Gallium, Indium, Or Thallium Base Patents (Class 420/555)
-
Patent number: 10036479Abstract: A fusible plug employs an alloy which comprises 5-8 mass % of Sn, 31-34 mass % of Bi, 0.2-4 mass % of Sb, and a remainder of In. The alloy melts at approximately 66-70° C. The alloy may further contain at most 2.0 mass % of at least one element selected from strengthening elements consisting of 0.1-1.0 mass % of Cu, 0.1-1.0 mass % of Ge, 0.1-0.7 mass % of Ag, 0.1-0.6 mass % of Au, 0.2-0.6 mass % of Zn, 0.002-0.1 mass % of Ni, and 0.01-0.1 mass % of a lanthanoid.Type: GrantFiled: April 14, 2005Date of Patent: July 31, 2018Assignee: SENJU METAL INDUSTRY CO., LTD.Inventors: Rikiya Kato, Tetsuro Kikuchi, Mutsumi Deguchi, Yasuaki Koiwa
-
Patent number: 9484651Abstract: A pane having a connection element, having; a substrate having an electrically conductive structure on at least a subregion of the substrate, the electrical connection element on at least a subregion of the electrically conductive structure, and a lead-free soldering compound which connects the electrical connection element to the electrically conductive structure in at least a subregion, wherein the lead-free soldering compound contains 58 to 62% by weight indium, 35 to 38% by weight tin, 1 to 3.5% by weight silver and 0.5 to 2% by weight copper.Type: GrantFiled: July 24, 2013Date of Patent: November 1, 2016Assignee: SAINT-GOBAIN GLASS FRANCEInventors: Mitja Rateiczak, Bernhard Reul, Klaus Schmalbuch
-
Patent number: 9312147Abstract: A method of forming an on-chip heat sink includes forming a device on a substrate. The method also includes forming a plurality of insulator layers over the device. The method further includes forming a heat sink in at least one of the plurality of insulator layers and proximate to the device. The heat sink includes a reservoir of phase change material having a melting point temperature that is less than an upper limit of a design operating temperature of the chip.Type: GrantFiled: October 24, 2014Date of Patent: April 12, 2016Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventor: Mattias E. Dahlstrom
-
Patent number: 9028726Abstract: The present invention provides a sputtering target suitable for producing an amorphous transparent conductive film which can be formed without heating a substrate and without feeding water during the sputtering; which is easily crystallized by low-temperature annealing; and which has low resistivity after the crystallization. An oxide sintered compact containing an indium oxide as a main component, while containing tin as a first additive element, and one or more elements selected from germanium, nickel, manganese, and aluminum as a second additive element, with the content of tin which is the first additive element being 2-15 atom % relative to the total content of indium and tin, and the total content of the second additive element being 0.1-2 atom % relative to the total content of indium, tin and the second additive element.Type: GrantFiled: September 18, 2009Date of Patent: May 12, 2015Assignee: JX Nippon Mining & Metals CorporationInventors: Masakatsu Ikisawa, Masataka Yahagi
-
Publication number: 20150122335Abstract: Disclosed are an ink composition for manufacturing a light absorption layer including metal nano particles and a method of manufacturing a thin film using the same, more particularly, an ink composition for manufacturing a light absorption layer including copper (Cu)-enriched Cu—In bimetallic metal nano particles and Group IIIA metal particles including S or Se dispersed in a solvent and a method of manufacturing a thin film using the same.Type: ApplicationFiled: January 6, 2015Publication date: May 7, 2015Inventors: Seokhee YOON, Seokhyun YOON, Taehun YOON
-
Publication number: 20150125338Abstract: Identifying a stable phase of a binary alloy comprising a solute element and a solvent element. In one example, at least two thermodynamic parameters associated with grain growth and phase separation of the binary alloy are determined, and the stable phase of the binary alloy is identified based on the first thermodynamic parameter and the second thermodynamic parameter, wherein the stable phase is one of a stable nanocrystalline phase, a metastable nanocrystalline phase, and a non-nanocrystalline phase.Type: ApplicationFiled: March 12, 2012Publication date: May 7, 2015Inventors: Heather Murdoch, Christopher A. Schuh
-
Publication number: 20150064483Abstract: A method of depositing a film of a metal having a volatilization temperature higher than 350° C., as well as, a composite material including the same are disclosed. The method can include providing the source material in a vacuum deposition processing chamber, and providing a substrate in the vacuum deposition processing chamber. The substrate can be spaced apart from, but in fluid communication with, the source material, and also maintained at a substrate temperature that is lower than the volatilization temperature. The method can also include reducing an internal pressure of the vacuum deposition processing chamber to a pressure between 0.1 and 14,000 pascals; volatilizing the source material into a volatilized metal by heating the source material to a first temperature that is higher than the volatilization temperature; and transporting the volatilized metal to the substrate using a heated carrier gas, whereby the volatilized metal deposits on the substrate and forms the metal film.Type: ApplicationFiled: September 3, 2014Publication date: March 5, 2015Inventors: Mark E. Thompson, Francisco F. Navarro
-
Publication number: 20140376351Abstract: A device including a near field transducer, the near field transducer including gold (Au) and at least one other secondary atom, the at least one other secondary atom selected from: boron (B), bismuth (Bi), indium (In), sulfur (S), silicon (Si), tin (Sn), hafnium (Hf), niobium (Nb), manganese (Mn), antimony (Sb), tellurium (Te), carbon (C), nitrogen (N), and oxygen (O), and combinations thereof erbium (Er), holmium (Ho), lutetium (Lu), praseodymium (Pr), scandium (Sc), uranium (U), zinc (Zn), and combinations thereof and barium (Ba), chlorine (Cl), cesium (Cs), dysprosium (Dy), europium (Eu), fluorine (F), gadolinium (Gd), germanium (Ge), hydrogen (H), iodine (I), osmium (Os), phosphorus (P), rubidium (Rb), rhenium (Re), selenium (Se), samarium (Sm), terbium (Tb), thallium (Th), and combinations thereof.Type: ApplicationFiled: June 24, 2014Publication date: December 25, 2014Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Sethuraman Jayashankar, Sarbeswar Sahoo, Jie Gong, Michael Allen Seigler
-
Publication number: 20140371575Abstract: Multimodal optical and magnetic resonance imaging methods based on the use of persistent luminescence nanoparticles. Use of mesoporous persistent luminescence <<core-shell>> complexes for theranostic applications.Type: ApplicationFiled: January 30, 2013Publication date: December 18, 2014Inventors: Thomas Maldiney, Cyrille Richard, Daniel Scherman, Didier Gourier, Bruno Viana, Aurelie Bessiere
-
Publication number: 20140348203Abstract: Provided in one embodiment is a method of identifying a stable phase of an ordering binary alloy system comprising a solute element and a solvent element, the method comprising: determining at least three thermodynamic parameters associated with grain boundary segregation, phase separation, and intermetallic compound formation of the ordering binary alloy system; and identifying the stable phase of the ordering binary alloy system based on the first thermodynamic parameter, the second thermodynamic parameter and the third thermodynamic parameter by comparing the first thermodynamic parameter, the second thermodynamic parameter and the third thermodynamic parameter with a predetermined set of respective thermodynamic parameters to identify the stable phase; wherein the stable phase is one of a stable nanocrystalline phase, a metastable nanocrystalline phase, and a non-nanocrystalline phase.Type: ApplicationFiled: May 20, 2014Publication date: November 27, 2014Applicant: Massachusetts Institute of TechnologyInventors: Heather A. Murdoch, Christopher A. Schuh
-
Publication number: 20140326849Abstract: A mechanical structure is provided with a crystalline superelastic alloy that is characterized by an average grain size and that exhibits a martensitic phase transformation resulting from a mechanical stress input greater than a characteristic first critical stress. A configuration of the superelastic alloy is provided with a geometric structural feature of the alloy that has an extent that is no greater than about 200 micrometers and that is no larger than the average grain size of the alloy. This geometric feature undergoes the martensitic transformation without intergranular fracture of the geometric feature.Type: ApplicationFiled: September 13, 2012Publication date: November 6, 2014Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGYInventors: Christopher A. Schuh, Jose M. San Juan, Ying Chen
-
Publication number: 20140314617Abstract: A dental alloy contains palladium (Pd) and indium (In) for CAD/CAM machining. The dental alloy can further include one component selected from the group consisting of gold (Au), silver (Ag), nickel (Ni), cobalt (Co), and platinum (Pt). The dental alloy has a yield strength of 250 MPa to 450 MPa, breaking elongation of 2% to 8%, metal-ceramic adhesion of 20 MPa to 70 MPa, coefficient of linear thermal expansion of 14.0×10?6/K to 17.0×10?6/K, or density of 8 g/cm3 to 15 g/cm3.Type: ApplicationFiled: April 13, 2012Publication date: October 23, 2014Applicant: CERAGEM BIOSYS CO., LTD.Inventors: Kyeong Jun Park, Jeong Jong Park, Sun Wook Cho
-
Publication number: 20140271343Abstract: A solder composition includes about 4% to about 25% by weight tin, about 0.1% to about 8% by weight antimony, about 0.03% to about 4% by weight copper, about 0.03% to about 4% by weight nickel, about 66% to about 90% by weight indium, and about 0.5% to about 9% by weight silver. The composition can further include about 0.2% to about 6% by weight zinc, and, independently, about 0.01% to about 0.3% by weight germanium. The composition can be used to solder an electrical connector to an electrical contact surface on a glass component.Type: ApplicationFiled: May 28, 2014Publication date: September 18, 2014Applicant: Antaya Technologies Corp.Inventors: Jennie S. Hwang, John Pereira, Alexandra Mary Mackin, Joseph C. Gonsalves
-
Patent number: 8771592Abstract: A solder composition includes about 4% to about 25% by weight tin, about 0.1% to about 8% by weight antimony, about 0.03% to about 4% by weight copper, about 0.03% to about 4% by weight nickel, about 66% to about 90% by weight indium, and about 0.5% to about 9% by weight silver. The composition can further include about 0.2% to about 6% by weight zinc, and, independently, about 0.01% to about 0.3% by weight germanium. The composition can be used to solder an electrical connector to an electrical contact surface on a glass component.Type: GrantFiled: February 1, 2012Date of Patent: July 8, 2014Assignee: Antaya Technologies Corp.Inventors: Jennie S. Hwang, John Pereira, Alexandra Mary Mackin, Joseph C. Gonsalves
-
Publication number: 20140138155Abstract: A glazing is disclosed comprising at least one ply of glass having an electrically conductive component on at least one surface, and an electrical connector electrically connected to the electrically conductive component through a soldered joint, the solder of the joint having a composition comprising 0.5 wt % or more indium, wherein the electrical connector comprises a nickel plated contact for contacting the solder. Also disclosed are solders having a composition comprising 14 to 75 wt % In, 14 to 75 wt % Sn, to 5 wt % Ag, to 5 wt % Ni, and less than 0.1 wt % Pb. Also disclosed is use of a solder having a composition comprising 0.5 wt % or more indium to solder a nickel plated electrical connector to an electrically conductive component on the surface of a ply of glass. The aspects of the invention improve the durability of electrical connections on glazing.Type: ApplicationFiled: May 2, 2012Publication date: May 22, 2014Applicants: PILKINGTON GROUP LIMITED, NIPPON SHEET GLASS CO., LTD., UCHIHASHI ESTEC CO., LTD., NISHINIHON SHOKO CO., LTDInventors: Michael Lyon, Naotaka Ikawa, Kazuo Inada, Mamoru Yoshida, Takashi Muromachi, Kazuhisa Ono, Kozo Okamoto, Takashi Suzuki
-
Patent number: 8679635Abstract: Disclosed is a solder material which enables to realize a lower mounting temperature when an electronic component is mounted. Also disclosed are a solder paste and a conductive adhesive. Specifically disclosed is a solder material having a basic composition composed of Sn, Bi and In. This solder material may further contain at least one metal selected from the group consisting of Cu, Ge and Ni. A solder paste which enables to realize a low-temperature mounting can be obtained by blending a flux component into the solder material. A conductive adhesive which enables to realize a low-temperature mounting can be obtained by blending a resin component into the solder material.Type: GrantFiled: September 14, 2012Date of Patent: March 25, 2014Assignee: Panasonic CorporationInventors: Atsushi Yamaguchi, Kazuhiro Nishikawa, Hidenori Miyakawa
-
Publication number: 20130336837Abstract: A lead-free solder alloy for a vehicle glass according to the present invention contains 26.0 to 56.0 mass % of In, 0.1 to 5.0 mass % of Ag, 0.002 to 0.05 mass % of Ti, 0.001 to 0.01 mass % of Si and the balance being Sn. The lead-free solder alloy may optionally contain 0.005 to 0.1 mass % of Cu and 0.001 to 0.01 mass % of B. This solder alloy can suitably be applied vehicle glasses and show good joint strength to glass materials and high acid resistance, salt water resistance and temperature cycle resistance.Type: ApplicationFiled: February 27, 2012Publication date: December 19, 2013Applicant: Central Glass Company, LimitedInventors: Mizuki Nishi, Takayuki Ogawa, Mitsuo Hori
-
Publication number: 20130333678Abstract: A railgun which has a conductive lubricant and system of delivery reduces the electrical resistance and friction of the armature-rail sliding contact, thereby decreasing the amount of heat generated at the electrical contact. The conductive lubricant may be a ternary alloy of bismuth, indium and tin. The system of delivery for the conductive lubricant may include a plurality of surface reservoirs formed in either the rail surface, the armature face, or both.Type: ApplicationFiled: September 20, 2011Publication date: December 19, 2013Applicant: United States Government, as represented by the Secretary of the NavyInventor: Peter Yaw-Ming Hsieh
-
Publication number: 20130319527Abstract: A Cu—Ga alloy sintered-compact sputtering target having a Ga concentration of 40 to 50 at % and Cu as the balance, wherein the sintered-compact sputtering target is characterized in that the relative density is 80% or higher, and the compositional deviation of the Ga concentration is within ±0.5 at % of the intended composition. A method of producing a Cu—Ga alloy sintered-compact sputtering target having a Ga concentration of 40 to 50 at % and Cu as the balance, wherein the method thereof is characterized in that Cu and Ga raw materials are melted and cooled/pulverized to produce a Cu—Ga alloy raw material powder, and the obtained material powder is further hot-pressed with a retention temperature being between the melting point of the mixed raw material powder and a temperature 15° C. lower than the melting point and with a pressure of 400 kgf/cm2 or more applied to the sintered mixed raw material powder.Type: ApplicationFiled: August 10, 2011Publication date: December 5, 2013Applicant: JX NIPPON MINING & METALS CORPORATIONInventors: Tomoya Tamura, Hiroyoshi Yamamoto, Masaru Sakamoto
-
Publication number: 20130273247Abstract: A method for preparing semiconductor nanocrystals is disclosed. The method comprises adding a precursor mixture comprising one or more cation precursors, one or more anion precursors, and one or more amines to a ligand mixture including one or more acids, one or more phenol compounds, and a solvent to form a reaction mixture, wherein the molar ratio of (the one or more phenol compounds plus the one or more acids plus the one or more amine compounds) to the one or more cations initially included in the reaction mixture is greater than or equal to about 6, and heating the reaction mixture at a temperature and for a period of time sufficient to produce semiconductor nanocrystals having a predetermined composition. Methods for forming a buffer layer and/or an overcoating layer thereover are also disclosed. Semiconductor nanocrystals and compositions including semiconductor nanocrystals of the invention are also disclosed.Type: ApplicationFiled: June 7, 2013Publication date: October 17, 2013Inventors: Justin W. KAMPLAIN, Zhengguo ZHU
-
Methods of making an article of semiconducting material on a mold comprising semiconducting material
Patent number: 8398768Abstract: The invention relates to methods of making articles of semiconducting material on a mold comprising semiconducting material and semiconducting material articles formed thereby, such as articles of semiconducting material that may be useful in making photovoltaic cells.Type: GrantFiled: May 14, 2009Date of Patent: March 19, 2013Assignee: Corning IncorporatedInventors: Glen Bennett Cook, Christopher Scott Thomas, Natesan Venkataraman -
Publication number: 20130020539Abstract: A novel multiband absorption based solar cell is disclosed by using the europium chalcogenides (EuX, X?O, S, Se, Te) and related magnetic semiconductor materials, in which an intermediate band is formed by the localized Eu 4f electrons between p-states of chalcogen ions and Eu s-d states. The energy gaps among the multibands can be in the spectral range of the sunlight, thus they can serve as better sunlight absorbers in solar cells than the conventional single band-gap semiconductors such as Si and GaAs. With these multiband semiconductors, the bottleneck in current power conversion efficiency can be potentially overcome in single junction photovoltaics.Type: ApplicationFiled: July 21, 2011Publication date: January 24, 2013Inventor: Zhixun Ma
-
Patent number: 8303735Abstract: A conventional low-temperature solder containing Pb or Cd had problems with respect to environmental pollution. A conventional low-temperature lead-free solder had a liquidus temperature which was too high for low heat resistance parts having a heat resistance temperature of 130° C., or it was brittle or had low mechanical strength. A lead-free low-temperature solder according to the present invention comprises 48-52.5 mass % of In and a balance of Bi, and most of the structure is constituted by a BiIn2 intermetallic compound which is not brittle. Zn or La can be added in order to further improve solderability, and a small amount of P can be added to prevent corrosion at high temperatures and high humidities.Type: GrantFiled: August 18, 2006Date of Patent: November 6, 2012Assignee: Senju Metal Industry Co., Ltd.Inventor: Minoru Ueshima
-
Patent number: 8293370Abstract: Disclosed is a solder material which enables to realize a lower mounting temperature when an electronic component is mounted. Also disclosed are a solder paste and a conductive adhesive. Specifically disclosed is a solder material having a basic composition composed of Sn, Bi and In. This solder material may further contain at least one metal selected from the group consisting of Cu, Ge and Ni. A solder paste which enables to realize a low-temperature mounting can be obtained by blending a flux component into the solder material. A conductive adhesive which enables to realize a low-temperature mounting can be obtained by blending a resin component into the solder material.Type: GrantFiled: August 3, 2007Date of Patent: October 23, 2012Assignee: Panasonic CorporationInventors: Atsushi Yamaguchi, Kazuhiro Nishikawa, Hidenori Miyakawa
-
Publication number: 20120222893Abstract: A solder composition includes about 4% to about 25% by weight tin, about 0.1% to about 8% by weight antimony, about 0.03% to about 4% by weight copper, about 0.03% to about 4% by weight nickel, about 66% to about 90% by weight indium, and about 0.5% to about 9% by weight silver. The composition can further include about 0.2% to about 6% by weight zinc, and, independently, about 0.01% to about 0.3% by weight germanium. The composition can be used to solder an electrical connector to an electrical contact surface on a glass component.Type: ApplicationFiled: February 1, 2012Publication date: September 6, 2012Applicant: Antaya Technologies CorporationInventors: Jennie S. Hwang, John Pereira, Alexandra Mary Mackin, Joseph C. Gonsalves
-
Publication number: 20120199393Abstract: A lead-free solder which can reduce the occurrence of voids and a connecting member which uses the solder and has excellent adhesion, bonding strength, and workability are provided. The lead-free solder alloy has a composition consisting essentially of Sn: 0.1-3% and/or Bi: 0.1-2%, and a remainder of In and unavoidable impurities and has the effect of suppressing the occurrence of voids at the time of soldering. The connecting member is prepared by melting the lead-free solder alloy, immersing a metal substrate in the melt, and applying ultrasonic vibrations to the molten lead-free solder alloy and the metal substrate to form a lead-free solder alloy layer on the surface of the metal substrate. A heat sink and a package are soldered to each other through this connecting member by reflow heating in the presence of flux.Type: ApplicationFiled: September 2, 2010Publication date: August 9, 2012Inventors: Shunsaku Yoshikawa, Yoshie Yamanaka, Tsukasa Ohnishi, Seiko Ishibashi, Koji Watanabe, Hiroki Ishikawa, Yutaka Chiba
-
Publication number: 20120107228Abstract: There is provided a hydrogen gas generating member which safely facilitates the hydrogen gas generation reaction by bringing an Al alloy which is subjected to rolling treatment or powdering treatment into contact with water. A hydrogen gas generating member 20 includes a texture in which Al is finely dispersed in a metal matrix, where hydrogen gas is generated by bringing the hydrogen gas generating member into contact with water. A fixing member 14 for mounting the hydrogen gas generating member 20 is provided in a hydrogen generating apparatus 10 and is brought into contact with a water 15 that is stored inside. The hydrogen gas generated from the surface is supplied outside through a hydrogen gas collecting, pipe 12 and stored in a storage tank (not shown).Type: ApplicationFiled: August 11, 2008Publication date: May 3, 2012Applicant: Japan Science and Technology AgencyInventors: Kiyohito Ishida, Ryosuke Kainuma, Ikuo Ohnuma, Toshihiro Omori, Yoshikazu Takaku, Takehito Hagisawa
-
Publication number: 20120055873Abstract: The present invention relates to methods of making and using and compositions of metal nanoparticles formed by green chemistry synthetic techniques. For example, the present invention relates to metal nanoparticles formed with solutions of plant extracts and use of these metal nanoparticles in removing contaminants from soil and groundwater and other contaminated sites. In some embodiments, the invention comprises methods of making and using compositions of metal nanoparticles formed using green chemistry techniques.Type: ApplicationFiled: November 8, 2011Publication date: March 8, 2012Applicants: The U.S.A as represented by the Administrator of the U.S. Environmental Protection Agency, VeruTEK, Inc.Inventors: George E. Hoag, John B. Collins, Rajendar S. Varma, Mallikarjuna N. Nadagouda
-
Publication number: 20110291049Abstract: The present invention provides high quality monodisperse or substantially monodisperse InAs nanocrystals in the as-prepared state. In some embodiments, the as-prepared substantially monodisperse InAs nanocrystals demonstrate a photoluminescence of between about 700 nm and 1400 nm.Type: ApplicationFiled: June 10, 2009Publication date: December 1, 2011Applicant: Board of Trustees of the University of ArkansasInventors: Xiagang Peng, Renguo Xie
-
Publication number: 20110284372Abstract: According to one embodiment of the invention, a Cu—Ga alloy material has an average composition consisting of not less than 32% and not more than 53% by mass of gallium (Ga) as well as the balance consisting of copper (Cu) and an inevitable impurity. In the Cu—Ga alloy material, a region containing less than 47% by mass of copper accounts for 2% or less by volume of the whole Cu—Ga alloy material.Type: ApplicationFiled: May 5, 2011Publication date: November 24, 2011Applicant: HITACHI CABLE, LTD.Inventors: Yuichi HIRAMOTO, Tatsuya TONOGI, Noriyuki TATSUMI
-
Patent number: 8043409Abstract: A production method of an indium-based nanowire product comprising indium-based nanowires according to the present invention is characterized in that the method comprises the step of: disproportionation-reacting particles including indium subhalide as main components in a nonaqueous solvent, to obtain nanowires including metal indium as main components. The electroconductive oxide nanowire product comprising electroconductive oxide nanowires of the present invention can be obtained by: subjecting, the indium nanowires additionally doped with doping metals, to a heating oxidation treatment; or doping oxides of doping metals into indium oxide nanowires obtained from the indium-based nanowires.Type: GrantFiled: November 10, 2006Date of Patent: October 25, 2011Assignee: Sumitomo Metal Mining Co., Ltd.Inventor: Masaya Yukinobu
-
Patent number: 7938879Abstract: A fuel for splitting water into hydrogen and an oxide component comprises a substantially solid pellet formed from a solid-like mixture of a solid-state source material capable of oxidizing in water to form hydrogen and a passivation surface layer of the oxide component, and a passivation preventing agent that is substantially inert to water in an effective amount to prevent passivation of the solid-state material during oxidation. The pellets may be introduced into water or other suitable oxidizer in a controlled rate to control the rate of reaction of the source material with the oxidizer, and thereby control the rate of formation of hydrogen. Methods are described for producing the solid-like mixture in varying weight percent of source material to passivation preventing agent.Type: GrantFiled: May 11, 2007Date of Patent: May 10, 2011Assignee: Purdue Research FoundationInventors: Jerry M. Woodall, Eric S. Harmon, Kurt C. Koehler, Jeffrey T. Ziebarth, Charles R. Allen, Yuan Zheng, Jong-Hyeok Jeon, George H. Goble, David B. Salzman
-
Patent number: 7927516Abstract: A method for synthesis of high quality colloidal nanoparticles using comprises a high heating rate process. Irradiation of single mode, high power, microwave is a particularly well suited technique to realize high quality semiconductor nanoparticles. The use of microwave radiation effectively automates the synthesis, and more importantly, permits the use of a continuous flow microwave reactor for commercial preparation of the high quality colloidal nanoparticles.Type: GrantFiled: September 20, 2005Date of Patent: April 19, 2011Assignee: The Regents of the University of CaliforniaInventors: Geoffrey F. Strouse, Jeffrey A. Gerbec, Donny Magana
-
Publication number: 20110070122Abstract: An alloy composition comprises 73.0 to 74.5 wt % of Ag and 25.5-27.0 wt % of Sn; 30.0-67.5 wt % of Ag and 32.5-70.0 wt % of In; or 29.0-60.0 wt % of Ag, 19.0-35.0 wt % of Sn and 20.0-35.2 wt % of In, wherein the particle diameter of Ag is between 10 nm to 200 ?m. The alloy composition in the present invention has characters of low melting point, low hardness and high ductility. On the other hand, after a heat treatment, the alloy composition is tended to be high in melting point, hardness, strength, stability and conductivity.Type: ApplicationFiled: August 25, 2010Publication date: March 24, 2011Inventor: Lung-Chuan Tsao
-
Publication number: 20110038809Abstract: The present invention provides methods for treating or preventing diseases and disorders caused by iron-dependent pathogenic microorganisms, such as bacteria, fungi, and parasites, by applying a gallium compound to an affected area. In particular, the present invention provides methods for treating or preventing dental caries, vaginal infections, skin infections, and so forth. Gallium compounds can be formulated as toothpaste, mouthwash, cream, ointment, gel, solution, eye drops, suppository, and the like. Furthermore, the invention provides methods for controlling microbial growth on environmental surfaces, including those of toothbrush, denture, dental retainer, contact lens, catheter, food stuff, and so forth. In addition, the present invention provides animal feeds which contain gallium compounds that promote the animal growth and prevent the animals from infections as well as protect consumers from post processing infections.Type: ApplicationFiled: October 31, 2006Publication date: February 17, 2011Inventors: Daniel P. Perl, Sharon Moalem
-
Publication number: 20100307914Abstract: A Cu—Ga alloy includes a plurality of phases, and not less than 40 wt % and not more than 60 wt % of gallium (Ga) and a balance consisting of copper and an inevitable impurity. The plurality of phases include a segregation phase including not less than 80 wt % of gallium (Ga), and a rate of a volume of the segregation phase to a total volume of the Cu—Ga alloy is not more than 1%. The plurality of phases include particles including not less than 40 wt % and not more than 60 wt % of gallium (Ga), the particles include a diameter of not less than 0.1 ?m and not more than 30 ?m, and a rate of a volume of the particles to the total volume of the Cu—Ga alloy is not less than 90%.Type: ApplicationFiled: May 11, 2010Publication date: December 9, 2010Inventors: Yuichi HIRAMOTO, Tatsuya Tonogi
-
METHODS OF MAKING AN ARTICLE OF SEMICONDUCTING MATERIAL ON A MOLD COMPRISING SEMICONDUCTING MATERIAL
Publication number: 20100290946Abstract: The invention relates to methods of making articles of semiconducting material on a mold comprising semiconducting material and semiconducting material articles formed thereby, such as articles of semiconducting material that may be useful in making photovoltaic cells.Type: ApplicationFiled: May 14, 2009Publication date: November 18, 2010Inventors: Glen Bennett Cook, Christopher Scott Thomas, Natesan Venkataraman -
Patent number: 7806994Abstract: An active solder alloy, an electronic device package including the active solder alloy bonding an electronic device to a substrate, and a method of forming high-strength joints by soldering using the solder alloy. The alloy contains up to about 10% by weight of an element or a mixture of elements selected from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, or tantalum; between about 0.1 and 5% by weight of an element or a mixture of elements selected from the group of the lanthanides (rare earths); between about 0.01 and 1% by weight of gallium up to about 10% by weight of silver; up to about 2% by weight of magnesium; and a remainder consisting of tin, bismuth, indium, cadmium, or a mixture of two or more of these elements. The alloy enables low-temperature (less than about 180° C.) soldering within relatively narrow melting ranges (less than about 10° C.).Type: GrantFiled: May 4, 2005Date of Patent: October 5, 2010Assignee: S-Bond Technologies, LLCInventors: Ronald W. Smith, Randall Redd
-
Publication number: 20100221142Abstract: A melt of a material is cooled and a sheet of the material is formed in the melt. This sheet is transported, cut into at least one segment, and cooled in a cooling chamber. The material may be Si, Si and Ge, Ga, or GaN. The cooling is configured to prevent stress or strain to the segment. In one instance, the cooling chamber has gas cooling.Type: ApplicationFiled: October 16, 2009Publication date: September 2, 2010Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.Inventors: Peter L. KELLERMAN, Frederick Carlson, Frank Sinclair
-
Publication number: 20100167077Abstract: This invention is intended to provide an innovative process to produce pure metallic indium with the use of sulphured concentrates of zinc and lead as sources of the metal. The process begins with the zinc oxide produced by Waelz process from the neutral leaching residues of the zinc oxide calcinate. But the overflow (or supernatant) of the mild leaching of neutral underflow (or residue) of neutral leaching of zinc calcinate also contains indium in lower proportion and may or may not be part of the global process of indium recovery.Type: ApplicationFiled: May 21, 2008Publication date: July 1, 2010Applicant: VOTORANTIM METAIS ZINCO S.A.Inventor: Adelson Dias de Souza
-
Publication number: 20100140439Abstract: A mechanical structure is provided with a crystalline superelastic alloy that is characterized by an average grain size and that is characterized by a martensitic phase transformation resulting from a mechanical stress input greater than a characteristic first critical stress. A configuration of the superelastic alloy is provided with a geometric structural feature of the alloy that has an extent that is no greater than about 200 micrometers and that is no larger than the average grain size of the alloy. This geometric feature is configured to accept a mechanical stress input.Type: ApplicationFiled: July 8, 2009Publication date: June 10, 2010Applicant: Massachusetts Institute of TechnologyInventors: Christopher A. Schuh, Jose M. San Juan, Ying Chen
-
Publication number: 20100068548Abstract: A photo-absorbing layer for use in an electronic device; the layer including metal alloy nanoparticles copper, indium and/or gallium made preferably from a vapor condensation process or other suitable process, the layer also including elemental selenium and/or sulfur heated at temperatures sufficient to permit reaction between the nanoparticles and the selenium and/or sulfur to form a substantially fused layer. The reaction may result in the formation of a chalcopyrite material. The layer has been shown to be an efficient solar energy absorber for use in photovoltaic cells.Type: ApplicationFiled: November 24, 2009Publication date: March 18, 2010Applicant: QUANTUMSPHERE, INC.Inventors: R. Douglas Carpenter, Kevin D. Maloney
-
Publication number: 20100015004Abstract: A conventional low-temperature solder containing Pb or Cd had problems with respect to environmental pollution. A conventional low-temperature lead-free solder had a liquidus temperature which was too high for low heat resistance parts having a heat resistance temperature of 130° C., or it was brittle or had low mechanical strength. A lead-free low-temperature solder according to the present invention comprises 48-52.5 mass % of In and a balance of Bi, and most of the structure is constituted by a BiIn2 intermetallic compound which is not brittle. Zn or La can be added in order to further improve solderability, and a small amount of P can be added to prevent corrosion at high temperatures and high humidities.Type: ApplicationFiled: August 18, 2006Publication date: January 21, 2010Inventor: Minoru Ueshima
-
Patent number: 7625523Abstract: There are provided a metal material for electrode formation, which can form an electrode provided in an organic function element without adopting vapor deposition, can easily realize an increase in size, can reduce production cost, and does not cause any disconnection of the electrode upon exposure to flexure and, thus, is highly reliable, and, at the same time, has a high level of electron injection function, and an organic function element using the metal material. The metal material is a Ga(gallium)-base alloy which is in a paste state at a temperature of the melting point of the Ga-base alloy or above, the Ga-base alloy comprising at least a Ga-base liquid metal in a liquid state at room temperature and an alkali metal or an alkaline earth metal and having an electron injection function.Type: GrantFiled: October 19, 2005Date of Patent: December 1, 2009Assignee: Dai Nippon Printing Co., Ltd.Inventor: Nobuyuki Ito
-
Patent number: 7617964Abstract: A low temperature solder including indium in the range of 62-65 weight percent and tin in the range of 31-33 weight percent uses the heat generated during thermal treatment of one or more glass sheets to melt the solder. In one non-limiting embodiment, a lead providing external access to an electrical conductive arrangement, e.g. a conductive member between and connected to spaced bus bars between laminated sheets has an end portion of a connector, e.g. a lead soldered to each of the bus bars during thermal processing of the sheets, e.g. during the lamination of the sheets during a windshield manufacturing process. In another nonlimiting embodiment, the connector is soldered to the electrically conductive arrangement during the annealing of glass blanks following the heating and shaping of the glass blanks.Type: GrantFiled: December 14, 2006Date of Patent: November 17, 2009Assignee: PPG Industries Ohio, Inc.Inventors: John A. Winter, Charles S. Voeltzel, Cheryl E. Belli, James P. Thiel
-
Patent number: 7578966Abstract: A solder composition includes a reflow-wetting element that is an intermetallic both pre-reflow and post-reflow. The intermetallic releases the reflow-wetting element upon heating. The solder composition includes the intermetallic first phase in a bulk-solder second phase. A method of assembling a microelectronic package includes the intermetallic in a solder. A computing system also includes the intermetallic first phase in the bulk-solder second phase.Type: GrantFiled: June 30, 2005Date of Patent: August 25, 2009Assignee: Intel CorporationInventor: Daewoong Suh
-
Publication number: 20090196789Abstract: To provide a solder alloy, a solder ball and an electronic member having a solder bump, used for connection with a mother board or the like, having a melting temperature of less than 250° C. for the solder alloy, achieving high drop impact resistance required in mobile devices or the like. A solder alloy is used which consists of not less than 0.1 mass ppm of boron and not greater than 200 mass ppm of boron and a remainder comprising substantially not less than 40% by mass of Sn, in which its melting temperature is less than 250° C.Type: ApplicationFiled: December 30, 2008Publication date: August 6, 2009Applicants: NIPPON STEEL MATERIALS CO., LTD., NIPPON MICROMETAL CORPORATIONInventors: Takayuki Kobayashi, Tsutomu Sasaki, Masamoto Tanaka, Katsuichi Kimura
-
Publication number: 20090148338Abstract: Problems: A conventional alloy for a fusible plug contained harmful elements such as Cd and Pb, and there was a concern of pollution by these harmful elements. The present invention provides a fusible plug which does not contain the harmful elements Cd and Pb, with which the alloy is not forced out of the fusible plug even when used for long periods as a safety device for refrigeration equipment, and which has a strong mechanical strength such as creep strength. Means for Solving the Problem: A fusible plug employs an alloy for fusible plugs which comprises 5-8 mass % of Sn, 31-34 mass % of Bi, 0.2-4 mass % of Sb, and a remainder of In and which melts at approximately 66-70° C. A total of at most 2.0 mass % of at least one element selected from strengthening elements consisting of 0.1-1.0 mass % of Cu, 0.1-1.0 mass % of Ge, 0.1-0.7 mass % of Ag, 0.1-0.6 mass % of Au, 0.2-0.6 mass % of Zn, 0.02-0.1 mass % of Ni, and 0.01-0.1 mass % of a lanthanoid may be added.Type: ApplicationFiled: April 14, 2005Publication date: June 11, 2009Applicant: SENJU METAL INDUSTRY CO., LTD.Inventors: Rikiya Kato, Tetsuro Kikuchi, Mutsumi Deguchi
-
Publication number: 20090081412Abstract: A method of forming a thin film comprising the steps of: applying an inorganic salt solution for a thin film on a substrate to obtain a coated inorganic salt solution film; and subjecting the coated inorganic salt solution film to a plasma treatment under atmospheric pressure, wherein the plasma treatment is conducted by supplying a gas under atmospheric pressure or nearly atmospheric pressure between a pair of counter electrodes, and then generating a high frequency electric field between the electrodes so as to excite the gas followed by subjecting the coated inorganic salt solution film to the excited gas.Type: ApplicationFiled: May 12, 2006Publication date: March 26, 2009Applicant: KONICA MINOLTA HOLDINGS, INC.Inventors: Kazuhiro Fukuda, Koji Ozaki
-
Publication number: 20090014746Abstract: Lead-free solder compositions for bonding and sealing flat panel displays, CCD's, solar cells, light emitting diodes, and other optoelectronic devices are disclosed. The solders are based on alloys of Sn, Au, Ag, and Cu and one or more rare earth metals chosen from the following, Y, La, Ce, Pr, Sc, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Optionally, the compositions may comprise In, Bi, or Zn. The solder compositions exhibit superior bonding capability in joining dissimilar surfaces such as those present in both the flat panel display and light emitting devices. Additionally the solders provide a strong barrier to the diffusion of both water and oxygen into these devices thus promoting longer device life times.Type: ApplicationFiled: July 11, 2007Publication date: January 15, 2009Inventors: Ainissa Gweneth Ramirez, Roger Sinta