Titanium, Zirconium, Hafnium, Vanadium, Niobium, Or Tantalum Containing Patents (Class 420/543)
  • Patent number: 6531004
    Abstract: Weldable, high-magnesium-content aluminum-magnesium alloy consisting of at least 5-6% w/w magnesium (Mg), 0.05-0.15% w/w zirconium (Zr), 0.05-0.12% w/w manganese (Mn), 0.01-0.2% w/w titanium (Ti), 0.05-0.5% w/w of one or more elements from the scandium group and/or terbium (Tb), wherein at least scandium (Sc) is included, 0.1-0.2% w/w copper (Cu) and/or 0.1-0.4% w/w zinc (Zn), along with aluminum (Al), and unavoidable contamination does not exceed 0.1% w/w silicon (Si).
    Type: Grant
    Filed: October 18, 2000
    Date of Patent: March 11, 2003
    Assignee: EADS Deutschland GmbH
    Inventors: Blanka Lenczowski, Viktor Yelagin, Rainer Rauh, Valeri Zakharov, Yuri Filatov
  • Patent number: 6517954
    Abstract: The invention relates to an aluminium alloy, in particular for a layer of a friction bearing, for example, which, apart from aluminium and smelt-related impurities, additionally contains soft-phase formers, e.g. Sn, Pb, Bi, Sb or similar. The alloy contains added quantities of at least one element from the group of elements consisting of Sc, Y, Hf, Nb, Ta, La, lanthanides and actinides in a maximum of 10% by weight, preferably 4% by weight, in particular between 0.015% by weight and 3.25% by weight, relative to 100% by weight of alloy, the remainder being aluminium with smelt-related impurities.
    Type: Grant
    Filed: December 8, 2000
    Date of Patent: February 11, 2003
    Assignee: Miba Gleitlager Aktiengesellschaft
    Inventors: Robert Mergen, Markus Manner
  • Patent number: 6485583
    Abstract: A dispersion strengthened mechanically alloyed aluminium based alloy is provided which is prepared by mechanical alloying and is characterized by improved isotropic strength, fracture toughness and corrosion resistance. The alloy system contains by weight 1.2 to 1.6% lithium, 4.0 to 6.0% magnesium, 0.15 to 0.7% carbon, up to 1% oxygen and up to 2.0% in total of one or more grain controlling elements to provide microstructural optimization and control, the balance aluminium save for incidental impurities.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: November 26, 2002
    Assignee: Qinetiq Limited
    Inventors: Wendy J Vine, Andrew D Tarrant
  • Patent number: 6485682
    Abstract: A hardened aluminum alloy, for use in the manufacture of printed circuit boards, having elevated levels of manganese and magnesium and produced as a sheet by a cold rolling process to a specified thickness.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: November 26, 2002
    Inventor: Dieter Backhaus
  • Publication number: 20020155022
    Abstract: A casting alloy of the AlMgSi type comprises 1 Magnesium 3.0 to 7.0 wt. % Silicon 1.7 to 3.0 wt. % Manganese 0.2 to 0.48 wt. % Iron 0.15 to 0.35 wt. % Titanium as desired max. 0.2 wt. % Ni 0.1 to 0.
    Type: Application
    Filed: February 8, 2002
    Publication date: October 24, 2002
    Inventors: Reinhard Winkler, Gunter Hollrigl, Jurgen Wuest, Klaus Wahrisch
  • Patent number: 6461566
    Abstract: An aluminum-based alloy having the following composition, % w/w: Lithium 1.5-1.9 Magnesium 4.1-6.0 Zinc 0.1-1.5 Zirconium 0.05-0.3  Manganese 0.01-0.8  Hydrogen 0.9 × 10−5-4.5 × 10−5 and at least one element selected from the following group: Beryllium 0.001-0.2  Yttrium 0.01-0.5 Scandium 0.01-0.3 Aluminum Remainder The process of heat treating the alloy includes the steps of quenching the alloy from a temperature of 400-500° C. in cold water or air, stretched-adjusting it to increase ductility up to 0 2 %, and a three stage heat treatment, in which in stage 1 the alloy is heated at 80-90° C. over the course of 3-12 h, in stage 2 it is heated at 110-185° C. over the course of 10-58 h, and in stage 3 it is heated at 90-110° C. for 14 h, or at a cooling rate of 2-8° C. C/h.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: October 8, 2002
    Assignees: Eads Deutschland GmbH, Viam (All Russian Institute of Aviation Materials)
    Inventors: Thomas Pfannenmüller, Erwin Loechelt, Peter-Jürgen Winkler, Sergej Mikhajlovich Mozharovskij, Dmitrij Sergejevich Galkin, Elena Glebovna Tolchennikova, Vladimir Mikhajlovich Chertovikov, Valentin Georgijevich Davydov, Evgenij Nikolajevich Kablov, Larisa Bagratovna Khokhlatova, Nikolay Ivanovich Kolobnev, Iosif Naumovich Fridlyander
  • Patent number: 6447982
    Abstract: A litho strip for use as an offset printing plate is described which has a composition of 0.05-0.25% Si, 0.30-0.40% Fe, 0.10-0.30% Mg, max. 0.05% Mn, and max. 0.04% Cu. The strip is produced from a continuous cast ingot of the above composition which is hot rolled to a thickness of up to 2-7 mm. The residual resistance ratio of the hot rolled strip is RR=10-20. The cold rolling is carried out with or without intermediate annealing, wherein the degree of rolling reduction after intermediate annealing is >60%. The further processing up to the EC roughening takes place with the microstructure adjusted in the rolling process at <100° C. The litho strip is characterized by a high thermal stability, a good roughening behavior in the EC processes, and a high reverse bending fatigue strength perpendicular to the rolling direction.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: September 10, 2002
    Assignee: VAW Aluminium AG
    Inventors: Wolfgang von Asten, Bernhard Kernig, Barbara Grzemba
  • Patent number: 6440581
    Abstract: An improved performance welding bar placed in a welding machine for the welding of thermoplastic material of low and high density, suitable for both the lower welding bar (11) and the upper welding bar (12) among which bars (11, 12) the material is moved along by at least one pair of lower (14) and upper (15) supply rollers, placed on top of each other, the two welding bars (11, 12) moved backwards and forwards between themselves by a control group (20), wherein each welding bar (11, 12) is made from a magnesium-zinc aluminum alloy, within which the percentage of zinc to be found is between 5.0-6.5% and the percentage of magnesium to be found is between 2.0-3.0%. According to the invention the use of a magnesium zinc aluminum alloy is provided for, for a welding bar in a welding machine of thermoplastic material, wherein the bar is continually activated by a forward and/or backward movement with regards to a second similar welding bar.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: August 27, 2002
    Assignee: Elba S.p.A.
    Inventor: Francesco Dragoni
  • Patent number: 6416884
    Abstract: The disclosure relates to an aluminium-base weld filler alloy having the following composition in weight percent: Mg 5.0-6.5, Mn 0.4-1.2, Zn 0.4-<2.0, Zr 0.05-0.3, Cr 0.3 max., Ti 0.2 max., Fe 0.5 max., Si 0.5 max., Cu 0.25 max., balance Al and inevitable impurities. Further, the disclosure relates to a method of manufacturing an aluminium-base weld wire, and to a method of constructing welded constructions.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: July 9, 2002
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Alfred Johann Peter Haszler, Desikan Sampath
  • Patent number: 6402860
    Abstract: The invention offers an aluminum alloy that not only has high hardness accompanied by balanced ductility but also has high toughness and superior processability. The invention also offers a method for manufacturing an aluminum-alloy member that not only has high hardness accompanied by balanced ductility but also has high toughness and superior processability. The aluminum alloy comprises (1) not less than 0.1 wt. % and not more than 8 wt. % Constituent A comprising one or more kinds of elements selected from the group consisting of titanium, vanadium, hafnium, and zirconium, (2) not less than 0.1 wt. % and not more than 20 wt. % Constituent B comprising one or more kinds of elements selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, mischmetal, calcium, strontium, and barium, and (3) not less than 0.1 wt. % and not more than 20 wt. % Constituent C comprising one or more kinds of elements selected from the group consisting of magnesium and lithium.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: June 11, 2002
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Manabu Hashikura, Hisao Hattori, Toshihiko Kaji, Yoshinobu Takeda
  • Patent number: 6383314
    Abstract: Aluminum sheets and methods for manufacturing aluminum sheets are provided. The present invention involves control of processing conditions in order to achieve a fine grain size (i.e. ASTM rating of 8.5 or greater) in the material prior to a final cold working operation. Also included within the scope of the present invention are products having a fine grain size which have strength levels above what can be obtained in 5××× alloys.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: May 7, 2002
    Assignee: Pechiney Rolled Products LLC
    Inventors: Brady Dunbar, Kenneth Paul Smith
  • Publication number: 20020012606
    Abstract: The invention offers an aluminum alloy that not only has high hardness accompanied by balanced ductility but also has high toughness and superior processability. The invention also offers a method for manufacturing an aluminum-alloy member that not only has high hardness accompanied by balanced ductility but also has high toughness and superior processability. The aluminum alloy comprises (1) not less than 0.1 wt. % and not more than 8 wt. % Constituent A comprising one or more kinds of elements selected from the group consisting of titanium, vanadium, hafnium, and zirconium, (2) not less than 0.1 wt. % and not more than 20 wt. % Constituent B comprising one or more kinds of elements selected from the group consisting of lanthanum, cerium, praseodymium, neodymium, mischmetal, calcium, strontium, and barium, and (3) not less than 0.1 wt. % and not more than 20 wt. % Constituent C comprising one or more kinds of elements selected from the group consisting of magnesium and lithium.
    Type: Application
    Filed: October 28, 1999
    Publication date: January 31, 2002
    Inventors: MANABU HASHIKURA, HISAO HATTORI, TOSHIHIKO KAJI, YOSHINOBU TAKEDA
  • Patent number: 6342112
    Abstract: An Al—Mg based alloy sheet product in which the crystallographic texture exhibits a ratio of the volume fraction of grains in the S orientation {123}<634> to the volume fraction of grains in the CUBE orientation {100}<001> (S/Cube) being 1 or more, and is comprised of grains with a volume fraction of about 10% or less in the GOSS orientation {110}<001>, wherein the grain size is in a range of about 20 to 100 &mgr;m demonstrates good formability.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: January 29, 2002
    Assignees: Alcoa Inc., Kobe Steel Ltd.
    Inventors: Frederic Barlat, John C. Brem, Shigeo Hattori, Yasuhiro Havashida, Daniel J. Lege, Kwansoo Chung, Yasushi Maeda, Kuniaki Matsui, Shawn J. Murtha, Masahiro Yanagawa, Narikazu Hashimoto
  • Patent number: 6325869
    Abstract: A substantially unrecrystallized extrusion comprising about 3.6 to about 4.2 wt. % copper, about 1.0 to about 1.6 wt. % magnesium, about 0.3 to about 0.8 wt. % manganese, about 0.05 to about 0.25% zirconium, the balance substantially aluminum, incidental elements and impurities. The extrusion has a longitudinal yield strength of at least about 50 ksi and a longitudinal tensile ultimate strength of at least about 70 ksi. On a preferred basis, the extrusions of this invention include very low levels of both iron and silicon, typically on the order of less than 0.1 wt. % each, and more preferably about 0.05 wt. % or less iron and about 0.03 wt. % or less silicon.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: December 4, 2001
    Assignee: Alcoa Inc.
    Inventors: John Liu, Gary H. Bray, David A. Lukasak, Robert C. Pahl
  • Patent number: 6315948
    Abstract: A weldable, high magnesium-content aluminum-magnesium alloy consisting essentially of at lest 5 to 6% by weight magnesium (Mg), 0.05 to 0.15% by weight zirconium (Zr), 0.7 to 1% by weight manganese (Mn), 0.01 to 0.2% by weight titanium (Ti), 0.005 to 0.5% by weight cerium (Ce), 0.05 to 0.5% by weight of one or more elements selected from the scandium group of the Periodic Table and/or terbium (Tb), wherein at least scandium (Sc) is included with or without terbium (Tb) and with or without 0.05 to 0.45% by weight of an element from the lanthanide series, the balance being aluminum (Al), and unavoidable contaminants not exceeding 0.2% by weight silicon (Si).
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: November 13, 2001
    Assignee: Daimler Chrysler AG
    Inventors: Blanka Lenczowski, Viktor Yelagin, Rainer Rauh, Valeri Zakharov, Yuri Filatov
  • Patent number: 6306342
    Abstract: An aluminum casting alloy contains 0.5 to 2.0 w. % magnesium max. 0.15 w. % silicon 0.5 to 2.0 w. % manganese max. 0.7 w. % iron max. 0.1 w. % copper max. 0.1 w. % zinc max. 0.2 w. % titanium 0.1 to 0.6 w. % cobalt max. 0.8 w. % cerium 0.5 to 0.5 w. % zirconium max. 1.1 w. % chromium max. 1.1 w. % nickel 0.005 to 0.15 w. % vanadium max. 0.5 w. % hafnium and aluminum as the remainder with further contaminants individually at 0.05 w. %, total max. 0.02 w. %. The aluminum casting alloy is particularly suitable for diecasting and thixocasting or thixoforging. One particular application is diecasting for components with high requirements for mechanical properties as these are already present in the casting state and thus no further heat treatment is required.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: October 23, 2001
    Assignee: Aluminium Rheinfelden GmbH
    Inventors: Hubert Koch, Horst Schramm, Peter Krug
  • Patent number: 6277217
    Abstract: An aluminum alloy comprises magnesium in a range of 3.0% by weight≦Mg≦5.5% by weight, manganese in a range of 1.5% by weight≦Mn≦2.0% by weight, nickel in a range of 0.5% by weight≦Ni≦0.9% by weight, and the balance of aluminum including inevitable impurities. Particularly, the Ni content is set in the above range in order to achieve an increase in toughness of a die-cast product. Thus, it is possible to suppress the amount of an intermetallic compound AlMnNi produced and to finely divide the intermetallic compound AlMnNi.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: August 21, 2001
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Sadafumi Yoshino, Seiichi Koike, Eitarou Koya, Masahiko Nakagawa
  • Patent number: 6258318
    Abstract: A weldable, corrosion resistant aluminum-magnesium alloy consisting essentially of 3 to 5% by weight magnesium (Mg), 0.05 to 0.15% by weight zirconium (Zr), 0.05 to 0.12% by weight manganese (Mn), 0.01 to 0.2% by weight titanium (Ti), 0.05 to 0.5% by weight of one or more elements selected from the scandium group of the Periodic Table and/or terbium (Tb), wherein at least 0.15% by weight scandium (Sc) is included with or without terbium (Tb) and with or without 0.05 to 0.35% by weight of one or more elements from the lanthanide series, the balance being aluminum (Al), and unavoidable contaminants not exceeding 0.2% by weight silicon (Si).
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: July 10, 2001
    Assignee: EADS Deutschland GmbH
    Inventors: Blanka Lenczowski, Rainer Rauh, Dietrich Wieser, Gerhard Tempus
  • Patent number: 6231995
    Abstract: An aluminum extruded door beam includes an outer flange, an inner flange, and at least one web for connecting the outer flange and the inner flange. The outer corners at the extended ends of the outer flange have a radius R of 2.5 mm or less. The outward corners at the connections between the web and the inner flange and between the web and the outer flange have a radius R of 2 mm to 4 mm. The radius of the outward corners at the connections between the web and the inner flange and between the web and the outer flange is 1.5 to 2 times the width of the web. The length of the extended ends of the outer flange is 1 to 2 times the radius R of the outward corner at the connections between the web and the outer and inner flanges. The aluminum alloy extruded door beam material contains 0.8 to 1.5% by weight (hereinafter the same) of Mg and 4 to 7% of Zn, and the recrystallization surface layer has a thickness of 50 &mgr;m or less.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: May 15, 2001
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Hiroyuki Yamashita, Masakazu Hirano
  • Patent number: 6168675
    Abstract: There is claimed an aluminum alloy composition consisting essentially of: about 12-22 wt % silicon, about 2.5-4.5 wt % nickel, about 0.2-0.6 wt % magnesium, up to about 1.2 wt % manganese, up to about 1.2 wt % iron, and about 0.005-0.015 wt % phosphorus. This alloy composition may further contain up to about 0.25 wt % vanadium, up to about 0.2 wt % zirconium, up to about 0.25 wt % titanium, up to about 2 wt % cerium and/or mischmetal. Because of its high temperature strengths, said alloy is suitable for manufacturing into various cast automotive components, including vehicle disk brake frames and other parts.
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: January 2, 2001
    Assignee: Alcoa Inc.
    Inventors: Que-Tsang Fang, James R. Van Wert
  • Patent number: 6132531
    Abstract: Alloy and cast alloy product ideally suited for use as a component in a vehicle frame or subframe, i.e., body-in-white, comprising an alloy consisting of about 2.80 to 3.60 wt. % magnesium, less than approximately 0.20 wt. % silicon, approximately 1.10 to 1.40 wt. % manganese, less than approximately 0.2 wt. % iron, less than approximately 0.15 wt. % titanium, about 0.0005 to 0.0015 beryllium, the balance substantially aluminum and incidental elements and impurities. The aluminum/magnesium alloy is typically solidified into ingot derived working stock by die casting into a shape suitable for remelt for die casting, which shape is typically an ingot billet. Excellent mechanical properties are obtained from a cast product that is not subjected to heat treating operations subsequent to casting.
    Type: Grant
    Filed: February 11, 1999
    Date of Patent: October 17, 2000
    Assignee: Aluminum Company of America
    Inventors: Que Tsang Fang, Jen C. Lin, Manfred G. Sindel
  • Patent number: 6056835
    Abstract: The present invention relates to a process for producing a superplastic aluminum alloy capable of being used for plastic working such as extrusion, forging and rolling. An object of the present invention is to provide an ingot-made high speed superplastic aluminum alloy in which superplasticity is developed at a strain rate higher than that of conventional static recrystallization type superplastic aluminum alloys, and a process for producing the same. The superplastic aluminum alloy of the invention has structure which is obtained by adding to a basic alloy containing from at least 4.0 to 15% by weight of Mg and from 0.1 to 1.0% by weight of one or more elements selected from the group consisting of Mm, Zr, V, W, Ti, Ni, Nb, Ca, Co, Mo and Ta, and further selective elements of Sc, Cu. Li, Sn, In and Cd, which contains from 0.1 to 4.0% by volume fraction of spheroidal precipitates of intermetallic compounds having a particle size from 10 to 200 nm, and which has a mean grain size from 0.1 to 10 .mu.m.
    Type: Grant
    Filed: January 25, 1994
    Date of Patent: May 2, 2000
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshiharu Miyake, Tetsuya Suganuma
  • Patent number: 5944923
    Abstract: The invention provides an aluminum alloy sheet that has excellent formability, high coat-baking hardenability, and ensures a proof stress of 200 MPa or more after the coat-baking stage, and that gives favorable product surface quality after the forming stage and excellent corrosion resistance, and that is particularly suitable for external automobile body plates. The aluminum alloy sheet comprises: 0.9 to 1.3 wt. % of Si, 0.4 to 0.6 wt. % of Mg, 0.05 to 0.15 wt. % of Mn, 0.01 to 0.1 wt. % of Ti, with the remainder comprising Al and inevitable impurities, while limiting Fe as an impurity to 0.2 wt. % or less and Cu as an impurity to 0.1 wt. % or less; a coating film of a lubricant composition containing a water-dispersible polyurethane resin and a natural wax on the aluminum alloy sheet.
    Type: Grant
    Filed: January 10, 1997
    Date of Patent: August 31, 1999
    Assignees: Honda Giken Kogyo Kabushiki Kaisha, Sumitomo Light Metal Industries, Ltd.
    Inventors: Noboru Hayashi, Kunihiro Yasunaga, Hideo Yoshida, Hidetoshi Uchida, Hideo Itoh
  • Patent number: 5925313
    Abstract: There is provided an Al base alloy containing boron which is superior in mechanical properties such as strength, ductility or workability and the like and has a neutron absorbing capacity and an ability to recycle. This is an Al base alloy containing boron with Mg: 2 to 8% (massed %, similarly applied hereinafter) and B: 0.5 to 1.5% and satisfying a relation of .sup.10 B/(.sup.10 B+.sup.11 B).gtoreq.95%, and a rate of AlB.sub.2 in all boron compounds is 80% or more by a volumetric rate.
    Type: Grant
    Filed: April 22, 1996
    Date of Patent: July 20, 1999
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Katsura Kajihara, Haruo Kakunai, Yuichi Seki, Tadahiko Yamashita, Masahiro Yanagawa
  • Patent number: 5911845
    Abstract: A high-strength extruded article of an age-hardening aluminum alloy capable of educing an achromatic dark gray color after the anodizing treatment thereof and a method for the production thereof are disclosed. The method comprises subjecting an alloy billet comprising 0.9 to 3.0% by weight of Si, 0.3 to 0.6% by weight of Mg, less than 0.3% by weight of Fe, and the balance of Al and unavoidable impurities or an alloy billet comprising 0.005 to 0.1% by weight of Ti either alone or in combination with 0.001 to 0.02% by weight of B besides the components mentioned above to a soaking treatment at a temperature in the range of from 350 to 480.degree. C. for 2 to 12 hours, extruding the soaked alloy billet at a billet temperature in the range of from 380 to 450 .degree. C., and subjecting the extruded alloy to an aging treatment at a temperature in the range of from 170 to 200.degree. C. for 2 to 8 hours.
    Type: Grant
    Filed: November 21, 1997
    Date of Patent: June 15, 1999
    Assignee: YKK Corporation
    Inventors: Kazuyuki Fukagawa, Shoso Yamamoto, Hiroshi Chiba, Mitsunao Satomura, Kengo Kawase
  • Patent number: 5863359
    Abstract: There is claimed a lower wing structure for a commercial jet aircraft which includes a substantially unrecrystallized rolled plate member made from an aluminum alloy consisting essentially of about 3.6 to 4.0 wt. % copper, about 1.0 to 1.6 wt. % magnesium, about 0.3 to 0.7 wt. % manganese, about 0.05 to 0.25 wt. % zirconium, the balance aluminum and incidental elements and impurities. On a preferred basis, the alloy products of this invention include very low levels of both iron and silicon, typically on the order of less than 0.1 wt. % each, and more preferably about 0.05 wt. % or less iron and about 0.03 wt. % or less silicon. This alloy composition may be rolled to form lower wing skin plates and extruded or rolled to form wing box stringers therefrom.
    Type: Grant
    Filed: June 9, 1995
    Date of Patent: January 26, 1999
    Assignee: Aluminum Company of America
    Inventors: Lynette M. Karabin, John Liu, Allison S. Warren, Gary H. Bray
  • Patent number: 5759302
    Abstract: There is provided Al alloys which have improved and excellent fracture toughness and fatigue characteristic and improved formability, and which can be suitably used for transportation machines, such as aircraft, railway vehicles, general mechanical parts and the like. The Al alloy contains 1 to 8% (% by weight, the same is true for the following) of Cu, containing one or more selected from a group comprising 0.4 to 0.8% of Mn, 0.15 to 0.3% of Cr, 0.05 to 0.1% of Zr and 0.1 to 2.5% of Mg, Fe and Si each being less than 0.1%, a distance between constituents being more than 85 .mu.m, and having a micro-structure fulfilling at least one of the following (a) to (c):(a) the size of Al--Mn dispersoids is 4000 .ANG. or more,(b) the size of Al--Cr dispersoids is 1000 .ANG. or more, and(c) the size of Al--Zr dispersoids is 300 .ANG. or more.
    Type: Grant
    Filed: August 10, 1995
    Date of Patent: June 2, 1998
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Manabu Nakai, Takehiko Eto
  • Patent number: 5667602
    Abstract: Alloy and cast alloy product ideally suited for use as a component in a vehicle frame or subframe, i.e., body-in-white, comprising an alloy consisting of about 2.00 to 5.00 wt. % magnesium, up to approximately 0.30 wt. % silicon, approximately 0.20 to 1.60 wt. % manganese, up to approximately 1.00 wt. % iron, and between about 0.10 to 0.30 wt. %, zirconium, the balance substantially aluminum and incidental elements and impurities. The aluminum/magnesium alloy is typically solidified into ingot derived working stock by continuous casting or semi-continuous casting into a shape suitable for remelt for casting, which shape is typically an ingot billet. Excellent mechanical properties are obtained from a cast product that is not subjected to high temperature heat treating operations subsequent to casting.
    Type: Grant
    Filed: March 31, 1995
    Date of Patent: September 16, 1997
    Assignee: Aluminum Company of America
    Inventors: Que-Tsang Fang, Steven A. Jones, James R. Van Wert, Roger C. Dickenson
  • Patent number: 5624632
    Abstract: An aluminum alloy product for use as a damage tolerant product for aerospace applications, including fuselage skin stock. The aluminum alloy composition contains about 3-7 wt % magnesium, about 0.03-0.2 wt % zirconium, about 0.2-1.2 wt % manganese, up to 0.15 wt % silicon and about 0.05-0.5 wt % of a dispersoid-forming element selected from the group consisting of: scandium, erbium, yttrium, gadolinium, holmium and hafnium, the balance being aluminum and incidental elements and impurities.
    Type: Grant
    Filed: January 31, 1995
    Date of Patent: April 29, 1997
    Assignee: Aluminum Company of America
    Inventors: Stephen F. Baumann, Edward L. Colvin, Robert W. Hyland, Jr., Jocelyn I. Petit
  • Patent number: 5573606
    Abstract: The present invention relates to an aluminum base die casting alloy having substantially improved mechanical properties, and a method for making die cast products from the alloy. More particularly the improved aluminum based alloy comprises 2.5-4.0% by weight magnesium, 0.2-0.6% by weight manganese, 0.25-0.6% by weight iron, 0.2-0.45% by weight silicon, less than 0.003% by weight beryllium with the remainder being aluminum.
    Type: Grant
    Filed: February 16, 1995
    Date of Patent: November 12, 1996
    Assignee: Gibbs Die Casting Aluminum Corporation
    Inventors: James M. Evans, Richard J. Hagan, William C. Routh, Roland N. Gibbs
  • Patent number: 5547633
    Abstract: The specification describes a ternary alloy of aluminium. The alloy described comprises from 80 to 96% by weight of aluminium and from 4 to 20% by weight of titanium and a third element selected from the group consisting of cobalt, chromium, copper, magnesium, nickel and iron. The weight ratio of titanium to ternary alloying element lies in the range from 1:1 to 6:1. The alloy can be aged at a temperature in the range from 300.degree. to 450.degree. C.
    Type: Grant
    Filed: September 23, 1994
    Date of Patent: August 20, 1996
    Assignee: Monash University
    Inventors: Barry C. Muddle, Jianfeng Nie
  • Patent number: 5540791
    Abstract: An aluminum-alloy rolled sheet is cold preformed and then superplastically formed by: providing a composition which consists of from 2.0 to 8.0% of Mg, from 0.0001 to 0.01% of Be, and at least one element selected from the group consisting of from 0.3 to 2.5% of Mn, from 0.1 to 0.5% of Cr, from 0.1 to 0.5% of Zr, and from 0.1 to 0.5% of V, less than 0.2% of Fe as impurities, as well as aluminum and unavoidable impurities in balance; providing an unrecrystallized structure formed by annealing at a temperature of from 150.degree. to 240.degree. C. for 0.5 to 12 hours or at a temperature of from 250.degree. to 340.degree. C. for 0 to 5 minutes; providing draft of final cold-rolling amounting to 50% or more; and, providing 7% or more of elongation at normal temperature.
    Type: Grant
    Filed: October 24, 1994
    Date of Patent: July 30, 1996
    Assignee: Sky Aluminum Co., Ltd.
    Inventors: Mamoru Matsuo, Tsutomu Tagata
  • Patent number: 5525169
    Abstract: A process for fabricating an aluminum alloy rolled sheet particularly suitable for use for an automotive body, the process comprising: (a) providing a body of an alloy comprising: about 0.8 to about 1.5 wt. % silicon, about 0.2 to about 0.65 wt. % magnesium, about 0.02 to about 0.1 wt. % copper, about 0.01 to about 0.1 wt. % manganese, about 0.05 to about 0.2 wt. % iron; and the balance being substantially aluminum and incidental elements and impurities; (b) working the body to produce a the sheet; (c) solution heat treating the sheet; and (d) rapidly quenching the sheet. In a preferred embodiment, the solution heat treat is preformed at a temperature greater than 860.degree. F. and the sheet is quenched by a water spray. The resulting sheet has an improved combination of formability, strength and corrosion resistance.
    Type: Grant
    Filed: May 11, 1994
    Date of Patent: June 11, 1996
    Assignee: Aluminum Company of America
    Inventor: Shawn J. Murtha
  • Patent number: 5478418
    Abstract: An aluminum alloy powder for sliding members includes Fe in an amount of from 0.5 to 5.0% by weight, Cu in an amount of from 0.6 to 5.0% by weight, B in an amount of from 0.1 to 2.0% by weight and the balance of Al. An aluminum alloy includes a matrix made from the aluminum alloy powder and at least one member dispersed, with respect to whole of the matrix taken 100% by weight, in the matrix, and selected from the group consisting of B in an amount of from 0.1 to 5.0% by weight, boride in an amount of from 1.0 to 15% by weight and iron compound in an amount of from 1.0 to 15% by weight, and thereby it exhibits the tensile strength of 400 MPa or more. The aluminum alloy powder and the aluminum alloy are suitable for making sliding members like valve lifters for automobiles.
    Type: Grant
    Filed: April 28, 1994
    Date of Patent: December 26, 1995
    Assignees: Toyota Jidosha Kabushiki Kaisha, Toyo Aluminum Kabushiki Kaisha
    Inventors: Hirohisa Miura, Yasuhiro Yamada, Hirohumi Michioka, Jun Kusui, Akiei Tanaka
  • Patent number: 5455003
    Abstract: A method is disclosed for the production of aluminum-copper-lithium alloys that exhibit improved strength and fracture toughness at cryogenic temperatures. Improved cryogenic properties are achieved by controlling the composition of the alloy, along with processing parameters such as the amount of cold-work and artificial aging. The ability to attain substantially equal or greater strength and fracture toughness at cryogenic temperature in comparison to room temperature allows for use of the alloys in cryogenic tanks for space launch vehicles and the like.
    Type: Grant
    Filed: August 10, 1993
    Date of Patent: October 3, 1995
    Assignee: Martin Marietta Corporation
    Inventors: Joseph R. Pickens, William T. Tack
  • Patent number: 5453244
    Abstract: There is disclosed a novel aluminum alloy bearing which exhibits a more excellent fatigue resistance than conventional bearings even under such conditions of use as at a high temperature and under a high load. The aluminum alloy bearing has an aluminum bearing alloy layer containing, by weight, 1 to 10% Zn, 0.1 to 5% Cu, 0.05 to 3% Mg, 0.1 to 2% Mn, 0.1 to 5% Pb, 0.1 to 2% V, and 0.03 to 0.5% in total of Ti--B, and further may optionally contain not more than 8% Si, 0.05 to 0.5% Sr, and Ni, Co and Cr. The alloy may be bonded to a steel metal back sheet, and a surface layer may be formed on the surface of the bearing. By use of the composition of the alloy of the invention, the fatigue resistance of the aluminum alloy bearings has been improved, and such an improved bearing can fully achieve a bearing performance even under severe conditions of use as at high temperature and under a high load.
    Type: Grant
    Filed: November 10, 1994
    Date of Patent: September 26, 1995
    Assignee: Daido Metal Company Ltd.
    Inventors: Tadashi Tanaka, Masaaki Sakamoto, Tohru Kato, Yoshiaki Sato
  • Patent number: 5431876
    Abstract: A group of ternary alloys of aluminum-lithium and magnesium or copper further including at least one additive element such as zirconium, chromium and/or manganese. These alloys have an improved combination of properties such as strength, ductility and weldability and in some cases improved tensile properties at cryogenic temperatures.
    Type: Grant
    Filed: April 26, 1994
    Date of Patent: July 11, 1995
    Assignee: Comalco Aluminium Ltd.
    Inventors: K. Sharvan Kumar, Joseph R. Pickens
  • Patent number: 5422066
    Abstract: Aluminum-base alloys in a peak-aged condition and magnesium-base alloys in the form of cast products and wrought products capable of having improved combinations of yield strength and fracture toughness are disclosed. The aluminum-base alloy products are comprised of 0.5 to 4.5 wt %. lithium, about 0.01 to 1 ppm Na, about 0.01 to 1 ppm K, less than 0.1 ppm Rb, less than 0.1 ppm Cs, and the remainder comprising aluminum. Aluminum-base alloy products in a peak-aged condition have: (i) a grain boundary region substantially free of liquid phase eutectics comprised of Na and K that form embrittlement phases at room temperature; and (ii) an increase in fracture toughness compared to an aluminum-lithium alloy having greater than 5 ppm aggregate alkali metal.
    Type: Grant
    Filed: June 14, 1993
    Date of Patent: June 6, 1995
    Assignee: Comalco Aluminium Limited
    Inventor: Donald Webster
  • Patent number: 5407636
    Abstract: An Al-based alloy represented by the general formula Al.sub.bal Ti.sub.a M.sub.b and Al.sub.bal Ti.sub.a M.sub.b Q.sub.c wherein M represents at least one element selected from among V, Cr, Mn, Co, Cu, Y, Zr, Nb, Mo, Hf, Ta and W; Q represents at least one element selected from Mg and Si; and a, b and c are, in percentages by weight, 7.ltoreq.a.ltoreq.20, 0.2.ltoreq.b.ltoreq.20 and 0.1.ltoreq.c.ltoreq.5. A compacted and consolidated material is produced by melting a material having the above alloy composition, rapidly solidifying the melt into powder or flakes; compacting the resultant powder or flakes; and subjecting the compacted powder or flakes to press forming and consolidating by a conventional plastic working. The aluminum-based alloy and the compacted and consolidated material thereof have a high strength, a good ductility and an excellent strength at high temperatures.
    Type: Grant
    Filed: January 25, 1993
    Date of Patent: April 18, 1995
    Assignee: YKK Corporation
    Inventor: Kazuhiko Kita
  • Patent number: 5389165
    Abstract: An aluminum-based alloy useful in aircraft and aerospace structures which has low density, high strength and high fracture toughness consists essentially of the following formula:Cu.sub.a Li.sub.b Mg.sub.c Ag.sub.d Zr.sub.e Al.sub.balwherein a, b, c, d, e and bal indicate the amount in wt. % of alloying components, and wherein 2.8<a<3.8, 0.80<b<1.3, 0.20<c<1.00, 0.20<d<1.00 and 0.08<e<0.40. Preferably, the copper and lithium components are controlled such that the combined copper and lithium content are kept below the solubility limit to avoid loss of fracture toughness during elevated temperature exposure. The relationship between the copper and lithium contents also should meet the following relationship:Cu (wt. %)+1.5 Li (wt. %)<5.4.
    Type: Grant
    Filed: May 15, 1992
    Date of Patent: February 14, 1995
    Assignee: Reynolds Metals Company
    Inventor: Alex Cho
  • Patent number: 5380376
    Abstract: An improved aluminum alloy armoured cable wrap has been produced which permits the use of less aluminum alloy in the cable wrap thereby achieving lighter construction, while meeting or exceeding strength and flexibility requirements. The armoured cable wrap is made from aluminum alloy strip material formed of an aluminum alloy containing about 2.8-3.5 percent by weight Mg, about 0.25-0.70 percent by weight Mn and about 0.15-0.35 percent by weight Cr. Up to 0.5 percent by weight of Cu may also be added. The strip material is heat treated preferably to an Ultimate Tensile Strength of at least 265 MPa.
    Type: Grant
    Filed: June 2, 1993
    Date of Patent: January 10, 1995
    Assignee: Alcan International Limited
    Inventors: Paul E. Fortin, Pierre-Henri Marois
  • Patent number: 5320803
    Abstract: The toughness of Al-Li, Al-Mg and Mg-Li alloys is increased by a melting and refining process designed to reduce the concentration of alkali metal impurities below specified levels. The hydrogen and chlorine gas constituents are also significantly reduced.
    Type: Grant
    Filed: October 4, 1991
    Date of Patent: June 14, 1994
    Assignee: Comalco Aluminium Limited
    Inventor: Donald Webster
  • Patent number: 5223216
    Abstract: An Al-Li alloy consists essentially of the formula Al.sub.bal Li.sub.a Cu.sub.b Mg.sub.c Zr.sub.d wherein "a" ranges from about 1.9 to 3.4 wt %, "b" ranges from about 0.5 to 2.0 wt %, "c" ranges from 0.2 to 2.0 wt % and "d" ranges from about 0.3 to 1.2 wt %, the balance being aluminum. The alloy is solidified at a cooling rate of about 10.sup.3 .degree.-10.sup.4 .degree. C./sec by spray forming, and is characterized by a substantial absence of prior particle boundaries.
    Type: Grant
    Filed: March 27, 1992
    Date of Patent: June 29, 1993
    Assignee: Allied-Signal Inc.
    Inventor: Jerry C. LaSalle
  • Patent number: 5211910
    Abstract: Aluminum-base alloys containing Cu, Li, Zn, Mg and Ag are disclosed which possess highly desirable properties, such as relatively low density, high modulus, high strength/ductility combinations, strong natural aging response with and without prior cold work, and high artificially aged strength with and without prior cold work. In addition, the alloys possess good weldability, corrosion resistance, cryogenic properties, and elevated temperature properties. The alloys may comprise from about 1 to about 7 weight percent Cu, from about 0.1 to about 4 weight percent Li, from about 0.01 to about 4 weight percent Zn, from about 0.05 to about 3 weight percent Mg, from about 0.01 to about 2 weight percent Ag, from about 0.01 to about 2 weight percent grain refiner selected from Zr, Cr, Mn, Ti, Hf, V, Nb, B and TiB.sub.2, and the balance Al along with incidental impurities. Preferred alloys comprise from about 3.0-6.5 weight percent Cu, from about 0.5-2.6 weight percent Li, from about 0.
    Type: Grant
    Filed: January 26, 1990
    Date of Patent: May 18, 1993
    Assignee: Martin Marietta Corporation
    Inventors: Joseph R. Pickens, Timothy J. Langan, Frank H. Heubaum, Lawrence S. Kramer, Alex Cho
  • Patent number: 5198045
    Abstract: An aluminum based alloy useful in aircraft and aerospace structures which has low density, high strength and high fracture toughness consists essentially of the following formula:Cu.sub.a Li.sub.b Mg.sub.c Ag.sub.d Zr.sub.e Al.sub.balwherein a, b, c, d, e and bal indicate the amount in wt. % of alloying components, and wherein 2.4<a<3.5, 1.35<b<1.8, 0.25<c<0.65, 0.25<d<0.65 and 0.08<e<0.25, and the alloy has a density of 0.0945 to 0.0960 lbs/in.sup.3. Preferably, the relationship between the copper and lithium components also meets the following tests:more preferably the relationship meets the following tests:6.5<a+2.5b<7.5, 2b-0.8<a<3.75b-1.9.
    Type: Grant
    Filed: May 14, 1991
    Date of Patent: March 30, 1993
    Assignee: Reynolds Metals Company
    Inventors: Alex Cho, Joseph R. Pickens
  • Patent number: 5181969
    Abstract: Provided is a superplastic forming aluminum alloy in rolled form which exhibits superplasticity and has improved corrosion resistance, weldability, and strength and fatigue property after superplastic forming, eliminating a need for heat treatment after superplastic forming. Preferred alloys have an excellent outer appearance of grey to black color after anodization. The alloy consists essentially of, in % by weight, 2.0-8.0% of Mg, 0.3-1.5% of Mn, 0.0001-0.01% of Be, an optional element selected from C, V, and Zr, an optional grain refining agent of Ti or Ti and B, less than 0.2% of Fe and less than 0.1% of Si as impurities, and the balance of Al, wherein intermetallic compounds have a size of up to 20 .mu.m, and the content of hydrogen present is up to 0.35 cc/100 grams. Particularly when a minor amount of Ti or Ti and B grain refining agent is contained, Mn precipitates have a size of 0.05 .mu.m or larger, and the Si content in entire precipitates is less than 0.
    Type: Grant
    Filed: June 6, 1991
    Date of Patent: January 26, 1993
    Assignee: Sky Aluminum Co., Ltd.
    Inventors: Toshio Komatsubara, Tsutomu Tagata, Mamoru Matsuo
  • Patent number: 5133931
    Abstract: An aluminum based alloy useful in aircraft and airframe structures which has low density and consists essentially of the following formula:Mg.sub.a Li.sub.b Zn.sub.c Ag.sub.d Al.sub.balwherein a ranges from 0.5 to 10%, b ranges from 0.5 to 3.0%, c ranges from 0.1 to 5.0%, d ranges from 0.1 to 2.0%, and bal indicates the balance of the alloy is aluminum, with the proviso that the total amount of alloying elements cannot exceed 12.0%, with the further proviso that when a ranges from 7.0 to 10.0%, b cannot exceed 2.5% and c cannot exceed 2.0%.
    Type: Grant
    Filed: August 28, 1990
    Date of Patent: July 28, 1992
    Assignee: Reynolds Metals Company
    Inventor: Alex Cho
  • Patent number: 5104615
    Abstract: An aluminum material suitable for forming the substrate of a photoconductor, such as a photoconductive drum, for electrophotographic copying machine, capable of being satisfactorily mirror-finished by precision machining. The Ti content of the aluminum material is less than 0.008% by weight. The aluminum material contains at least one of Mg, Si and Mn. The Mg content, Si content and Mn content of the aluminum material are in the range of 0.1 to 5.0% by weight, in the range of 0.1 to 1.0% by weight and in the range of 0.1 to 1.5% by weight, respectively.
    Type: Grant
    Filed: April 26, 1990
    Date of Patent: April 14, 1992
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Tadashi Aiura, Osamu Takezoe
  • Patent number: 5085830
    Abstract: The toughness of Al-Li, Al-Mg and Mg-Li alloys is increased by a melting and refining process designed to reduce the concentration of alkali metal impurities below about 1 ppm and preferably below about 0.1 ppm. The hydrogen and chlorine gas constituents are also significantly reduced.
    Type: Grant
    Filed: March 24, 1989
    Date of Patent: February 4, 1992
    Assignee: Comalco Aluminum Limited
    Inventor: Donald Webster
  • Patent number: 5032359
    Abstract: A family of alloys based upon aluminum-copper-magnesium-silver alloys to which lithium has been added, within specified ranges, exhibits superior ambient- and elevated-temperature strength, superior ductility at ambient and elevated temperatures, extrudability, forgeability, weldability, and an unexpected natural aging response.
    Type: Grant
    Filed: March 23, 1989
    Date of Patent: July 16, 1991
    Assignee: Martin Marietta Corporation
    Inventors: Joseph R. Pickens, Frank H. Heubaum, Lawrence S. Kramer, K. Sharvan Kumar