Titanium, Zirconium, Hafnium, Vanadium, Noobium Or Tantalum Containing Patents (Class 420/551)
-
Patent number: 11035026Abstract: Al—Fe—Si alloys having optimized properties through the use of additives are disclosed. In some aspects, an alloy includes aluminum in a first amount, iron in a second amount, silicon in a third amount, and an additive in a fourth amount. The additive is selected from the group consisting of a non-metal additive, a transition-metal additive, a rare-metal additive, and combinations thereof. The first amount, the second amount, the third amount, and the fourth amount produce an alloy with a stoichiometric formula (Al1-xAx)3Fe2Si where A is the additive.Type: GrantFiled: October 10, 2018Date of Patent: June 15, 2021Assignee: GM Global Technology Operations LLCInventors: Zhongyi Liu, Daad B. Haddad, Julie A. Swartz
-
Patent number: 8951370Abstract: An aluminum alloy wire material, which has an alloy composition containing: 0.1 to 0.4 mass % of Fe, 0.1 to 0.3 mass % of Cu, 0.02 to 0.2 mass % of Mg, and 0.02 to 0.2 mass % of Si, and further containing 0.001 to 0.01 mass % of Ti and V in total, with the balance being Al and unavoidable impurities, in which a grain size is 5 to 25 ?m in a vertical cross-section in a wire-drawing direction of the wire material, in which, according to JIS Z 2241, a tensile strength (TS) is 80 MPa or more, an elongation (El) is 15% or more, and a 0.2% yield strength (YS; MPa) satisfies, together with the TS, a relationship represented by formula: 1.5?(TS/YS)?3, and in which an electrical conductivity is 55% IACS or more.Type: GrantFiled: July 18, 2011Date of Patent: February 10, 2015Assignee: Furukawa Electric Co., Ltd.Inventors: Shigeki Sekiya, Kuniteru Mihara, Kyota Susai
-
Patent number: 8926898Abstract: Disclosed is a lightweight aluminum based alloy that is high in strength and elongation properties at high temperatures of around 200° C. to 300° C. and has excellent workability in hot working. Disclosed also is a heat-resistant aluminum based alloy excellent in wear resistance and rigidity. Specifically, an aluminum based alloy contains, in terms of percent by mass, 5% to 10% of Mn; 0.5% to 5% of V; 0.5% to 5% of Cr; 0.5% to 5% of Fe; 1% to 8% of Si; 0.5% to 5% of Ni, with the balance being aluminum and inevitable impurities. The aluminum based alloy has a structure including 35 to 80 percent by volume of an intermetallic compound phase with the balance being an aluminum metal matrix.Type: GrantFiled: March 7, 2006Date of Patent: January 6, 2015Assignee: Kobe Steel, Ltd.Inventors: Toshiaki Takagi, Katsura Kajihara, Hideo Hata
-
Publication number: 20140086791Abstract: Provided is an Al alloy film for display devices, which has excellent heat resistance under high temperatures, low electric resistance (wiring resistance), and excellent corrosion resistance under alkaline environments. The present invention relates to an Al alloy film containing Ge (0.01-2.0 at. %) and a group X element (Ta, Ti, Zr, Hf, W, Cr, Nb, Mo, Ir, Pt, Re, and/or Os), wherein, with regard to precipitates each containing Al, the group X element and Ge generated when a heat treatment at 450 to 600° C. is carried out, the density of some of the precipitates which have equivalent circle diameters of 50 nm or more is controlled.Type: ApplicationFiled: February 27, 2012Publication date: March 27, 2014Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)Inventors: Hiroyuki Okuno, Toshihiro Kugimiya
-
Publication number: 20130199680Abstract: Aluminum die casting alloy comprising 2 to 6% by weight nickel, 0.1 to 0.4% by weight zirconium, 0.1 to 0.4% by weight vanadium, optionally up to 5% by weight manganese, optionally up to 2% by weight iron, optionally up to 1% by weight titanium, optionally total max. 5% by weight transition elements including scandium, lanthanum, yttrium, hafnium, niobium, tantalum, chromium and/or molybdenum, and aluminum as the remainder with further elements and impurities due to production total max. 1% by weight.Type: ApplicationFiled: April 6, 2011Publication date: August 8, 2013Applicant: RHEINFELDEN ALLOYS GMBH & CO. KGInventors: Diran Apelian, Makhlouf M. Makhlouf
-
Publication number: 20120321507Abstract: An aluminum alloy conductor, containing: 0.4 to 0.9 mass % of Fe, with the balance being Al and inevitable impurities, wherein the conductor contains two kinds of intermetallic compounds A and B, in which the intermetallic compounds A and B have a particle size of 0.1 ?m or more but 2 ?m or less, and 0.03 ?m or more but less than 0.1 ?m, respectively, and area ratios a and b of the intermetallic compounds A and B, in an arbitrary region in the conductor, satisfy: 1%?a?6%, and 1%?b?5%.Type: ApplicationFiled: August 24, 2012Publication date: December 20, 2012Inventors: Shigeki SEKIYA, Kyota Susai
-
Publication number: 20120308430Abstract: The present invention provides a sealing ring and a preparation method thereof. The sealing ring, based on percent by weight, includes 80%-85% of aluminum, 10%-15% of titanium, 0.1%-1% of scrap iron, and 4%-4.9% of potassium fluoroaluminate. Moreover, the present invention provides a method for preparing sealing ring, which includes the following steps: Step A: melting the aluminum in a medium-frequency induction furnace, adding the potassium fluoroaluminate to the medium-frequency induction furnace after melting the aluminum, melting and stirring the mixture evenly; Step B: adding titanium scrap or sponge titanium, and scrap iron to the mixture successively, melting and mixing the mixture totally at 800° C. to 1200° C., standing the mixture after stirring evenly; Step C: removing scum on the surface; Step D: casting into a mould to obtain a final sealing ring.Type: ApplicationFiled: August 14, 2012Publication date: December 6, 2012Applicant: Shenzhen Sunxing Light Alloys Materials Co., Ltd.Inventors: Xuemin CHEN, Qingdong YE, Jimin YUAN, Liping HU, Ming YIN
-
Patent number: 8303736Abstract: A casted aluminum alloy obtained by casting a molten metal of an aluminum alloy, an aluminum alloy material obtained by at least heating the casted aluminum alloy, and methods for producing them. In the production of the casted aluminum alloy, a molten metal is obtained by melting an aluminum alloy containing 0.8 to 5 mass % of Fe, 0.15 to 1 mass % of Ti, Zr or the like as third component elements in an specific amount, and a residual part containing Al and inevitable impurities at a certain temperature (melting step). Subsequently, the molten metal is cast into a plate-like shape by a casting mold while cooling the molten metal to a temperature that is lower by at least 10° C. than a solidus temperature of the aluminum alloy at a cooling rate of 150° C./sec. or more and less than 10000° C./sec. (casting step).Type: GrantFiled: January 22, 2008Date of Patent: November 6, 2012Assignee: Kabushiki Kaisha Toyota Chuo KenkyushoInventor: Hideaki Matsuoka
-
Patent number: 8182742Abstract: An aluminum-based bearing alloy material and a bearing made therefrom is described, the bearing material having a composition comprising in weight %: 5-10 tin; 0.8-1.3 copper; 0.8-1.3 nickel; 1.5-3 silicon; 0.13-0.19 vanadium; 0.8-1.2 manganese; 0.4-0.6 chromium; balance aluminum apart from incidental impurities.Type: GrantFiled: July 5, 2007Date of Patent: May 22, 2012Assignee: Mahle International GmbHInventors: Kenneth Macleod Mcmeekin, Patricia Morton McMeekin, legal representative, Raymond Bridgeman
-
Patent number: 8118951Abstract: An aluminum alloy sheet for a lithographic printing plate includes 0.03 to 0.15% (mass %, hereinafter the same) of Si, 0.2 to 0.7% of Fe, 0.05 to 0.5% of Mg, 0.003 to 0.05% of Ti, and 30 to 300 ppm of Ga, with the balance being aluminum and inevitable impurities, a surface area of the aluminum alloy sheet having an average recrystallized grain size of 50 ?m or less in a direction perpendicular to a rolling direction, an Mg concentration that is higher than the average Mg concentration by a factor of 5 to 50, and a Ga concentration that is higher than the average Ga concentration by a factor of 2 to 20, the surface area being an area up to a depth of 0.2 ?m from the surface of the aluminum alloy sheet.Type: GrantFiled: October 30, 2009Date of Patent: February 21, 2012Assignees: Fujifilm Corporation, Sumitomo Light Metal Industries, Ltd.Inventors: Akio Uesugi, Atsushi Matsuura, Hiroshi Ougi, Atsushi Hibino
-
Patent number: 8017072Abstract: An improved L12 aluminum alloy having magnesium or nickel; at least one of scandium, erbium, thulium, ytterbium, and lutetium; at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium; and at least one ceramic reinforcement. Aluminum oxide, silicon carbide, aluminum nitride, titanium boride, titanium diboride and titanium carbide are suitable ceramic reinforcement particles. These alloys derive strengthening from mechanisms based on dislocation-particle interaction and load transfer to stiffen reinforcements.Type: GrantFiled: April 18, 2008Date of Patent: September 13, 2011Assignee: United Technologies CorporationInventor: Awadh B. Pandey
-
Patent number: 8002912Abstract: High temperature aluminum alloys that can be used at temperatures from about ?420° F. (?251° C.) up to about 650° F. (343° C.) are described. The alloys are strengthened by dispersion of particles based on the L12 intermetallic compound Al3X. These alloys comprise aluminum, at least one of nickel, iron and chromium; at least one of scandium, erbium, thulium, ytterbium, and lutetium, and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, and niobium.Type: GrantFiled: April 18, 2008Date of Patent: August 23, 2011Assignee: United Technologies CorporationInventor: Awadh B. Pandey
-
Patent number: 7998402Abstract: An aluminium alloy product having high strength, excellent corrosion resistance and weldability, having the following composition in wt. %: Mg 3.5 to 6.0, Mn 0.4 to 1.2, Fe<0.5, Si<0.5, Cu<0.15, Zr<0.5, Cr<0.3, Ti 0.03 to 0.2, Sc<0.5, Zn<1.7, Li<0.5, Ag<0.4, optionally one or more of the following dispersoid forming elements selected from the group consisting of erbium, yttrium, hafnium, vanadium, each <0.5 wt. %, and impurities or incidental elements each <0.05, total <0.15, and the balance being aluminium.Type: GrantFiled: August 14, 2006Date of Patent: August 16, 2011Assignee: Aleris Aluminum Koblenz, GmbHInventors: Nadia Telioui, Steven Dirk Meijers, Andrew Norman, Achim Buerger, Sabine Maria Spangel
-
Patent number: 7959856Abstract: Aluminum alloys and castings are provided that have excellent practical fatigue resistances. The alloy includes, based upon 100 mass %, 4-12 mass % of Si, less than 0.2 mass % of Cu, 0.1-0.5 mass % of Mg, 0.2-3.0 mass % of Ni, 0.1-0.7 mass % of Fe, 0.15-0.3 mass % of Ti, and the balance of aluminum (Al) and impurities. The alloy has a metallographic structure, which includes a matrix phase primarily of ?-Al and a skeleton phase crystallizing around the matrix phase in a network shape. The matrix phase is strengthened by precipitates containing Mg. Because of the strengthened matrix phase, and the skeleton phase that surrounds it, the castings have high strength, high fatigue strength, and high thermo-mechanical fatigue resistance.Type: GrantFiled: October 14, 2004Date of Patent: June 14, 2011Assignee: Kabushiki Kaisha Toyota Chuo KenkyushoInventors: Hajime Ikuno, Hiroshi Hohjo, Yoshihiko Sugimoto, Isamu Ueda, Hiroaki Iwahori
-
Patent number: 7938916Abstract: An aluminum alloy sheet for a lithographic printing plate is obtained by homogenizing an ingot of an aluminum alloy at 500 to 610° C. for one hour or more, the aluminum alloy containing 0.03 to 0.15% of Si, 0.2 to 0.6% of Fe, 0.005 to 0.05% of Ti, and 2 to 30 ppm of Pb, with the balance being aluminum and unavoidable impurities, subjecting the homogenized product to rough hot rolling, a start temperature of the rough hot rolling being 430 to 500° C. and a finish temperature of the rough hot rolling being 400° C. or more, holding the product subjected to rough hot rolling for 60 to 300 seconds after the completion of the rough hot rolling to recrystallize the surface of the product, and subjecting the resulting product to finish hot rolling that is finished at 320 to 370° C.Type: GrantFiled: June 13, 2008Date of Patent: May 10, 2011Assignees: Fujifilm Corporation, Sumitomo Light Metal Industries, Ltd.Inventors: Akio Uesugi, Atsushi Matsuura, Hiroshi Ougi, Atsushi Hibino
-
Publication number: 20110064599Abstract: A method for producing a high strength aluminum alloy brackets, cases, tubes, ducts, beams, spars and other parts containing L12 dispersoids from an aluminum alloy powder containing the L12 dispersoids. The powder is consolidated into a billet having a density of about 100 percent. The billet is extruded using an extrusion die shaped to produce the component.Type: ApplicationFiled: September 15, 2009Publication date: March 17, 2011Applicant: UNITED TECHNOLOGIES CORPORATIONInventor: Awadh B. Pandey
-
Patent number: 7901521Abstract: An aluminum base alloy is produced by supercooling a molten alloy composed mainly of aluminum. The molten alloy contains an element capable of forming a quasicrystalline phase, an element which aids formation of the quasicrystals, and an element which stabilizes a supercooled state of the molten alloy and delays crystallization of a crystalline phase, and is composed of a mixed composition of a fine amorphous phase and an aluminum crystalline phase or an aluminum supersaturated solid solution phase, or a single phase of only an amorphous phase.Type: GrantFiled: March 28, 2008Date of Patent: March 8, 2011Assignee: Honda Motor Co., Ltd.Inventors: Masashi Fujita, Akihisa Inoue, Hisamichi Kimura
-
Patent number: 7875131Abstract: An improved amorphous aluminum alloy having high strength, ductility, corrosion resistance and fracture toughness is disclosed. The alloy has an amorphous phase and a coherent L12 phase. The alloy has nickel, cerium, at least one of scandium, erbium, thulium, ytterbium, and lutetium; and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, niobium and iron. The volume fraction of the amorphous phase ranges from about 50 percent to about 95 percent and the volume fraction of the coherent L12 phase ranges from about 5 percent to about 50 percent.Type: GrantFiled: April 18, 2008Date of Patent: January 25, 2011Assignee: United Technologies CorporationInventor: Awadh B. Pandey
-
Patent number: 7875132Abstract: High temperature aluminum alloys that can be used at temperatures from about ?420° F. (?251° C.) up to about 650° F. (343° C.) are described herein. These alloys comprise aluminum; scandium; at least one of nickel, iron, chromium, manganese and cobalt; and at least one of zirconium, gadolinium, hafnium, yttrium, niobium and vanadiuim. These alloys comprise an aluminum solid solution matrix and a mixture of various dispersoids. These alloys are substantially free of magnesium.Type: GrantFiled: May 31, 2005Date of Patent: January 25, 2011Assignee: United Technologies CorporationInventor: Awadh B. Pandey
-
Publication number: 20100247858Abstract: The invention concerns a system, in particular suitable for high power engines, comprising at least a rotor and means comprising active sections fit for making the rotor(s) rotate by their synchronised deformation, characterised in that the rotor material comprises an Al, Fe alloy with at least one other element, the alloy comprising at least more or less 80% in weight of Al and at least between 0.1 and 15.0% in weight in Fe.Type: ApplicationFiled: May 30, 2006Publication date: September 30, 2010Inventors: Oscar D'Almeida, Mathias Woydt, Jean-Thierry Audren
-
Publication number: 20100098580Abstract: A casted aluminum alloy obtained by casting a molten metal of an aluminum alloy, an aluminum alloy material obtained by at least heating the casted aluminum alloy, and methods for producing them. In the production of the casted aluminum alloy, a molten metal is obtained by melting an aluminum alloy containing 0.8 to 5 mass % of Fe, 0.15 to 1 mass % of Ti, Zr or the like as third component elements in an specific amount, and a residual part containing Al and inevitable impurities at a certain temperature (melting step). Subsequently, the molten metal is cast into a plate-like shape by a casting mold while cooling the molten metal to a temperature that is lower by at least 10° C. than a solidus temperature of the aluminum alloy at a cooling rate of 150° C./sec. or more and less than 10000° C./sec. (casting step).Type: ApplicationFiled: January 22, 2008Publication date: April 22, 2010Applicant: Kabushiki Kaisha Toyota Chuo KenkyushoInventor: Hideaki Matsuoka
-
Patent number: 7682469Abstract: A piston made of aluminum cast alloy having a main body section in an approximately cylindrical shape, atop face section provided and arranged so as to occlude one end of the main body section, and a pin boss section in which a pin hole is provided so as to penetrate through the main body section in a radial direction. The piston comprises an aluminum cast alloy containing Mg (Magnesium): equal to or less than 0.2 mass %, Ti (Titanium) 0.05-0.3 mass %, Si (Silicon): 10-21 mass %, Cu (Copper): 2-3.5 mass %, Fe (Iron): 0.1-0.7 mass %, Ni (Nickel): 1-3 mass %, P (Phosphorus): 0.001-0.02 mass %, Al (Aluminum): the remaining portions, and impurities.Type: GrantFiled: July 17, 2003Date of Patent: March 23, 2010Assignee: Kabushiki Kaisha Toyota Chuo KenkyushoInventors: Hajime Ikuno, Yoshihiko Sugimoto, Hiroshi Hohjo
-
Publication number: 20090263266Abstract: An improved amorphous aluminum alloy having high strength, ductility, corrosion resistance and fracture toughness is disclosed. The alloy has an amorphous phase and a coherent L12 phase. The alloy has nickel, cerium, at least one of scandium, erbium, thulium, ytterbium, and lutetium; and at least one of gadolinium, yttrium, zirconium, titanium, hafnium, niobium and iron. The volume fraction of the amorphous phase ranges from about 50 percent to about 95 percent and the volume fraction of the coherent L12 phase ranges from about 5 percent to about 50 percent.Type: ApplicationFiled: April 18, 2008Publication date: October 22, 2009Applicant: United Technologies CorporationInventor: Awadh B. Pandey
-
Publication number: 20090041616Abstract: Disclosed is a lightweight aluminum based alloy that is high in strength and elongation properties at high temperatures of around 200° C. to 300° C. and has excellent workability in hot working. Disclosed also is a heat-resistant aluminum based alloy excellent in wear resistance and rigidity. Specifically, an aluminum based alloy contains, in terms of percent by mass, 5% to 10% of Mn; 0.5% to 5% of V; 0.5% to 5% of Cr; 0.5% to 5% of Fe; 1% to 8% of Si; 0.5% to 5% of Ni, with the balance being aluminum and inevitable impurities. The aluminum based alloy has a structure including 35 to 80 percent by volume of an intermetallic compound phase with the balance being an aluminum metal matrix.Type: ApplicationFiled: March 7, 2006Publication date: February 12, 2009Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)Inventors: Toshiaki Takagi, Katsura Kajihara, Hideo Hata
-
Publication number: 20090022622Abstract: A physical vapor deposition target for the manufacturing of flat panel displays is provided. The target includes a ternary alloy system having, by atom percent, a first component in an amount of about 90 to 99.98, wherein the first component is aluminum, a second component in an amount of about 0.01 to 2.0, wherein the second component is a rare earth element is selected from the group consisting of Nd, Ce, Dy and Gd, and a third component in an amount of about 0.01 to 8.0, wherein the third element is selected from the group consisting of Ni, Co, Mo, Sc, and Hf.Type: ApplicationFiled: April 3, 2006Publication date: January 22, 2009Inventors: Jaydeep Sarkar, Chi-Fung Lo, Paul S. Gilman
-
Publication number: 20080138239Abstract: Aluminum alloys having improved strength at 300° C. characterized by formation from an intermediate amorphous state to a final fcc matrix hardened by optimal 25 nm-diameter Ll2 precipitates with an interphase misfit less than about 4% in all three dimensions and Al23Ni6M4 precipitates where M is one or more elements selected from the group consisting of Y and Yb. An appropriate melt of aluminum with selected transition metals (Co, Cu, Fe, Ni, Ti, Y) and Ll2 stabilizers (Sc, Yb) in amounts of about 2 to 12 and 2 to 15 atomic percent, respectively, is processed to achieve an intermediate amorphous state to dissolve Ll2-forming components. The amorphous alloys are then thermo-mechanically devitrified to a final crystalline microstructure. The alloys have good ductility and a short-term tensile strength exceeding about 275 MPa (40 ksi) at 300° C., and are useful for applications such as high-temperature turbine engine components or aircraft structural components.Type: ApplicationFiled: August 3, 2007Publication date: June 12, 2008Applicant: QuesTek Innovatioans LLCInventors: Gregory B. Olson, Weijia Tang, Caian Qiu, Herng-Jeng Jou
-
Patent number: 7211160Abstract: An aluminum alloy piping material for automotive tubes having excellent tube expansion formability by bulge forming at the tube end and superior corrosion resistance, which is suitably used for a tube connecting an automotive radiator and heater, or for a tube connecting an evaporator, condenser, and compressor. The aluminum alloy piping material is an annealed material of an aluminum alloy containing 0.3 to 1.5% of Mn, 0.20% or less of Cu, 0.10 to 0.20% of Ti, more than 0.20% but 0.60% or less of Fe, and 0.50% or less of Si with the balance being aluminum and unavoidable impurities, wherein the aluminum alloy piping material has an average crystal grain size of 100 ?m or less, and Ti-based compounds having a grain size (circle equivalent diameter, hereinafter the same) of 10 ?m or more do not exist as an aggregate of two or more serial compounds in a single crystal grain.Type: GrantFiled: September 29, 2003Date of Patent: May 1, 2007Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.Inventors: Yoshiharu Hasegawa, Haruhiko Miyachi, Takahiro Koyama, Yoshifusa Shoji
-
Patent number: 7169478Abstract: Multinary alloys, in particular for use as coatings, if appropriate in combination with other types of layers, for components which are exposed to high temperatures and corrosive gases. The alloys are of the general form: Al—Ni—Ru-M, where at least one B2 phase is present, the aluminum content being in the range from 26–60 atomic percent and where M may be one or more metals and/or semimetals selected from the group consisting of: precious metal, transition metal, rare earths, semimetal. Multinary alloys of this type are very stable with respect to oxidation, have a low thermal conductivity and in particular have similar coefficients of thermal expansion to superalloys, which are usually used as substrates for protective coatings of this type in gas turbine components.Type: GrantFiled: July 16, 2004Date of Patent: January 30, 2007Assignee: Alstom Technology Ltd.Inventors: Anton Kaiser, Valery Shklover, Walter Steurer, Ivan Victor Vjunitsky
-
Patent number: 7070866Abstract: In one embodiment of the invention, a NiAl overlay bond coating composition comprises a NiAl alloy. The alloy comprises Zr and at least one modifying element in an amount effective to form a stabilized oxide structure comprising stabilized zirconia including a substantially tetragonal structure upon oxidation of the alloy. The tetragonal structure is stabilized such that it does not change phases and revert to a monoclinic or monoclinic and tetragonal structure, which is not substantially tetragonal, upon thermal cycling.Type: GrantFiled: May 27, 2004Date of Patent: July 4, 2006Assignee: General Electric CompanyInventors: Joseph D. Rigney, David R. Clarke, Ramgopal Darolia
-
Patent number: 6974510Abstract: High strength, high ductility aluminum base alloys containing from 3 to 18.5 atomic percent nickel and 3 to 14.0 atomic percent yttrium, said alloy being in the devitrified state and containing less than 40 percent intermetallic phases.Type: GrantFiled: February 28, 2003Date of Patent: December 13, 2005Assignee: United Technologies CorporationInventor: Thomas J. Watson
-
Patent number: 6962673Abstract: A heat-resistant, creep-resistant aluminum alloy according to the present invention contains at least 10 mass % and not more than 30 mass % of silicon, at least 3 mass % and not more than 10 mass % of at least either iron or nickel in total, at least 1 mass % and not more than 6 mass % of at least one rare earth element in total and at least 1 mass % and not more than 3 mass % of zirconium with the rest substantially consisting of aluminum, while the mean crystal grain size of silicon is not more than 2 ?m, the mean grain size of compounds other than silicon is not more than 1 ?m, and the mean crystal grain size of an aluminum matrix is at least 0.2 ?m and not more than 2 ?m. Thus, an aluminum alloy excellent in heat resistance and creep resistance is obtained.Type: GrantFiled: March 20, 2002Date of Patent: November 8, 2005Assignee: Sumitomo Electric Sintered Alloy, Ltd.Inventors: Hisao Hattori, Terukazu Tokuoka, Takatoshi Takikawa
-
Patent number: 6929726Abstract: A sputtering target consists essentially of 0.1 to 50% by weight of at least one kind of element that forms an intermetallic compound with Al, and the balance of Al. The element that forms an intermetallic compound with Al is uniformly dispersed in the target texture, and in a mapping of EPMA analysis, a portion of which count number of detection sensitivity of the element is 22 or more is less than 60% by area ratio in a measurement area of 20×20 ?m. According to such a sputtering target, even when a sputtering method such as long throw sputtering or reflow sputtering is applied, giant dusts or large concavities can be suppressed in occurrence.Type: GrantFiled: January 8, 2004Date of Patent: August 16, 2005Assignee: Kabushiki Kaisha ToshibaInventors: Koichi Watanabe, Takashi Ishigami
-
Patent number: 6783730Abstract: There is claimed an Al—Ni—Mn based alloy for die casting, squeeze casting, permanent mold casting, sand casting and/or semi-solid metal forming. The composition of this alloy includes, by weight percent: about 2-6% Ni, about 1-3% Mn, less than about 1% Fe, less than about 1% Si, the balance Al, incidental elements and impurities. It is suitable for aerospace and automotive cast parts.Type: GrantFiled: December 20, 2002Date of Patent: August 31, 2004Assignee: Alcoa Inc.Inventors: Jen C. Lin, Vadim S. Zolotorevsky, Michael V. Glazoff, Shawn J. Murtha, Nicholas A. Belov
-
Patent number: 6783869Abstract: The invention relates to an aluminium alloy for an anti-friction element containing respectively, as a % by weight, 4.2% to 4.8% Zn, 3.0% to 7.0% Si, 0.8% to 1.2% Cu, 0.7% to 1.3% Pb, 0.12% to 0.18% Mg, 0% to 0.3% Mn and 0% to 0.2% Ni. Also incorporated, based on % by weight, are 0.05% to 0.1% Zr, 0% to 0.05% Ti, 0% to 0.4% Fe, 0% to 0.2% Sn. The rest is formed by Al with the usual incidental impurities depending on the melt.Type: GrantFiled: November 7, 2002Date of Patent: August 31, 2004Assignee: MIBA Gleitlager AktiengesellschaftInventors: Johannes Humer, Herbert Kirsch, Markus Manner, Robert Mergen
-
Publication number: 20040140197Abstract: A sputtering target consists essentially of 0.1 to 50% by weight of at least one kind of element that forms an intermetallic compound with Al, and the balance of Al. The element that forms an intermetallic compound with Al is uniformly dispersed in the target texture, and in a mapping of EPMA analysis, a portion of which count number of detection sensitivity of the element is 22 or more is less than 60% by area ratio in a measurement area of 20×20 &mgr;m. According to such a sputtering target, even when a sputtering method such as long throw sputtering or reflow sputtering is applied, giant dusts or large concavities can be suppressed in occurrence.Type: ApplicationFiled: January 8, 2004Publication date: July 22, 2004Applicant: KABUSHIKI KAISHA TOSHIBAInventors: Koichi Watanabe, Takashi Ishigami
-
Publication number: 20040131495Abstract: An aluminum alloy piping material for automotive tubes having excellent tube expansion formability by bulge forming at the tube end and superior corrosion resistance, which is suitably used for a tube connecting an automotive radiator and heater, or for a tube connecting an evaporator, condenser, and compressor. The aluminum alloy piping material is an annealed material of an aluminum alloy comprising 0.3 to 1.5% of Mn, 0.20% or less of Cu, 0.10 to 0.20% of Ti, more than 0.20% but 0.60% or less of Fe, and 0.50% or less of Si with the balance being aluminum and unavoidable impurities, wherein the aluminum alloy piping material has an average crystal grain size of 100 &mgr;m or less, and Ti-based compounds having a grain size (circle equivalent diameter, hereinafter the same) of 10 &mgr;m or more do not exist as an aggregate of two or more serial compounds in a single crystal grain.Type: ApplicationFiled: September 29, 2003Publication date: July 8, 2004Inventors: Yoshiharu Hasegawa, Haruhiko Miyachi, Takahiro Koyama, Yoshifusa Shoji
-
Patent number: 6736947Abstract: A sputtering target consists essentially of 0.1 to 50% by weight of at least one kind of element that forms an intermetallic compound with Al, and the balance of Al. The element that forms an intermetallic compound with Al is uniformly dispersed in the target texture, and in a mapping of EPMA analysis, a portion of which count number of detection sensitivity of the element is 22 or more is less than 60% by area ratio in a measurement area of 20×20 &mgr;m. According to such a sputtering target, even when a sputtering method such as long throw sputtering or reflow sputtering is applied, giant dusts or large concavities can be suppressed in occurrence.Type: GrantFiled: June 23, 2000Date of Patent: May 18, 2004Assignee: Kabushiki Kaisha ToshibaInventors: Koichi Watanabe, Takashi Ishigami
-
Patent number: 6736911Abstract: An aluminum alloy contains at least 0.0001 mass % and not more than 0.03 mass % of copper, at least 0.0005 mass % and not more than 0.2 mass % of silicon, at least 0.5 mass % and not more than 4 mass % of manganese and at least 0.5 mass % and not more than 3 mass % of iron, and the rest contains aluminum and unavoidable impurities. The aluminum alloy further contains at least one of at least 0.01 mass % and not more than 0.5 mass % of chromium, at least 0.01 mass % and not more than 0.5 mass % of titanium and at least 0.01 mass % and not more than 0.5 mass % of zirconium. An aluminum alloy foil is prepared by heating up the aluminum alloy to a temperature of at leas 350° C. and not more than 580° C., holding the same immediately after the heating up or retaining an ingot of the aluminum alloy at a temperature of at least 350° C. and not more than 530° C. for not more than 15 hours, thereafter performing hot rolling at a starting temperature of at least 350° C. and not more than 530° C.Type: GrantFiled: December 21, 2001Date of Patent: May 18, 2004Assignee: Toyo Aluminium Kabushiki KaishaInventors: Akinori Ro, Masaaki Abe, Yoshiki Hashizume
-
Patent number: 6676898Abstract: A bearing and a bearing alloy composition are described, the bearing alloy comprising in weight %: tin 5-10; copper 0.7-1.3; nickel 0.7-1.3; silicon 1.5-3.5; vanadium 0.1-0.3; manganese 0.1-0.3; and the balance being aluminium apart from unavoidable impurities.Type: GrantFiled: December 11, 2000Date of Patent: January 13, 2004Assignee: Dana CorporationInventors: Kenneth Macleod McMeekin, Ian David Massey
-
Patent number: 6638376Abstract: An aluminum alloy piping material exhibiting good corrosion resistance and having an excellent workability, such as bulge formation capability at the pipe ends. The aluminum alloy piping material is suitably used for pipes connecting automotive radiators and heaters or pipes connecting evaporators, condensers, and compressors. The aluminum alloy material is formed from an aluminum alloy which contains 0.3-1.5% of Mn, 0.20% or less of Cu, 0.06-0.30% of Ti, 0.01-0.20% of Fe, and 0.01-0.20% of Si, with the balance being Al and impurities, wherein, among Si compounds, Fe compounds, and Mn compounds present in the matrix, the number of compounds with a particle diameter of 0.5 &mgr;m or more is 2×104 or less per mm2. The aluminum alloy piping material may further comprise 0.4% or less of Mg.Type: GrantFiled: September 14, 2001Date of Patent: October 28, 2003Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.Inventors: Yoshiharu Hasegawa, Haruhiko Miyachi, Hirokazu Tanaka, Yoshifusa Shoji, Takahiro Koyama, Toshihiko Fukuda
-
Patent number: 6610247Abstract: The invention relates to an aluminium brazing alloy, ideally suitable as fin stock material, having the composition, in weight %: Si 0.4-1.0, Mn 0.7-1.2, Mg up to 0.10, Fe up to 0.8, Zn up to 3.0, Ni 0.5-0.9, Cu up to 0.15, optionally one or more selected from the group consisting of Ti up to 0.20, In up to 0.20, Zr up to 0.25, V up to 0.25 and Cr up to 0.25, other elements up to 0.05 each, up to 0.15 in total, Al balance.Type: GrantFiled: May 13, 2002Date of Patent: August 26, 2003Assignee: Corus Aluminium Walzprodukte GmbHInventors: Adrianus Jacobus Wittebrood, Achim Bürger, Klaus Vieregge, Job Anthonius Van Der Hoeven, Scott W. Haller
-
Publication number: 20030156968Abstract: A heat-resistant, creep-resistant aluminum alloy according to the present invention contains at least 10 mass % and not more than 30 mass % of silicon, at least 3 mass % and not more than 10 mass % of at least either iron or nickel in total, at least 1 mass % and not more than 6 mass % of at least one rare earth element in total and at least 1 mass % and not more than 3 mass % of zirconium with the rest substantially consisting of aluminum, while the mean crystal grain size of silicon is not more than 2 &mgr;m, the mean grain size of compounds other than silicon is not more than 1 &mgr;m, and the mean crystal grain size of an aluminum matrix is at least 0.2 &mgr;m and not more than 2 &mgr;m. Thus, an aluminum alloy excellent in heat resistance and creep resistance is obtained.Type: ApplicationFiled: November 20, 2002Publication date: August 21, 2003Inventors: Hisao Hattori, Terukazu Tukuoka, Takatoshi Takikawa
-
Publication number: 20030152478Abstract: There is claimed an Al—Ni—Mn based alloy for die casting, squeeze casting, permanent mold casting, sand casting and/or semi-solid metal forming. The composition of this alloy includes, by weight percent: about 0.5-6% Ni, about 1-3% Mn, less than about 1% Fe, less than about 1% Si, less than about 0.3% Ti, and less than about 0.06% B, the balance Al, incidental elements and impurities. It is suitable for aerospace and automotive cast parts.Type: ApplicationFiled: December 20, 2002Publication date: August 14, 2003Inventors: Jen C. Lin, Vadim S. Zolotorevsky, Michael V. Glazoff, Shawn J. Murtha, Nicholas A. Belov
-
Publication number: 20030150532Abstract: When using AA3000 series and AA1000 series aluminum alloys to produce extruded products for heat exchanger applications, by controlling the level of copper and nickel in the alloy to very low levels it is possible to produce excellent corrosion resistance both before and after a brazing cycle. To achieve these results, the copper content should be no more than 0.006% by weight and the nickel no more than 0.005% by weight. A typical alloy of the invention contains about 0.001-0.5% by weight manganese, 0.001-0.7% by weight iron, 0.001-0.02% by weight titanium, 0.001-0.3% by weight silicon, less than 0.006% by weight copper, less than 0.005% by weight nickel and 0.001-0.02% by weight zinc, with the balance consisting of aluminum and incidental impurities. No zinc addition to the alloy is required either by zinc spraying or by alloy addition.Type: ApplicationFiled: December 5, 2002Publication date: August 14, 2003Inventors: Pierre Henri Marois, Nicholas Parson
-
Patent number: 6602363Abstract: A corrosion resistant aluminum alloy has controlled amounts of iron, manganese, chromium, and titanium along with levels of copper, silicon, nickel, and no more than impurity levels of zinc. The alloy chemistry is tailored such that the electrolytic potential of the grain boundaries matches the alloy matrix material to reduce intergranular corrosion. The alloy is particularly suited for the manufacture of tubing for heat exchangers using extrusion and brazing techniques.Type: GrantFiled: April 23, 2001Date of Patent: August 5, 2003Assignee: Alcoa Inc.Inventor: Baolute Ren
-
Patent number: 6596412Abstract: The invention relates to an aluminum alloy, to a plain bearing and to a method of manufacturing a layer, particularly for a plain bearing, to which there is added as a main alloy component tin (14) and a hard material (15) from at least one first element group containing iron, manganese, nickel, chromium, cobalt, copper or platinum, magnesium, or antimony. Added to the aluminum alloy from the first elementary group is a quantity of elements for forming inter-metallic phases, e.g. aluminide formation, in the boundary areas of the matrix, and further at least one further element from a second element group containing manganese, antimony, chromium, tungsten, niobium, vanadium, cobalt, silver, molybdenum of zirconium, for substituting a portion at least of a hard material of the first element group in order to form approximately spherical or cuboid aluminides (7).Type: GrantFiled: June 15, 1998Date of Patent: July 22, 2003Assignee: Miba Gleitlager AktiengesellschaftInventor: Robert Mergen
-
Patent number: 6592687Abstract: A cast article from an aluminum alloy, which has improved mechanical properties at elevated temperatures, has the following composition in weight percent: Silicon 14-25.0, Copper 5.5-8.0, Iron 0.05-1.2, Magnesium 0.5-1.5, Nickel 0.05-0.9, Manganese 0.05-1.0, Titanium 0.05-1.2, Zirconium 0.05-1.2, Vanadium 0.05-1.2, Zinc 0.05-0.9, Phosphorus 0.001-0.1, and the balance is Aluminum, wherein the silicon-to-magnesium ratio is 10-25, and the copper-to-magnesium ratio is 4-15. The aluminum alloy contains a simultaneous dispersion of three types of Al3X compound particles (X═Ti, V, Zr) having a L12 crystal structure, and their lattice parameters are coherent to the aluminum matrix lattice. A process for producing this cast article is also disclosed, as well as a metal matrix composite, which includes the aluminum alloy serving as a matrix and containing up to about 60% by volume of a secondary filler material.Type: GrantFiled: July 11, 2002Date of Patent: July 15, 2003Assignee: The United States of America as represented by the National Aeronautics and Space AdministrationInventors: Jonathan A. Lee, Po-Shou Chen
-
Patent number: 6517954Abstract: The invention relates to an aluminium alloy, in particular for a layer of a friction bearing, for example, which, apart from aluminium and smelt-related impurities, additionally contains soft-phase formers, e.g. Sn, Pb, Bi, Sb or similar. The alloy contains added quantities of at least one element from the group of elements consisting of Sc, Y, Hf, Nb, Ta, La, lanthanides and actinides in a maximum of 10% by weight, preferably 4% by weight, in particular between 0.015% by weight and 3.25% by weight, relative to 100% by weight of alloy, the remainder being aluminium with smelt-related impurities.Type: GrantFiled: December 8, 2000Date of Patent: February 11, 2003Assignee: Miba Gleitlager AktiengesellschaftInventors: Robert Mergen, Markus Manner
-
Patent number: 6503446Abstract: An aluminum alloy composition includes controlled amounts of iron, manganese, zinc, zirconium, vanadium, and titanium to effectively inhibit grain growth during exposure to elevated temperatures while maintaining extrudability and corrosion resistance. The composition is especially adapted for use as micro-multivoid tubing for brazed heat exchanger applications and has a post-braze grain structure that is more resistant to intergranular corrosion so as to reduce or eliminate heat exchanger failures during service.Type: GrantFiled: July 13, 2000Date of Patent: January 7, 2003Assignee: Reynolds Metals CompanyInventors: Baolute Ren, Subhasish Sircar, William A. Cassada, III
-
Patent number: 6475642Abstract: An oxidation-resistant coating is described, formed of an alloy containing: about 40 to about 50 atom % aluminum and about 0.5 atom % to about 3 atom % tantalum; with a balance of nickel; cobalt, iron, or combinations thereof. The coating may also include chromium and a precious metal, as well as other components, such as zirconium or molybdenum. A method for applying the oxidation-resistant coating to a substrate is also described. The substrate can be formed of superalloy material, e.g., a turbine engine component. Related articles are also disclosed.Type: GrantFiled: August 31, 2000Date of Patent: November 5, 2002Assignee: General Electric CompanyInventors: Ji-Cheng Zhao, Melvin Robert Jackson, Ramgopal Darolia