: GrantFiled: June 1, 1999Date of Patent: June 19, 2001Assignee: Impol Aluminum CorporationInventors: Anton Smolej, Vuka{haeck over (s)}in Dragojevi{haeck over (c)}, Edvard Sla{haeck over (c)}ek, Toma{haeck over (z)} Smolar
-
Patent number: 6113850Abstract: An A-rated, aluminum alloy suitable for machining, said alloy consisting essentially of: about 4-5.75 wt. % copper, about 0.2-0.9 wt. % bismuth, about 0.12-1.0 wt. % tin, the ratio of bismuth to tin ranging from about 0.8:1 to 5:1, up to about 0.7 wt. % iron, up to about 0.4 wt. % silicon, up to about 0.3 wt. % zinc, the balance aluminum, incidental elements and impurities. On a preferred basis, this alloy contains about 4.4-5.0 wt. % copper, about 0.4-0.75 wt. % bismuth, about 0.2-0.5 wt. % tin, the ratio of bismuth to tin ranging from about 1:1 to 3:1, about 0.2 wt. % or less iron and about 0.2 wt. % or less silicon. The alloy is substantially lead-free, cadmium-free and thallium-free. There is further disclosed an improved method for making screw machine stock or wire, rod and bar product from this alloy by casting, preheating, extruding, solution heat treating, cold finishing and aging the same.Type: GrantFiled: August 9, 1994Date of Patent: September 5, 2000Assignee: Aluminum Company of AmericaInventors: Charles W. Bartges, Gerald D. Scott, Thomas J. Klemp, M. Elise Hyland, James A. Brock, Colleen Spillard
-
Patent number: 6065534Abstract: An aluminum alloy article consisting essentially of controlled amounts of iron, silicon, copper, manganese, magnesium, titanium, zinc, zirconium and free machining elements with the balance being aluminum and incidental impurities is adapted for use as a connector block in a heat exchanger assembly. The connector block has a connector block body with at least one machined portion therein and is configured to be brazed to a portion of the heat exchanger, particularly the heat, exchanger header. The aluminum alloy combines the properties of machinability, corrosion resistance, strength and brazeability. A connector block made from the aluminum alloy can be machined to the right configuration and can be brazed to the heat exchanger header to form a high quality brazed joint. In addition, the connector block can withstand the corrosive environment associated with the heat exchanger and has the necessary mechanical properties to interface with other heat exchanger components.Type: GrantFiled: May 19, 1998Date of Patent: May 23, 2000Assignee: Reynolds Metals CompanyInventor: Subhasish Sircar
-
Patent number: 5925315Abstract: An antifrictional aluminum alloy and a method for making an aluminum alloy without lead are provided. The alloy has improved tribological characteristics and a base composition, in weight percent as follows:Silicon: 3.0-6.0Copper: 2.0-5.0Zinc: 0.5-5.0Magnesium: 0.25-0.5Nickel: 0.2-0.6Tin: 0.5-5.0Bismuth: 0.1-1.0Iron: up to 0.7Aluminum: essentially the balance.Type: GrantFiled: July 9, 1997Date of Patent: July 20, 1999Assignee: Caterpillar Inc.Inventor: Anna N. Bourkhina
-
Patent number: 5916385Abstract: An essentially lead-free aluminum alloy is provided for extruded screw machine stock. The alloy consists essentially of from about 4.5% to about 6% copper, a maximum of about 0.4% silicon, a maximum of about 0.7% iron, not more than about 0.3% zinc, from about 0.1% to about 1% bismuth, from about 0.1% to about 0.5% tin, balance aluminum and unavoidable impurities. The screw machine stock is prepared by extruding a homogenized billet to the desired shape, then the shape is subjected to a thermomechanical treatment involving at least one heat-treatment and cold working.Type: GrantFiled: May 7, 1998Date of Patent: June 29, 1999Assignee: Kaiser Aluminum & Chemical CorporationInventors: Norman Leroy Coats, II, Larry Eugene Farrar, Jr.
-
Patent number: 5837388Abstract: The present invention relates to an Al alloy solder material comprising a composition containing Si in an amount of more than 7.0 to 12.0% or less by weight, Cu in an amount of more than 0.4 to 8.0% or less by weight, Zn in an amount of more than 0.5 to 6.0% or less by weight, Mn in an amount of more than 0.05 to 1.2% or less by weight and Fe in an amount of more than 0.05 to 0.5% or less by weight, or at need, further one or both of In and Sn respectively in an amount of 0.3% or less by weight, with the remainder being Al and inevitable impurities. A brazing sheet clad with the solder material and used for various members of the heat exchanger enables satisfactory brazing at a temperature as low as 570.degree. to 580.degree. C. and is excellent in corrosion resistance. Since the brazing sheet is brazed at a low temperature, a high-strength material having a low melting point is used for a core material of a fin, a tube or the like.Type: GrantFiled: August 5, 1996Date of Patent: November 17, 1998Assignee: The Furukawa Electric Co., Ltd.Inventors: Takeyoshi Doko, Koji Okada
-
Patent number: 5803994Abstract: An essentially lead-free aluminum alloy is provided for extruded screw machine stock. The alloy consists essentially of from about 4.5% to about 6% copper, a maximum of about 0.4% silicon, a maximum of about 0.7% iron, not more than about 0.3% zinc, from about 0.1% to about 1% bismuth, from about 0.2% to about 0.5% tin, balance aluminum and unavoidable impurities. The screw machine stock is prepared by extruding a homogenized billet to the desired shape, then the shape is subjected to a thermomechanical treatment involving at least one heat-treatment and cold working.Type: GrantFiled: March 19, 1997Date of Patent: September 8, 1998Assignee: Kaiser Aluminum & Chemical CorporationInventors: Norman Leroy Coats, II, Larry Eugene Farrar, Jr.
-
Patent number: 5776269Abstract: A process for making an essentially lead-free screw machine stock alloy, comprising the steps of providing a cast aluminum ingot having a composition consisting essentially of about 0.55 to 0.70 wt. % silicon, about 0.15 to 0.45 wt. % iron, about 0.30 to 0.40 wt. % copper, about 0.8 to 0.15 wt. % manganese, about 0.80 to 1.10 wt. % magnesium, about 0.08 to 0.14 wt. % chromium, nor more than about 0.25 wt. % zinc, about 0.007 to 0.07 wt. % titanium, about 0.20 to 0.8 wt. % bismuth, about 0.15 to 0.25 wt. % tin, balance aluminum and unavoidable impurities; homogenizing the alloy at a temperature ranging from about 900.degree. to 1060.degree. F. for a time period of at least 1 hour; cooling to room temperature; cutting the ingot into billets; heating and extruding the billets into a desired shape; and thermomechanically treating the extruded alloy shape.Type: GrantFiled: August 24, 1995Date of Patent: July 7, 1998Assignee: Kaiser Aluminum & Chemical CorporationInventors: Larry E. Farrar, Jr., Norman LeRoy Coats, II