Alkali, Or Alkaline Earth Metal Containing Patents (Class 420/549)
  • Publication number: 20150050520
    Abstract: An aluminum alloy material contains Si: 1.0 mass % to 5.0 mass % and Fe: 0.01 mass % to 2.0 mass % with balance being Al and inevitable impurities, wherein 250 pcs/mm2 or more to 7×105 pcs/mm2 or less of Si-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 ?m are present in a cross-section of the aluminum alloy material, while 100 pcs/mm2 to 7×105 pcs/mm2 of Al-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 ?m are present in a cross-section of the aluminum alloy material. An aluminum alloy structure is manufactured by bonding two or more members in vacuum or a non-oxidizing atmosphere at temperature at which a ratio of a mass of a liquid phase generated in the aluminum alloy material to a total mass of the aluminum alloy material is 5% or more and 35% or less.
    Type: Application
    Filed: October 1, 2012
    Publication date: February 19, 2015
    Inventors: Akio Niikura, Kazuko Fujita, Takashi Murase, Yoshiyuki Oya, Tomohito Kurosaki
  • Patent number: 8721811
    Abstract: The present invention provides a casting having increased crashworthiness including an aluminum alloy of about 6.0 wt % to about 8.0 wt % Si; about 0.12 wt % to about 0.25 wt % Mg; less than or equal to about 0.35 wt % Cu; less than or equal to about 4.0 wt % Zn; less than or equal to about 0.6 wt % Mn; and less than or equal to about 0.15 wt % Fe, wherein the cast body is treated to a T5 or T6 temper and has a tensile strength ranging from 100 MPa to 180 MPa and has a critical fracture strain greater than 10%. The present invention further provides a method of forming a casting having increased crashworthiness.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: May 13, 2014
    Assignee: Automotive Casting Technology, Inc.
    Inventors: Jen C. Lin, Moustapha Mbaye, Jan Ove Löland, Russell S. Long, Xinyan Yan
  • Patent number: 8574382
    Abstract: A cold-hardening aluminum casting alloy with good thermal stability for the production of thermally and mechanically stressed cast components, wherein the alloy includes from 11.0 to 12.0 wt % silicon from 0.7 to 2.0 wt % magnesium from 0.1 to 1 wt % manganese less than or equal to 1 wt % iron less than or equal to 2 wt % copper less than or equal to 2 wt % nickel less than or equal to 1 wt % chromium less than or equal to 1 wt % cobalt less than or equal to 2 wt % zinc less than or equal to 0.25 wt % titanium 40 ppm boron optionally from 80 to 300 ppm strontium and aluminium as the remainder with further elements and impurities due to production individually at most 0.05 wt %, in total at most 0.2 wt %. The alloy is suitable in particular for the production of cylinder crank cases by the die-casting method.
    Type: Grant
    Filed: May 20, 2008
    Date of Patent: November 5, 2013
    Assignee: Aluminium Rheinfelden GmbH
    Inventors: Dan Dragulin, Rudiger Franke
  • Patent number: 8480822
    Abstract: The invention relates to an aluminum alloy having good electrical conductivity and good thermal conductivity for producing die-cast components, containing: 8.0 to 9.0 wt % silicon, 0.5 to 0.7 wt % iron, max. 0.010 wt % copper, max. 0.010 wt % magnesium, max. 0.010 wt % manganese, max. 0.001 wt % chromium, max. 0.020 wt % titanium, max. 0.020 wt % vanadium, max. 0.05 wt % zinc, 0.010 to 0.030 wt % strontium, and aluminum as the rest, with further elements and manufacturing-caused impurities individually max. 0.05 wt %, in total max. 0.2 wt %. The alloy is suited in particular for producing components having good electrical conductivity and good thermal conductivity in the die casting process.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: July 9, 2013
    Assignee: Rheinfelden Alloys GmbH & Co. KG
    Inventor: Peter Kohlmann
  • Publication number: 20120211130
    Abstract: A high-elongation rate aluminum alloy material and preparation method thereof. The high-elongation aluminum alloy material contains, in weight percentage, 0.30-1.20% of iron, 0.03-0.10% of silicon, 0.01-0.30% of rare earth elements, namely cerium and lanthanum, and the remaining aluminum and inevitable impurities. The aluminum alloy is made from materials through a fusion casting process and a half-annealing treatment. An aluminum alloy conductor made thereof has a high-elongation rate and good safety and stability in use.
    Type: Application
    Filed: April 9, 2010
    Publication date: August 23, 2012
    Inventors: Zemin Lin, Lehua Yu, Youmei Wan
  • Patent number: 8246763
    Abstract: A high strength aluminum alloy casting obtained by casting an aluminum alloy comprised of 7.5 to 11.5 wt % of Si, 3.8 to 4.8 wt % of Cu, 0.45 to 0.65 wt % of Mg, 0.4 to 0.7 wt % of Fe, 0.35 to 0.45 wt % of Mn, and the balance of Al and not more than 0.2 wt % of unavoidable impurities, wherein this aluminum alloy has 0.1 to 0.3 wt % of Ag added to it or contains 0.1 to 1.0 wt % of at least one element selected from the group of second additive elements comprised of Rb, K, Ba, Sr, Zr, Nb, Ta, V, and Pd and rare earth elements, and a method of production of a high strength aluminum alloy casting comprising the steps of filling a melt of an aluminum alloy in a mold to obtain a casting, taking out the aluminum alloy casting from the mold, solubilizing the high strength aluminum alloy casting by heating in a temperature range of 495 to 505° C.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: August 21, 2012
    Assignees: Denso Corporation, Nippon Light Metal Co., Ltd.
    Inventors: Kouji Yamada, Tomoyuki Hatano, Susumu Miyakawa, Hiromi Takagi, Hiroshi Horikawa, Akio Hashimoto
  • Patent number: 8163143
    Abstract: The present invention relates to an Al—Ni—La—Si system Al-based alloy sputtering target including Ni, La and Si, in which, when a section from (¼)t to (¾)t (t: thickness) in a cross section vertical to a plane of the sputtering target is observed with a scanning electron microscope at a magnification of 2000 times, (1) a total area of an Al—Ni system intermetallic compound having an average particle diameter of 0.3 ?m to 3 ?m with respect to a total area of the entire Al—Ni system intermetallic compound is 70% or more in terms of an area fraction, the Al—Ni system intermetallic compound being mainly composed of Al and Ni; and (2) a total area of an Al—Ni—La—Si system intermetallic compound having an average particle diameter of 0.2 ?m to 2 ?m with respect to a total area of the entire Al—Ni—La—Si system intermetallic compound is 70% or more in terms of an area fraction, the Al—Ni—La—Si system intermetallic compound being mainly composed of Al, Ni, La, and Si.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: April 24, 2012
    Assignees: Kobe Steel, Ltd., Kobelco Research Institute, Inc.
    Inventors: Katsutoshi Takagi, Yuki Iwasaki, Masaya Ehira, Akira Nanbu, Mototaka Ochi, Hiroshi Goto, Nobuyuki Kawakami
  • Patent number: 8105530
    Abstract: A reinforced aluminum alloy with high electric and thermal conductivity of the present invention has the weight percentage below: Mg 0.61˜0.65%, Si 0.4˜0.45%, rare earth elements 0.21˜0.3%, B 0.03˜0.10% and the balances essentially Al and unavoidable impurities. The reinforced aluminum alloy enhanced the containing of Mg and Si elements compared to the conventional aluminum alloy such as 6063, and controlled the containing of the Mg and Si in a certain relatively narrower range so as to control the desired quality of the aluminum alloy. At the same time, a Ce of the rare earth elements and B element are added into the aluminum alloy and completely solid melted the added alloys to the aluminum alloy. It is not only remaining the strength of the aluminum alloy, but also increasing the electric and thermal conductivity.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: January 31, 2012
    Inventor: Zhou Cai
  • Patent number: 8097101
    Abstract: A method of forming a hypoeutectic aluminium silicon alloy including the steps of: forming an aluminium melt including greater than zero and less than about 12 wt % silicon, adding 20-3000 ppm of a eutectic modifying element selected from the group consisting of strontium, sodium, antimony, barium, calcium, yttrium, lithium, potassium, ytterbium, europium and mischmetal; and either adding nucleant particles and/or causing nucleant particles to be formed in the melt, the nucleant particles being selected from the group of TiSix, MnCx, AlP, AlBx and CrBx wherein x is an integer of 1 or 2.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: January 17, 2012
    Assignee: Cast Centre Pty Ltd
    Inventors: Arne Kristian Dahle, Liming Lu, Kazuhiro Nogita, Stuart David McDonald
  • Patent number: 7959856
    Abstract: Aluminum alloys and castings are provided that have excellent practical fatigue resistances. The alloy includes, based upon 100 mass %, 4-12 mass % of Si, less than 0.2 mass % of Cu, 0.1-0.5 mass % of Mg, 0.2-3.0 mass % of Ni, 0.1-0.7 mass % of Fe, 0.15-0.3 mass % of Ti, and the balance of aluminum (Al) and impurities. The alloy has a metallographic structure, which includes a matrix phase primarily of ?-Al and a skeleton phase crystallizing around the matrix phase in a network shape. The matrix phase is strengthened by precipitates containing Mg. Because of the strengthened matrix phase, and the skeleton phase that surrounds it, the castings have high strength, high fatigue strength, and high thermo-mechanical fatigue resistance.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: June 14, 2011
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Hajime Ikuno, Hiroshi Hohjo, Yoshihiko Sugimoto, Isamu Ueda, Hiroaki Iwahori
  • Publication number: 20110123390
    Abstract: Provided are an aluminium alloy and a manufacturing method thereof. In the method, aluminium and a master alloy containing a calcium (Ca)-based compound are provided. A melt is prepared, in which the master alloy and the Al are melted. The aluminum alloy may be manufactured by casting the melt.
    Type: Application
    Filed: November 18, 2010
    Publication date: May 26, 2011
    Applicant: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY
    Inventors: Shae-Kwang KIM, Jin-Kyu LEE, Min-Ho CHOI, Jeong-Ho SEO
  • Publication number: 20110123391
    Abstract: Provided are an aluminium alloy and a manufacturing method thereof. In the method, aluminium and a magnesium (Mg) master alloy containing a calcium (Ca)-based compound are provided. A melt is prepared, in which the Mg master alloy and the Al are melted. The aluminum alloy may be manufactured by casting the melt.
    Type: Application
    Filed: November 18, 2010
    Publication date: May 26, 2011
    Applicant: KOREA INSTITUTE OF INDUSTRIAL TECHNOLOGY
    Inventors: Shae-Kwang KIM, Jin-Kyu LEE, Min-Ho CHOI, Young-Ok YOON
  • Publication number: 20100170669
    Abstract: An aluminum braze alloy suitable for use in brazing aluminum alloy components for heat exchanger's which includes lesser amounts of silicon, and further including at least one of magnesium, calcium, a lanthanide series metal and mixtures thereof in a concentration sufficient to form a passivating film under corrosive conditions.
    Type: Application
    Filed: June 26, 2007
    Publication date: July 8, 2010
    Applicant: Carrier Corporation
    Inventor: Mark R. Jaworowski
  • Patent number: 7666353
    Abstract: An aluminum silicon die cast alloy having a very low iron content and relatively high strontium content that prevents soldering to dies into die casting process. The alloys of the present invention also have a modified eutectic silicon and modified iron morphology, when iron is present, resulting in low microporosity and high impact properties. The alloy comprises 6-22% by weight silicon, 0.05 to 0.20% by weight strontium and the balance aluminum. Preferably, the alloy of the present invention contains in weight percent: 6-20% silicon, 0.05-0.10% strontium, 0.40% maximum iron and most preferably 0.20% maximum iron, 4.5% maximum copper, 0.50% maximum manganese, 0.60% maximum magnesium, 3.0% maximum zinc, balance aluminum. On cooling from the solution temperature, the strontium serves to modify the eutectic silicon structure as well as create an iron phase morphology change if iron is present, facilitating feeding through the aluminum interdendritic matrix.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: February 23, 2010
    Assignee: Brunswick Corp
    Inventors: Raymond J. Donahue, Terrance M. Cleary, Kevin R. Anderson
  • Publication number: 20090297394
    Abstract: A method of forming a hypoeutectic aluminium silicon alloy including the steps of: forming an aluminium melt including greater than zero and less than about 12 wt % silicon, adding 20-3000 ppm of a eutectic modifying element selected from the group consisting of strontium, sodium, antimony, barium, calcium, yttrium, lithium, potassium, ytterbium, europium and mischmetal; and either adding nucleant particles and/or causing nucleant particles to be formed in the melt, the nucleant particles being selected from the group of TiSix, MnCx, AlP, AlBx and CrBx wherein x is an integer of 1 or 2.
    Type: Application
    Filed: December 2, 2005
    Publication date: December 3, 2009
    Applicant: CAST CENTRE PTY LTD
    Inventors: Arne Kristian Dahle, Liming Lu, Kazuhiro Nogita, Stuart David McDonald
  • Patent number: 7347905
    Abstract: An aluminum-silicon lost foam casting alloy having reduced microporosity and a method for casting the same is herein disclosed. A preferred lost foam cast alloy consists essentially of 6 to 12% by weight silicon and preferably 9.0 to 9.5% by weight silicon, 0.035-0.30% strontium, 0.40% maximum iron, 0.45% maximum copper, 0.49% maximum manganese, 0.60% maximum magnesium, 3.0% maximum zinc, and the balance aluminum. Most preferably, the lost foam alloy is free from iron, titanium and boron. However, such elements may exist at trace levels. Most preferably, the alloy is lost foam cast with the process that applies at least 10 atmospheres of pressure during solidification. However, the range may be 5 to 60 atmospheres. The strontium addition is greater than 0.005% by weight and most preferably greater than 0.05% by weight.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: March 25, 2008
    Assignee: Brunswick Corporation
    Inventors: Raymond J. Donahue, Terrance M. Cleary, Kevin R. Anderson
  • Publication number: 20080031768
    Abstract: An aluminum-silicon alloy composition is disclosed which meets the manufacturing and performance conditions for linerless cylinder engine block casting using low-cost casting processes such as silica-sand molds. The alloy of the invention comprises in weight percent: 13%-14% Si; 2.3%-2.7% Cu; 0.1%-0.4% Fe; 0.1%-0.45% Mn; 0.1%-0.30% Mg; 0.1%-0.6% Zn; 0.05%-0.11 % Ti; 0.4%-0.8% Ni; 0.01%-0.09% Sr; and and the rest being aluminum plus any remainders. This alloy has very good machining characteristics, giving a significantly improved surface finish in the cylinder bores. The manufacturing cost of engine blocks is reduced in about 40% as compared with using current commercial alloys of the prior art requiring iron liners. Any primary Si present is substantially uniformly dispersed, and copper does not segregate during solidification and cooling.
    Type: Application
    Filed: August 4, 2006
    Publication date: February 7, 2008
    Inventors: Salvador Valtierra-Gallardo, Jose Talamantes-Silva, Andres Fernando Rodriguez-Jasso, Jose Alejandro Gonzalez-Villarreal
  • Patent number: 7108042
    Abstract: An aluminum alloy suitable for diecasting of components with high elongation in the cast state contains, as well as aluminum and unavoidable impurities, 8.0 to 11.5 w. % silicon, 0.3 to 0.8 w. % manganese, 0.08 to 0.4 w. % magnesium, max 0.4 w. % iron, max 0.1 w. % copper, max 0.1 w. % zinc, max 0.15 w. % titanium and 0.05 to 0.5 w. % molybdenum. Optionally, the alloy also contains 0.05 to 0.3 w. % zirconium, 30 to 300 ppm strontium or 5 to 30 ppm sodium and/or 1 to 30 ppm calcium for permanent refinement and for grain refinement gallium phosphide and/or indium phosphide in a quantity corresponding to 1 to 250 ppm phosphorus and/or titanium and boron added by way of an aluminum master alloy with 1 to 2 w. % Ti and 1 to 2 w. % B.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: September 19, 2006
    Assignee: Aluminum Rheinfelden GmbH
    Inventor: Hubert Koch
  • Patent number: 6929726
    Abstract: A sputtering target consists essentially of 0.1 to 50% by weight of at least one kind of element that forms an intermetallic compound with Al, and the balance of Al. The element that forms an intermetallic compound with Al is uniformly dispersed in the target texture, and in a mapping of EPMA analysis, a portion of which count number of detection sensitivity of the element is 22 or more is less than 60% by area ratio in a measurement area of 20×20 ?m. According to such a sputtering target, even when a sputtering method such as long throw sputtering or reflow sputtering is applied, giant dusts or large concavities can be suppressed in occurrence.
    Type: Grant
    Filed: January 8, 2004
    Date of Patent: August 16, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koichi Watanabe, Takashi Ishigami
  • Patent number: 6923935
    Abstract: A hypoeutectic aluminum silicon casting alloy having a refined primary silicon particle size and a modified iron morphology. The alloy includes 10 to 11.5% by weight silicon, 0.10 to 0.70% by weight magnesium and also contains 0.05 to 0.07% by weight strontium. On cooling from the solution temperature, the strontium serves to modify the silicon eutectic structure as well as create an iron phase morphology change. Such changes facilitate feeding through the aluminum interdendritic matrix. This, in turn, creates a finished die cast product with extremely low levels of microporosity defects. The alloy may be used to cast engine blocks for marine outboard and stern drive motors. Furthermore, when the magnesium levels are adjusted to approximately 0.10 to 0.20% by weight magnesium, propellers having a highly advantageous ductility may be obtained.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: August 2, 2005
    Assignee: Brunswick Corporation
    Inventors: Raymond J. Donahue, Terrance M. Cleary, Kevin R. Anderson
  • Patent number: 6921512
    Abstract: An aluminum alloy is disclosed that is suitable for casting and machining cylinder blocks for engines, especially gasoline fuel engines for automotive vehicles. The casting has the strength and wear resistance to piston/seal scuffing for such engines. The alloy comprises, by weight, 9.5 to 12.5% silicon, 0.1 to 1.5% iron, 1.5 to 4.5% copper, 0.2 to 3% manganese, 0.1 to 0.6% magnesium, 2.0% max zinc, 0 to 1.5% nickel, 0.25% maximum titanium, up to 0.05% strontium and the balance aluminum, where the weight ratio of manganese to iron is 1.2 to 1.75 or higher when the iron content is equal to or greater than 0.4% and the weight ratio of manganese to iron is at least 0.6 to 1.2 when the iron content is less than 0.4% of the alloy.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: July 26, 2005
    Assignee: General Motors Corporation
    Inventor: Herbert William Doty
  • Patent number: 6918970
    Abstract: A cast article from an aluminum alloy has improved mechanical properties at elevated temperatures. The cast article has the following composition in weight percent: Silicon 6.0-25.0, Copper 5.0-8.0, Iron 0.05-1.2, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0.05-1.2, Titanium 0.05-1.2, Zirconium 0.05-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Strontium 0.001-0.1, Phosphorus 0.001-0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10-25, and the copper-to-magnesium ratio is 4-15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X=Ti, V, Zr) having a L12 crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix containing up to about 60% by volume of a secondary filler material.
    Type: Grant
    Filed: April 10, 2002
    Date of Patent: July 19, 2005
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Jonathan A. Lee, Po-Shou Chen
  • Patent number: 6824737
    Abstract: An aluminium alloy suitable for diecasting of components with high elongation in the cast state comprises, as well as aluminium and unavoidable impurities, 9.0 to 11.0 w. % silicon, 0.5 to 0.9 w. % manganese, max 0.06 w. % magnesium, 0.15 w. % iron, max 0.03 w. % copper, max 0.10 w. % zinc, max 0.15 w. % titanium, 0.05 to 0.5 w. % molybdenum and 30 to 300 ppm strontium or 5 to 30 ppm sodium and/or 1 to 30 ppm calcium for permanent refinement. Optionally, the alloy also contains 0.05 to 0.3 w. % zirconium and for grain refinement gallium phosphide and/or indium phosphide in a quantity corresponding to 1 to 250 ppm phosphorus and/or titanium and boron added by way of an aluminium master alloy with 1 to 2 w. % Ti and 1 to 2 w. % B.
    Type: Grant
    Filed: January 20, 2004
    Date of Patent: November 30, 2004
    Assignee: Aluminium Rheinfelden GmbH
    Inventor: Hubert Koch
  • Publication number: 20040170523
    Abstract: An aluminium alloy suitable for diecasting of components with high elongation in the cast state comprises, as well as aluminium and unavoidable impurities, 9.0 to 1.1.0 w. % silicon, 0.5 to 0.9 w. % manganese, max 0.06 w. % magnesium, 0.15 w. % iron, max 0.03 w. % copper, max 0.10 w. % zinc, max 0.15 w. % titanium, 0.05 to 0.5 w. % molybdenum and 30 to 300 ppm strontium or 5 to 30 ppm sodium and/or 1 to 30 ppm calcium for permanent refinement. Optionally, the alloy also contains 0.05 to 0.3 w. % zirconium and for grain refinement gallium phosphide and/or indium phosphide in a quantity corresponding to 1 to 250 ppm phosphorus and/or titanium and boron added by way of an aluminium master alloy with 1 to 2 w. % Ti and 1 to 2 w. % B.
    Type: Application
    Filed: January 20, 2004
    Publication date: September 2, 2004
    Inventor: Hubert Koch
  • Patent number: 6773665
    Abstract: A non-Cu-based cast Al alloy contains substantially no Cu, and has a tensile strength of 305 MPa or more, a 0.2% yield strength of 220 MPa or more, and an elongation of 10% or more. In the heat treatment of the cast Al alloy, the solution treatment is performed using a fluidized bed 18, and the solution treatment is performed by rapid heating up to the solution treatment temperature in 30 minutes, and maintaining the solution treatment temperature in 3 hours or less. Because this method for heat treatment performs solution treatment at an increased speed of heating-up time, with small deviation of temperature, and at a higher temperature, total time for heat treatment can be shortened drastically in comparison with the conventional method. A non-Cu-based cast Al alloy having well-balanced mechanical properties of tensile strength, yield strength, and elongation can be provided.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: August 10, 2004
    Assignee: Asahi Tec Corporation
    Inventor: Takayuki Sakai
  • Patent number: 6736947
    Abstract: A sputtering target consists essentially of 0.1 to 50% by weight of at least one kind of element that forms an intermetallic compound with Al, and the balance of Al. The element that forms an intermetallic compound with Al is uniformly dispersed in the target texture, and in a mapping of EPMA analysis, a portion of which count number of detection sensitivity of the element is 22 or more is less than 60% by area ratio in a measurement area of 20×20 &mgr;m. According to such a sputtering target, even when a sputtering method such as long throw sputtering or reflow sputtering is applied, giant dusts or large concavities can be suppressed in occurrence.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: May 18, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Koichi Watanabe, Takashi Ishigami
  • Patent number: 6733726
    Abstract: An aluminum-based die casting alloy exhibiting improved corrosion resistance and good die-castability contains from about 4.5 to about 12 percent silicon by weight, at least 87 percent aluminum by weight, from about 0.25 percent to about 0.6 percent manganese by weight, and a maximum of 0.2 percent copper by weight. The alloys preferably contain iron in an amount sufficient to improve hot tear resistance and to decrease the tendency for die sticking or soldering during die casting.
    Type: Grant
    Filed: August 8, 2002
    Date of Patent: May 11, 2004
    Assignee: Delphi Technologies, Inc.
    Inventor: Kurt F. O'Connor
  • Patent number: 6716390
    Abstract: An aluminum alloy extruded material for automotive structural members, which contains 2.6 to 5 wt % of Si, 0.15 to 0.3 wt % of Mg, 0.3 to 2 wt % of Cu, 0.05 to 1 wt % of Mn, 0.2 to 1.5 wt % of Fe, 0.2 to 2.5 wt % of Zn, 0.005 to 0.1 wt % of Cr, and 0.005 to 0.05 wt % of Ti, and satisfies relationship of the following expression (I), (Content of Mn (wt %))+0.32×(content of Fe (wt %))+0.097×(content of Si (wt %))+3.5×(content of Cr (wt %))+2.9×(content of Ti (wt %))≦1.36 (I) with the balance being made of aluminum and unavoidable impurities. A method of producing the aluminum alloy extruded material for automotive structural members, which comprises cooling with a refrigerant from outside of a die-exit side, at the time of extrusion.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: April 6, 2004
    Assignees: The Furukawa Electric Co., Ltd., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Yoichiro Bekki, Noboru Hayashi
  • Publication number: 20040022662
    Abstract: A method for protecting an article from a high temperature, oxidative environment is presented, along with alloy compositions and ion plasma deposition targets suitable for use in the method. The method comprises providing a substrate, providing an ion plasma deposition target, and depositing a protective coating onto the substrate using the target in an ion plasma deposition process. The target comprises from about 2 atom percent to about 25 atom percent chromium, and the balance comprises aluminum.
    Type: Application
    Filed: July 31, 2002
    Publication date: February 5, 2004
    Applicant: General Electric Company
    Inventors: Don Mark Lipkin, Ji-Cheng Zhao
  • Patent number: 6623570
    Abstract: A casting alloy of the AlMgSi type comprises Magnesium 3.0 to 7.0 wt. % Silicon 1.7 to 3.0 wt. % Manganese 0.2 to 0.48 wt. % Iron 0.15 to 0.35 wt. % Titanium as desired max. 0.2 wt. % Ni 0.1 to 0.4 wt % and aluminum as the rest along with production related impurities, individually at most 0.02 wt. %, in total at most 0.2 wt. %, with the further provision that the magnesium and silicon are present in the alloy in a Mg:Si weight ratio of 1.7:1, corresponding to the composition of the quasi binary eutectic made up of the solid state phases Al and Mg2Si, whereby the deviation from the exact composition of the quasi-binary eutectic amounts to at most −0.5 to +0.3 wt. % for magnesium and −0.3 to +0.5 wt. % for silicon the finely dispersed precipitates of the intermetallic phase Mg2Si results in high ductility.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: September 23, 2003
    Assignee: Alcan Technology & Management Ltd.
    Inventors: Reinhard Winkler, Gunter Höllrigl, Jürgen Wuest, Klaus Währisch
  • Publication number: 20030156968
    Abstract: A heat-resistant, creep-resistant aluminum alloy according to the present invention contains at least 10 mass % and not more than 30 mass % of silicon, at least 3 mass % and not more than 10 mass % of at least either iron or nickel in total, at least 1 mass % and not more than 6 mass % of at least one rare earth element in total and at least 1 mass % and not more than 3 mass % of zirconium with the rest substantially consisting of aluminum, while the mean crystal grain size of silicon is not more than 2 &mgr;m, the mean grain size of compounds other than silicon is not more than 1 &mgr;m, and the mean crystal grain size of an aluminum matrix is at least 0.2 &mgr;m and not more than 2 &mgr;m. Thus, an aluminum alloy excellent in heat resistance and creep resistance is obtained.
    Type: Application
    Filed: November 20, 2002
    Publication date: August 21, 2003
    Inventors: Hisao Hattori, Terukazu Tukuoka, Takatoshi Takikawa
  • Patent number: 6602363
    Abstract: A corrosion resistant aluminum alloy has controlled amounts of iron, manganese, chromium, and titanium along with levels of copper, silicon, nickel, and no more than impurity levels of zinc. The alloy chemistry is tailored such that the electrolytic potential of the grain boundaries matches the alloy matrix material to reduce intergranular corrosion. The alloy is particularly suited for the manufacture of tubing for heat exchangers using extrusion and brazing techniques.
    Type: Grant
    Filed: April 23, 2001
    Date of Patent: August 5, 2003
    Assignee: Alcoa Inc.
    Inventor: Baolute Ren
  • Publication number: 20030086812
    Abstract: The invention relates to an aluminium brazing alloy, ideally suitable as fin stock material, having a composition, in weight %: Si 0.7-1.2, Mn 0.7-1.2, Mg up to 0.35, Fe up to 0.8, Zn up to 3.0, Ni up to 0.005, Cu up to 0.5, optionally one or more members selected from the group comprising Ti up to 0.20, In up to 0.20, Zr up to 0.25, V up to 0.25, and Cr up to 0.25, others up to 0.05 each and up to 0.15 in total, and an Al balance.
    Type: Application
    Filed: May 9, 2002
    Publication date: May 8, 2003
    Inventors: Adrianus Jacobus Wittebrood, Achim Burger, Klaus Vieregge, Job Anthonius Van Der Hoeven, Scott W. Haller
  • Patent number: 6408938
    Abstract: An aluminum alloy containing (in wt. %): 0.2-0.5 Fe; 0.7-1.2 Si; 1.2-1.6 Mn; up to 0.3 Mg; up to 0.5 Cu; up to 0.2 Zn; up to 0.1 Ti is used to make the fins of heat exchangers particularly car radiators. The finstock has high post braze strength and thermal conductivity, and has a sufficiently electronegative potential as to be capable of acting as a sacrificial anode for the heat exchanger tubes. By virtue of the absence of Sn, In, and Cr, these heat exchangers can be scrapped and melted for re-use.
    Type: Grant
    Filed: April 20, 1998
    Date of Patent: June 25, 2002
    Assignee: Alcan International Limited
    Inventors: Alan Gray, Richard Kendall Bolingbroke, John Michael Evans
  • Publication number: 20020041822
    Abstract: An aluminum filler alloy, particularly useful in fluxless controlled atmosphere brazing (CAB), contains from about 4% to 20% wt. % silicon (Si) and about 0.0008% to 0.06% sodium (Na). In addition to the sodium, the alloy may also contain bismuth (Bi) and/or potassium (K) in the ranges of about 0.0005% to 0.03% K, and from about 0.03% to 0.133% Bi. The filler metals can be clad to aluminum core alloys preferably from the 3XXX, 5XXX, or 6XXX alloys series.
    Type: Application
    Filed: June 21, 2001
    Publication date: April 11, 2002
    Inventor: David L. Childree
  • Patent number: 6355213
    Abstract: A novel aluminum die-cast material having all good properties of high fluidity, good corrosion resistance and high mechanical strength is disclosed. As its Mg content, a factor to increase mechanical strength, is increased to fall between 0.4 and 0.6% by weight, the material has good mechanical properties. As its Cu content, a factor to cause corrosion, is reduced to at most 0.15% by weight, the material has good corrosion resistance to seawater. As its Si content, a factor to increase casting fluidity, is increased to fall between 10.0 and 11.5% by weight, the material has good fluidity.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: March 12, 2002
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Norimasa Takasaki, Hiroyuki Murata, Yoshiyuki Matsuda, Nobuhiro Ishizaka
  • Patent number: 6337136
    Abstract: The present invention provides a support for a lithographic printing plate prepared by cold rolling a sheet while intermediate annealing is omitted to save energy and the number of the cold rolling steps are decreased to simplify the sheet production steps and to give a desired strength of the sheet, and by inhibiting precipitation of Si particles in the substrate to give extremely excellent resistance to ink staining in the nonimage areas during printing, and a process for producing a substrate therefore. The production process comprises homogenization heat-treating an aluminum alloy slab comprising 0.10 to 0.40 wt % of Fe, 0.03 to 0.15 wt % of Si, 0.004 to 0.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: January 8, 2002
    Assignees: Nippon Light Metal Company, Ltd., Fuji Photo Film Co., Ltd.
    Inventors: Hideki Suzuki, Ichiro Okamoto, Kazumitsu Mizushima, Tadashi Asahi, Hirokazu Sawada, Hirokazu Sakaki
  • Patent number: 6334978
    Abstract: The present invention is directed to the additions of alkaline earth metals, in particular strontium and optionally combinations with other metals, to aluminum and aluminum alloys to improve the appearance of, eliminate surface imperfections, and reduce the surface oxidation of the as-cast ingots.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: January 1, 2002
    Assignee: Alcoa, Inc.
    Inventors: David H. DeYoung, Mark J. Dunlay
  • Publication number: 20010028960
    Abstract: A new aluminium alloy containing (in wt. %): 0.2-0.5 Fe; 0.7-1.2 Si; 1.2-1.6 Mn; up to 0.3 Mg; up to 0.5 Cu; up to 0.2 Zn, up to 0.1 Ti is used to make the fins of heat exchangers particularly car radiators. The finstock has high post braze strength and thermal conductivity, and has a sufficiently electronegative potential as to be capable of acting as a sacrificial anode for the heat exchanger tubes. By virtue of the absence of Sn, In and Cr, these heat exchangers can be scrapped and melted for re-use.
    Type: Application
    Filed: April 20, 1998
    Publication date: October 11, 2001
    Applicant: ALCAN INTERNATIONAL LIMITED,
    Inventors: ALAN GRAY, RICHARD KENDALL BOLINGBROKE, JOHN MICHAEL EVANS
  • Patent number: 6210460
    Abstract: Compositions suitable for use as an inoculant for cast iron. The composition includes granules of intermetallic alloys selected from Al4Sr, Al2Sr, and AlSr. The composition consists essentially of 40 to 81 percent strontium by weight.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: April 3, 2001
    Assignee: Timminco Limited
    Inventors: Douglas J. Zuliani, Bahadir Kulunk
  • Patent number: 6132530
    Abstract: Aluminum-strontium enriched master alloy granules for use primarily in modifying the eutectic phase in aluminum-silicon casting alloys. The master alloy granules are predominantly intermetallic compounds Al.sub.4 Sr, Al.sub.2 Sr or AlSr and mixtures thereof. By using such intermetallic dominant alloys in a granulated state rapid dissolution in aluminum-silicon alloy melts is achieved. The master alloy composition can be directly added to a content of the melt or injected into it. The master alloy composition can also be mixed with aluminum granules and extruded into a rod or entrained into a billet of cast aluminum.
    Type: Grant
    Filed: November 10, 1998
    Date of Patent: October 17, 2000
    Assignee: Timminco Limited
    Inventors: Douglas J. Zuliani, Bahadir Kulunk
  • Patent number: 6127047
    Abstract: High temperature alloys resistant to degradation and oxidation are provided. In accordance with preferred embodiments, alloys comprising from about 0.1 to about 50 atomic percent silicon, from about 10 to about 80 atomic percent aluminum, and at least one metal selected from the group consisting of chromium, iridium, rhenium, palladium, platinum, rhodium, ruthenium, osmium, molybdenum, tungsten, niobium and tantalum are formed. Shaped bodies and structural members comprising such alloys are also described as are methods for their fabrication.
    Type: Grant
    Filed: February 18, 1992
    Date of Patent: October 3, 2000
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Wayne L. Worrell, Kang N. Lee
  • Patent number: 5882443
    Abstract: Aluminum-strontium enriched master alloy granules for use primarily in modifying the eutectic phase in aluminum-silicon casting alloys. The master alloy granules are predominantly intermetallic compounds Al.sub.4 Sr, Al.sub.2 Sr or Alsr and mixtures thereof. By using such intermetallic dominant alloys in a granulated state rapid dissolution in aluminum-silicon alloy melts is achieved. The master alloy composition can be directly added to a content of the melt or injected into it. The master alloy composition can also be mixed with aluminum granules and extruded into a rod or entrained into a billet of cast aluminum.
    Type: Grant
    Filed: June 28, 1996
    Date of Patent: March 16, 1999
    Assignee: Timminco Limited
    Inventors: Douglas J. Zuliani, Bahadir Kulunk
  • Patent number: 5837070
    Abstract: The invention relates to an aluminum alloy sheet heat treated by natural aging, quenching and possibly tempering so as to obtain a yield strength greater than 320 MPa, for use in mechanical, naval, aircraft, or spacecraft construction, with a composition (by weight) of:Si: 6.5 to 11%Mg: 0.5 to 1.0%Cu: <0.8%Fe: <0.
    Type: Grant
    Filed: January 22, 1996
    Date of Patent: November 17, 1998
    Assignee: Pechiney Rhenalu
    Inventors: Pierre Sainfort, Denis Bechet
  • Patent number: 5803995
    Abstract: The calcium-aluminum system hydrogen absorbing alloy of the present invention is an alloy which is composed of a mixture P of Ca with Mg and an Al base alloy Q, has a molar ratio P:Q of 1:1.5 to 2.8 and shows a Laves phase with the C15-type structure as the fundamental structure thereof.
    Type: Grant
    Filed: February 10, 1997
    Date of Patent: September 8, 1998
    Assignee: Agency of Industrial Science and Technology
    Inventors: Hideaki Tanaka, Hiroshi Miyamura, Nobuhiro Kuriyama, Tetsuo Sakai, Itsuki Uehara
  • Patent number: 5728479
    Abstract: The present invention provides a filler alloy for brazing, which includes about 4 to 18 wt. % silicon; about 0.001 to 0.4 wt. % magnesium; about 0.01 to 0.3 wt. % lithium; not more than about 2 wt. % zinc; not more than about 1.25 wt. % manganese; not more than about 0.30 wt. % iron; not more than about 0.10 wt. % copper; not more than 0.15 wt. % impurities; balance aluminum.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: March 17, 1998
    Inventors: David L. Childree, Edgar G. Eichhorn
  • Patent number: 5667600
    Abstract: Disclosed is a practical aluminum-based alloy containing 1 to 99 weight percent beryllium and improved methods for the investment casting of net shape aluminum-beryllium alloy parts.
    Type: Grant
    Filed: March 31, 1994
    Date of Patent: September 16, 1997
    Assignee: Brush Wellman, Inc.
    Inventors: Fritz C. Grensing, James M. Marder, Jere H. Brophy
  • Patent number: 5652005
    Abstract: A method of producing filled sandwich cookies to be fed by an auger into an ice cream stream to produce ice cream with filled cookies comprising baking dough in units of multiple cookie elements, of substantially round shape, applying filling to each cookie element of a portion of the units which have been produced, sandwiching other units onto the filling, and then separating the multiple sandwich cookie units into individual sandwich cookies; the units comprise multiple cookie elements of approximately round shape, and each of which is between one-half inch and seven eighths inch diameter, the units containing two rows with three cookies in each row, with juncture lines between adjacent cookies.
    Type: Grant
    Filed: May 29, 1996
    Date of Patent: July 29, 1997
    Assignee: Interbake Foods Inc.
    Inventor: Dennis J. Loalbo
  • Patent number: 5603783
    Abstract: A one-piece steering wheel is formed as a unitary casting from an alloy that includes 11.5% to 14% by weight silicon, and 350 to 450 parts per million strontium. Preferably the steering wheel mold is rotated during casting at relatively high rotational speeds exerting 100 g to 250 g force on the wheel. An optimum rotational speed is disclosed. A one-piece steering wheel formed according to the invention exhibits minimal length ferro-silicon hair-like strands, and thus exhibits reduced brittleness.
    Type: Grant
    Filed: June 21, 1994
    Date of Patent: February 18, 1997
    Assignee: M. J. Grootes Investments CC
    Inventor: Cornelius J. T. Ferreira
  • Patent number: 5578144
    Abstract: To provide a high-strength, high-ductility cast aluminum alloy, which enables a near-net shape product to be produced by improving the casting structure of an aluminum alloy, particularly by using specific constituents and controlling the cooling rate, and a process for producing the same. The high-strength, high-ductility cast aluminum alloy of the present invention is characterized in that it has a structure comprising fine grains of .alpha.-Al, having an average grain diameter of not more than 10 .mu.m, surrounded by a network of a compound of Al-lanthanide-base metal, the .alpha.-Al grains forming a domain, that the domain comprises an aggregate of .alpha.-Al grains which have been refined, cleaved, and ordered in a single direction and that it has a composition represented by the general formula Al.sub.a Ln.sub.b M.sub.c wherein a, b, and c are, in terms of by weight, respectively 75%.ltoreq.a.ltoreq.95%, 0.5%.ltoreq.b<15%, and 0.5%.ltoreq.c<15%.
    Type: Grant
    Filed: June 14, 1995
    Date of Patent: November 26, 1996
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuaki Satou, Yukio Okochi