Copper Containing Patents (Class 420/582)
-
Patent number: 11898229Abstract: The present disclosure provides a high-strength and high-plasticity casting high-entropy alloy (HEA), having a general formula of AlaCobCrcTidFeeNifCug, where 6.0<a?8.0, 18.0<b?23.0, 7.5?c<12.5, 2.0<d?8.5, 15.5<e?20.0, 28.0<f?37.0, 0.2<g?10.0, and a+b+c+d+e+f+g=100. The casting HEA can be prepared in one step and has excellent mechanical properties. The various metal raw materials are environmental-friendly and suitable for large-scale industrial production.Type: GrantFiled: July 11, 2022Date of Patent: February 13, 2024Assignee: SHANGHAI INSTITUTE OF TECHNOLOGYInventors: Zemin Wang, Jiajun Li, Yu Dong, Min Liu, Linghuan Pang, Bin Fu, Zhanyong Wang
-
Patent number: 11192819Abstract: Mineral wool fibers having a mineral wool fiber composition are manufactured by introducing batch materials into a melter, melting the mineral batch materials in the melter to provide a melt and fiberizing the melt to form the mineral wool fibers. The batch materials comprise i) fibers having a first batch material composition which is different from the mineral wool fiber composition and consisting of scrap fibers which have broken at a bushing producing continuous fibers; and ii) one of more additional mineral batch materials.Type: GrantFiled: February 23, 2018Date of Patent: December 7, 2021Assignee: Knauf Insulation SPRLInventors: Gerard Demott, Mitja Oresnik
-
Patent number: 10844993Abstract: An electric-resistance-welded stainless clad steel pipe or tube that is excellent in both the fracture property of the weld and the corrosion resistance of the pipe or tube inner surface as electric resistance welded without additional welding treatment such as weld overlaying after electric resistance welding is provided. An electric-resistance-welded stainless clad steel pipe or tube comprises: an outer layer of carbon steel or low-alloy steel; and an inner layer of austenitic stainless steel having a predetermined chemical composition, wherein a flatness value h/D in a 90° flattening test in accordance with JIS G 3445 is less than 0.3, and a pipe or tube inner surface has no crack in a sulfuric acid-copper sulfate corrosion test in accordance with ASTM A262-10, Practice E, where h is a flattening crack height (mm), and D is a pipe or tube outer diameter (mm).Type: GrantFiled: March 26, 2020Date of Patent: November 24, 2020Assignee: JFE STEEL CORPORATIONInventors: Shinsuke Ide, Atsushi Matsumoto, Yuji Hashimoto, Takatoshi Okabe
-
Patent number: 10487378Abstract: An austenitic alloy comprising (in weight %): C: 0.01-0.05 Si: 0.05-0.80 Mn: 1.5-2 Cr: 26-34.5 Ni: 30-35 Mo: 3-4 Cu: 0.5-1.5 N: 0.05-0.15 V: ?0.15 the balance being Fe and unavoidable impurities, characterized in that 40?% Ni+100*% N?50.Type: GrantFiled: January 12, 2017Date of Patent: November 26, 2019Assignee: Sandvik Intellectual Property ABInventors: Guocai Chai, Jan Högberg, Sofia Åkesson, Urban Forsberg
-
Patent number: 10415423Abstract: Provided herein are an austenite steel that satisfies desirable strength and desirable castability at the same time, and an austenite steel casting using same. The austenite steel according to an embodiment of the present invention contains Ni: 25 to 50%, Nb: 3.8 to 6.0%, Zr: 0.5% or less, B: 0.001 to 0.05%, Cr: 12 to 25%, Ti: 1.6% or less, Mo: 4.8% or less, and W: 5.2% or less in mass %, and the balance Fe and unavoidable impurities, wherein the parameter Ps represented by the following formula (1) satisfies Ps?38, Ps=8.3[Nb]?7.5[Ti]+2.4[Mo]+3.5[W]??formula (1), where [Nb], [Ti], [Mo], and [W] represent the contents of Nb, Ti, Mo, and W, respectively, in mass %.Type: GrantFiled: November 11, 2016Date of Patent: September 17, 2019Assignee: MITSUBISHI HITACHI POWER SYSTEMS, LTD.Inventors: Hironori Kamoshida, Shinya Imano, Masao Takeyama
-
Patent number: 9969033Abstract: The contents of Cr, Fe, Mn, Ti, Si, Cu, N, Al, C, Mg, Mo, B, Zr, and Nb+Ta in a Ni-base alloy weld metal are properly specified and the contents of Co, P, and S in incidental impurities are controlled. In particular, a weld metal having high cracking resistance is formed by specifying the Mn content in a proper range and restricting the contents of B and Zr at low levels. Regarding a Ni-base alloy covered electrode, by specifying the contents of a slag-forming agent, a metal fluoride, and a carbonate serving as flux components in proper ranges and controlling the contents of Mn, Nb+Ta, and Fe in a flux, good welding workability is achieved and a weld metal having good bead appearance is formed.Type: GrantFiled: November 4, 2011Date of Patent: May 15, 2018Assignee: Kobe Steel, Ltd.Inventors: Hiroaki Kawamoto, Hirohisa Watanabe, Tetsunao Ikeda, Yushi Sawada
-
Patent number: 9803267Abstract: Austenitic stainless steel is disclosed herein. In the described embodiments, the austenitic stainless steel comprises 16.00 wt % of Chromium to 30.00 wt % of Chromium; 8.00 wt % of Nickel to 27.00 wt % of Nickel; no more than 7.00 wt % of Molybdenum; 0.40 wt % of Nitrogen to 0.70 wt % of Nitrogen, 1.0 wt % of Manganese to 4.00 wt % of Manganese, and less than 0.10 wt % of Carbon, wherein the ratio of the Manganese to the Nitrogen is controlled to less than or equal to 10.0. Austenitic stainless steel based on specified minimum PREN (Pitting Resistance Equivalent Number) values is also disclosed. (1) PRE=wt % Cr+3.3×wt % (Mo)+16 wt % N>=25 for N in range of 0.40-0.70. (2) PRE=wt % Cr+3.3×wt % (Mo+W)+16 wt % N>=27 for N in range of 0.40-0.70 with W present.Type: GrantFiled: May 24, 2012Date of Patent: October 31, 2017Assignee: UPL, L.L.C.Inventor: Cecil Vernon Roscoe
-
Patent number: 9587295Abstract: An austenitic alloy comprising (in weight %): C: 0.01-0.05 Si: 0.05-0.80 Mn: 1.5-2 Cr: 26-34.5 Ni: 30-35 Mo: 3-4 Cu: 0.5-1.5 N: 0.05-0.15 V: <0.15 the balance being Fe and unavoidable impurities, wherein 40<% Ni+100*% N<50.Type: GrantFiled: January 16, 2013Date of Patent: March 7, 2017Assignee: Sandvik Intellectual Property ABInventors: Guocai Chai, Jan Hogberg, Sofia Akesson, Urban Forsberg
-
Patent number: 9540715Abstract: A cermet powder includes a) from 50 to 90 wt-% of at least one hard material, and b) from 10 to 50 wt-% of a matrix metal composition. The wt.-% for a) and b) are based on a total weight of the cermet powder. The matrix metal composition comprises i) from 40 to 75 wt-% of iron and nickel, ii) from 18 to 35 wt-% of chromium, iii) from 3 to 20 wt.-% of molybdenum, and iv) from 0.5 to 4 wt-% of copper. The wt-% for i) to iv) are based in each case on a total weight of the matrix metal composition. A weight ratio of iron to nickel is from 3:1 to 1:3.Type: GrantFiled: September 4, 2012Date of Patent: January 10, 2017Assignee: H. C. STARCK GMBHInventors: Stefan Zimmermann, Benno Gries
-
Patent number: 9415460Abstract: A weld metal contains Cr: 28.0% to 31.5% by mass, Fe: 7.0% to 11.0% by mass, Nb and Ta: 1.5% to 2.5% by mass in total, C: 0.015% to 0.040% by mass, Mn: 0.5% to 4.0% by mass, N: 0.005% to 0.080% by mass, Si: 0.70% by mass or less (and more than 0%), Al: 0.50% by mass or less, Ti: 0.50% by mass or less, Mo: 0.50% by mass or less, Cu: 0.50% by mass or less, B: 0.0010% by mass or less, Zr: 0.0010% by mass or less, Co: 0.10% by mass or less, P: 0.015% by mass or less, and S: 0.015% by mass or less, the remainder being Ni and incidental impurities.Type: GrantFiled: March 15, 2013Date of Patent: August 16, 2016Assignee: Kobe Steel, Ltd.Inventors: Hiraoki Kawamoto, Hirohisa Watanabe, Yushi Sawada
-
Publication number: 20150147228Abstract: In one embodiment, a permanent magnet has a composition represented by a composition formula: RpFeqMrCusCo100-p-q-r-s, where R is a rare earth element, M is at least one element selected from Zr, Ti, and Hf, p is 8.0 atomic % or more and 13.5 atomic % or less, q is 25 atomic % or more and 40 atomic % or less, r is 0.88 atomic % or more and 7.2 atomic % or less, and s is 3.5 atomic % or more and 13.5 atomic % or less, and a metallic structure including a cell phase having a Th2Zn17 crystal phase, a cell wall phase, and a platelet phase existing along a c plane of the Th2Zn17 crystal phase. An average thickness of the platelet phase is in a range of from 2.5 nm to 20 nm.Type: ApplicationFiled: February 2, 2015Publication date: May 28, 2015Inventors: Masaki Endo, Shinya Sakurada, Yosuke Horiuchi, Tsuyoshi Kobayashi, Keiko Okamoto, Masaya Hagiwara
-
Publication number: 20150132177Abstract: A stainless clad steel includes a stainless steel having Pitting Index of 35 or more as a cladding material, wherein the ratio of Cr concentration/Fe concentration in a passivation film portion of the above-described cladding material to Cr concentration/Fe concentration in a parent phase portion of the above-described cladding material is 1.20 or more and, in addition, the amount of precipitation of a ? (sigma) phase of the surface of the above-described cladding material is 2.0% or less on an area ratio basis.Type: ApplicationFiled: March 5, 2013Publication date: May 14, 2015Inventors: Yoshihiro Yazawa, Shunichi Tachibana, Keiichiro Kishi, Yota Kuronuma, Toshiyuki Hoshino
-
Patent number: 9017490Abstract: A high strength, corrosion resistant alloy suitable for use in oil and gas environments includes, in weight %: 0-12% Fe, 18-24% Cr, 3-6.2% Mo, 0.05-3.0% Cu, 4.0-6.5% Nb, 1.1-2.2% Ti, 0.05-0.4% 0.05-0.2% Al, 0.005-0.040% C, balance Ni plus incidental impurities and deoxidizers. A ratio of Nb/(Ti+Al) is equal to 2.5-7.5 to provide a desired volume fraction of ?? and ?? phases. The alloy has a minimum yield strength of 145 ksi.Type: GrantFiled: November 18, 2008Date of Patent: April 28, 2015Assignee: Huntington Alloys CorporationInventor: Sarwan Kumar Mannan
-
Publication number: 20150068713Abstract: The invention relates to a solder powder for connecting components made of aluminium or aluminium alloys by brazing, in particular a brazing powder for connecting heat exchanger components. The solder powder consists of powder particles on an aluminium-silicon base having a weight fraction of more than 12% by weight of silicon, wherein the powder particles have been produced by a rapid solidification and contain uniformly distributed silicon primary crystal precipitations in the eutectic aluminium-silicon alloy structure. Coating with such a solder powder leads to a uniform distribution of the silicon on the surface of the component coated with solder powder and thus to the same good soldering results.Type: ApplicationFiled: March 20, 2013Publication date: March 12, 2015Inventors: Norbert William Sucke, Lothar Löchte, Martin Grzesik
-
Publication number: 20150041028Abstract: The invention includes a copper-nickel-zinc alloy with the following composition in weight %: Cu 47.0 to 49.0%, Ni 8.0 to 10.0%, Mn 0.2 to 0.6%, Si 0.05 to 0.4%, Pb 1.0 to 1.5%, Fe and/or Co up to 0.8%, the rest being Zn and unavoidable impurities, wherein the total of the Fe content and double the Co content is at least 0.1 weight % and wherein mixing silicides containing nickel, iron and manganese and/or containing nickel, cobalt and manganese are stored as spherical or ellipsoidal particles in a structure consisting of an ?- and ?-phase. The invention further relates to a method for producing semi-finished products from a copper-nickel-zinc alloy.Type: ApplicationFiled: February 8, 2013Publication date: February 12, 2015Inventors: Hans-Achim Kuhn, Rudolf Liebsch
-
Publication number: 20140360788Abstract: In order to provide a nonmagnetic material for producing parts or coatings adapted for highly wear and corrosion intensive applications, said material comprising preformed particles made of tungsten carbide which are embedded in a metal phase made of a Ni-based alloy. It is suggested that the weight portion of said tungsten carbide particles is in the range between 30 wt. % and 65 wt. % and wherein the Ni-based alloy is a Nickel-Chromium-Molybdenum alloy comprising: (in wt. %): Cr 11.0,-30.0? Mo 5.0-25.0? Fe ?0-10.0 B 0-5.0 Co 0-2.Type: ApplicationFiled: June 10, 2013Publication date: December 11, 2014Inventors: MICHEL JUNOD, Michael Gill, Alain Tremblay
-
Patent number: 8906171Abstract: The invention relates to a method of producing a TWIP and nano twinned austenitic stainless steel. The austenitic steel should not contain more than 0.018 wt % C, 0.25-0.75 wt % Si, 1.5-2 wt % Mn, 17.80-19.60 wt % Cr, 24.00-25.25 wt % Ni, 3.75-4.85 wt % Mo, 1.26-2.78 wt % Cu, 0.04-0.15 wt % N, and the balance of Fe. In order to form nano twins in the material the austenitic stainless steel should be brought to a temperature below 0° C., and imparted a plastic deformation to such a degree that the desired nano twins are formed, e.g. to a plastic deformation of around 30%. The invention also relates to the thus produced austenitic stainless steel.Type: GrantFiled: September 25, 2012Date of Patent: December 9, 2014Assignee: Sandvik Intellectual PropertyInventors: Ulrika Magnusson, Guocai Chai
-
Publication number: 20140348699Abstract: An austenitic alloy comprising (in weight %): C: 0.01-0.05 Si: 0.05-0.80 Mn: 1.5-2 Cr: 26-34.5 Ni: 30-35 Mo: 3-4 Cu: 0.5-1.5 N: 0.05-0.15 V: <0.15 the balance being Fe and unavoidable impurities, wherein 40<% Ni+100*% N<50.Type: ApplicationFiled: January 16, 2013Publication date: November 27, 2014Inventors: Guocai Chai, Jan Hogberg, Sofia Akesson, Urban Forsberg
-
Publication number: 20140328715Abstract: The invention relates to a method of producing a TWIP and nano twinned austenitic stainless steel. The austenitic steel should not contain more than 0.018 wt % C, 0.25-0.75 wt % Si, 1.5-2 wt % Mn, 17.80-19.60 wt % Cr, 24.00-25.25 wt % Ni, 3.75-4.85 wt % Mo, 1.26-2.78 wt % Cu, 0.04-0.15 wt % N, and the balance of Fe. In order to form nano twins in the material the austenitic stainless steel should be brought to a temperature below 0° C., and imparted a plastic deformation to such a degree that the desired nano twins are formed, e.g. to a plastic deformation of around 30%. The invention also relates to the thus produced austenitic stainless steel.Type: ApplicationFiled: September 25, 2012Publication date: November 6, 2014Applicant: SANDVIK INTELLECTUAL PROPERTY ABInventors: Ulrika Magnusson, Guocai Chai
-
Publication number: 20140305921Abstract: Provided is a high Cr Ni-based alloy welding wire with which tensile strength and weld cracking resistance of a welded portion, the integrity of the microstructure of a welded metal, and inhibition of scale generation are improved. The high Cr Ni-based alloy welding wire is configured to have an alloy composition comprising, by mass, C: 0.04% or less, Mn: 7% or less, Fe: 1 to 12%, Si: 0.75% or less, Al: 0.01 to 0.7%, Ti: 0.01 to 0.7%, Cr: 25.0 to 31.5%, Ta: 1 to 10%, and Mo: 1 to 6%, and as inevitable impurities, Ca+Mg: less than 0.002%, N: 0.1% or less, P: 0.02% or less, O: 0.01% or less, S: 0.0015% or less, H: 0.0015% or less, Cu: 0.08% or less, and Co: 0.05% or less, and the balance: Ni. Then, the high CrNi-based alloy welding wire is configured such that the contents of S, Ta, Al, and Ti satisfy the following relation (1) and the contents of Ta, Mo, and N satisfy the following relation (2): 12000S+0.58Ta?2.6Al?2Ti£19.3??(1) Ta+1.6Mo+187N35.7??(2).Type: ApplicationFiled: January 27, 2012Publication date: October 16, 2014Applicants: NIPPON WELDING ROD CO., LTD., MITSUBISHI HEAVY INDUSTRIES, LTD.Inventors: Kenji Kawasaki, Seiichi Kawaguchi, Masahiko Toyoda, Seiji Asada, Akira Konishi, Yusuke Sano, Tamao Takatsu, Teiichiro Saito, Tetsuya Sango, Norihito Ogawa
-
Publication number: 20140294665Abstract: Precipitation hardened alloy on the basis of copper, zinc, nickel and manganese exhibiting a high strength and ductility with values similar to those of stainless steels in combination with excellent machinability. The inventive alloy family is characterized by fine fibre-like or globular precipitates that emerge during intermediate temperature annealing treatments, which in case of the unleaded variations significantly improves the machinability. The alloy of invention is particularly suited for free machining applications such as the production of pen tips and reservoirs for writing implements of reduced tip dimensions, where conventional Cu—Ni—Zn—Mn alloys fail due to lack of strength and where the corrosion resistance in gel-based inks is insufficient without restriction to other fields of application.Type: ApplicationFiled: February 3, 2012Publication date: October 2, 2014Applicant: BAOSHIDA SWISSMETAL AGInventors: Florian Dalla Torre, Jean-Pierre Tardent
-
Publication number: 20140127073Abstract: There is provided a carburization resistant metal material suitable as a raw material for cracking furnaces, reforming furnaces, heating furnaces, heat exchangers, etc. in petroleum and gas refining, chemical plants, and the like. This metal material consists of, by mass %, C: 0.03 to 0.075%, Si: 0.6 to 2.0%, Mn: 0.05 to 2.5%, P: 0.04% or less, S: 0.015% or less, Cr: higher than 16.0% and less than 20.0%, Ni: 20.0% or higher and less than 30.0%, Cu: 0.5 to 10.0%, Al: 0.15% or less, Ti: 0.15% or less, N: 0.005 to 0.20%, and O (oxygen): 0.02% or less, the balance being Fe and impurities. The metal material may further contain one kind or more kinds of Co, Mo, W, Ta, B, V, Zr, Nb, Hf, Mg, Ca, Y, La, Ce and Nd.Type: ApplicationFiled: May 29, 2012Publication date: May 8, 2014Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATIONInventors: Yoshitaka Nishiyama, Hirokazo Okada, Takahiro Osuki, Etsuo Dan
-
Publication number: 20140030141Abstract: Nickel-chromium-iron-molybdenum alloy, comprising 40 to 48 wt % nickel, 30 to 38 wt % chromium, 4 to 12 wt % molybdenum and iron, wherein the alloy optionally further comprises up to 5 wt % manganese, up to 2 wt % copper, up to 0.6 wt % nitrogen, up to 0.5 wt % aluminium and up to 0.5 wt % vanadium.Type: ApplicationFiled: November 18, 2011Publication date: January 30, 2014Inventors: Per Henrik Asteman, Georg-Wilheim Overbeck
-
Publication number: 20130309124Abstract: An austenitic Fe—Ni—Cr alloy comprises C: 0.005˜0.03 mass %, Si: 0.15˜1.0 mass %, Mn: not more than 2.0 mass %, P: not more than 0.030 mass %, S: not more than 0.002 mass %, Cr: 18˜28 mass %, Ni: 20˜38 mass %, Mo: 0.10˜3 mass %, Co: 0.05˜2.0 mass %, Cu: less than 0.25 mass %, N: not more than 0.02 mass %, provided that PRE=Cr+3.3×Mo+16×N?20.0 and PREH=411?13.2×Cr?5.8×Mo+0.1×Mo2+1.2×Cu?145.0 (wherein each element symbol represents a content (mass %) of each element) and has an excellent corrosion resistance in air or under a wet environment even at a surface state having an oxide film formed by a intermediate heat treatment on the way of the production process.Type: ApplicationFiled: April 22, 2013Publication date: November 21, 2013Applicant: NIPPON YAKIN KOGYO CO., LTD.Inventors: Kazuhiro YAMAKAWA, Shigeru HIRATA, Kun WANG
-
Publication number: 20130259739Abstract: The invention relates to an alloy comprising (in mass %) Ni 33-35%, Cr 26-28%, Mo 6-7%, Cu 0.5-1.5%, Mn 1.0-4%, Si max. 0.1%, Al 0.01-0.3%, C max. 0.01%, N 0.1-0.25%, B 0.001-0.004%, SE>0 to 1%, and Fe remainder, including unavoidable impurities.Type: ApplicationFiled: October 20, 2011Publication date: October 3, 2013Applicant: OUTOKUMPU VDM GMBHInventors: Helena Alves, Rainer Behrens
-
Publication number: 20130209311Abstract: Provided are a metal alloy and more particularly, to an aluminum alloy used for electrical, electronic, and mechanical components, and an aluminum alloy casting manufactured using the aluminum alloy. The aluminum alloy according to an embodiment includes 4 to 13 wt % of silicon (Si), 1 to 5 wt % of copper (Cu), 26 wt % or more and less than 40 wt % of zinc (Zn), and a balance being aluminum (Al) and unavoidable impurities.Type: ApplicationFiled: May 12, 2011Publication date: August 15, 2013Inventors: Seoung-Jin Lee, Hyung-Chul Lee
-
Publication number: 20130209265Abstract: A composition of matter comprises, in combination, in weight percent: a content of nickel as a largest content; 3.10-3.75 aluminum; 0.02-0.09 boron; 0.02-0.09 carbon; 9.5-11.25 chromium; 20.0-22.0 cobalt; 2.8-4.2 molybdenum; 1.6-2.4 niobium; 4.2-6.1 tantalum; 2.6-3.5 titanium; 1.8-2.5 tungsten; and 0.04-0.09 zirconium.Type: ApplicationFiled: February 14, 2012Publication date: August 15, 2013Inventors: Paul L. Reynolds, Darryl Slade Stolz
-
Publication number: 20120301347Abstract: An austenitic stainless steel alloy consisting essentially of, in terms of weight percent ranges 0.15-0.5C; 8-37Ni; 10-25Cr; 2.5-5Al; greater than 0.6, up to 2.5 total of at least one element selected from the group consisting of Nb and Ta; up to 3Mo; up to 3Co; up to 1W; up to 3Cu; up to 15Mn; up to 2Si; up to 0.15B; up to 0.05P; up to 1 total of at least one element selected from the group consisting of Y, La, Ce, Hf, and Zr; <0.3Ti+V; <0.03N; and, balance Fe, where the weight percent Fe is greater than the weight percent Ni, and wherein the alloy forms an external continuous scale comprising alumina, and a stable essentially single phase FCC austenitic matrix microstructure, the austenitic matrix being essentially delta-ferrite free and essentially BCC-phase-free. A method of making austenitic stainless steel alloys is also disclosed.Type: ApplicationFiled: May 24, 2011Publication date: November 29, 2012Applicant: UT-Battelle, LLCInventors: Govindarajan MURALIDHARAN, Yukinori Yamamoto, Michael P. Brady
-
Patent number: 8287805Abstract: The present invention relates an iron based brazing material comprising an alloy consisting essentially of: 15 to 30 wt % chromium (Cr); 0 to 5.0 wt % manganese (Mn); 15 to 30 wt % nickel (Ni); 1.0 to 12 wt % molybdenum (Mo); 0 to 4.0 wt % copper (Cu); 0 to 1.0 wt % nitrogen (N); 0 to 20 wt % silicone (Si); 0 to 2.0 wt % boron (B); 0 to 16 wt % phosphorus (P); optionally 0.0 to 2.5 wt % of each of one or more of elements selected from the group consisting of carbon (C), vanadium (V), titanium (Ti), tungsten (W), aluminum (Al), niobium (Nb), hafnium (Hf), and tantalum (Ta); the alloy being balanced with Fe, and small inevitable amounts of contaminating elements; and wherein Si, B and P are in amounts effective to lower melting temperature, and Si, B, and P are contained in amounts according to the following formula: Index=wt % P+1.1×wt % Si+3×wt % B, and the value of the Index is within the range of from about 5 wt % to about 20.Type: GrantFiled: November 14, 2007Date of Patent: October 16, 2012Assignee: Alfa Laval Corporate ABInventor: Per Sjödin
-
Publication number: 20120230861Abstract: A swash plate includes aluminum (Al) as a main component and 35˜45 wt % of zinc (Zn), 1.5˜3.5 wt % of copper (Cu), 6˜10 wt % of silicon (Si), 0.2˜0.5 wt % of magnesium (Mg) and other inevitable impurities. A method of manufacturing the swash plate is also provided.Type: ApplicationFiled: September 23, 2011Publication date: September 13, 2012Applicant: Hyundai Motor CompanyInventor: Hee Sam Kang
-
Publication number: 20120195790Abstract: A Ni based alloy material consists of by mass percent, C?0.03%, Si: 0.01 to 0.5%, Mn: 0.01 to 1.0%, P?0.03%, S?0.01%, Cr: not less than 20% to less than 30%, Ni: more than 40% to not more than 50%, Cu: more than 2.0% to not more than 5.0%, Mo: 4.0 to 10%, Al: 0.005 to 0.5%, W: 0.1 to 10% , N: more than 0.10% to not more than 0.35%, optionally one or more elements selected from Ca?0.01% and Mg?0.01%, with the balance being Fe and impurities, and the formula of “0.5Cu+Mo?6.5” is satisfied. The material has a surface hardness of a Vickers hardness of not less than 350 at 500° C., a corrosion resistance equivalent to that of Ni based alloys having high Mo contents, and excellent erosion resistance in a severe environment.Type: ApplicationFiled: March 16, 2012Publication date: August 2, 2012Applicant: Sumitomo Metal Industries, Ltd.Inventors: Masaki UEYAMA, Masaaki Terunuma
-
Publication number: 20120190321Abstract: A nonmagnetic stainless steel which has a higher electrical resistivity than existing nonmagnetic alloys, a production process for producing the stainless steel, and a radio wave receiver. The receiver has a main case and rear cover constituted of a nonmagnetic stainless steel having an electrical resistivity as high as more than 100 ??·cm and consisting of C: not more than 0.1%, Si: 4.0-7.5%, Mn: not more than 2.0%, Ni: 25.5-30.0%, Cr: 15.0-20.0%, Mo: 0.1-3.0%, Cu: 0-2.0%, in mass % and the balance Fe and impurities. Even if some variable magnetic flux generated by a coil of an antenna runs through the main case and the rear cover, the receiving efficiency of the antenna can be prevented from being reduced by eddy current loss and a sufficient radio receiving sensitivity can be obtained. This nonmagnetic stainless steel is produced by hot and/or cold plastic working and subsequent solution treating conducted at 1,000-1,180° C.Type: ApplicationFiled: July 29, 2010Publication date: July 26, 2012Applicants: HITACHI METALS, LTD., CASIO COMPUTER CO., LTD.Inventors: Junichi Sato, Toshihiro Uehara, Kenji Yokoyama
-
Publication number: 20120183807Abstract: A brazing filler metal with excellent wetting behaviour on stainless steel base material is provided. The brazing filler metal produces a brazed joint with high strength and good corrosion resistance. The brazing filler metal is suitable for brazing stainless steel and other materials where corrosion resistance and high strength is required. Typical examples of applications are heat exchangers and catalytic converters. The iron-chromium based brazing filler metal powder comprises: 11-35 wt % chromium, 0-30 wt % nickel, 2-20 wt % copper, 2-10 wt % silicon, 4-10 wt % phosphorous, 0-10 wt % manganese, and at least 20 wt % iron, and if Si is equal to or less than 6 wt % then P should be above 8 wt %, and if P is less or equal to 8 wt % then Si should be above 6 wt %.Type: ApplicationFiled: September 17, 2010Publication date: July 19, 2012Applicant: HOGANAS ABInventor: Ulrika Persson
-
Publication number: 20120171070Abstract: A alloy and a process of forming a alloy are disclosed. The alloy has a predetermined grain boundary morphology. The alloy includes by weight greater than about 0.06 percent carbon, up to about 0.0015 percent sulfur, less than about 16 percent chromium, between about 39 percent and about 44 percent nickel, between about 2.5 percent and about 3.3 percent niobium, between about 1.4 percent and about 2 percent titanium, up to about 0.5 percent aluminum, up to about 0.006 percent boron, up to about 0.3 percent copper, up to about 0.006 percent nitrogen, and greater than about 0.5 percent molybdenum.Type: ApplicationFiled: January 3, 2011Publication date: July 5, 2012Applicant: GENERAL ELECTRIC COMPANYInventors: Ganjiang FENG, George A. GOLLER, Raymond Joseph STONITSCH, Jason R. PAROLINI, Shan LIU
-
Publication number: 20120148440Abstract: A copper brazing filler metal includes Ni in an amount of from 20 or more to 36% or less by mass, Mn in an amount from 19 or more to 30% or less by mass, Fe in an amount of from 0 or more to 16% or less by mass, Si in an amount of from more than 0 (not inclusive) to 2% or less by mass, B in an amount of from 0.1 or more to 0.5% or less by mass, and the balance being copper (Cu) as well as inevitable impurities and/or a modifying element, when the entirety is taken as 100% by mass. Moreover, the copper brazing filler metal exhibits a ratio of the Ni content with respect to the Mn content (i.e., (Ni Content)/(Mn Content)) that falls in a range of from 1.1 or more to 2 or less when being free from Fe.Type: ApplicationFiled: December 2, 2011Publication date: June 14, 2012Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHOInventors: Kazuhiko ITOH, Tadashi OSHIMA, Hisaaki TAKAO
-
Patent number: 8119063Abstract: High-alloy austenitic stainless steels that are extra resistant to pitting and crevice corrosion in aggressive, chloride-containing solutions have a tendency for macro-segregation of Mo, at solidification of the melt. This problem is solved by a super austenite stainless steel having the following composition, in % by weight: max 0.03 C, max 0.5 Si, max 6 Mn, 28-30 Cr, 21-24 Ni, 4-6% (Mo+W/2), the content of W being max 0.7, 0.5-1.1 N, max 1.0 Cu, balance iron and impurities at normal contents originating from the production of the steel.Type: GrantFiled: December 28, 2005Date of Patent: February 21, 2012Assignee: Outokumpu OyjInventors: Hachemi Loucif, Mats Liljas
-
Publication number: 20120020600Abstract: A high-strength brass alloy for sliding members, consists of, by mass %, 17 to 28% of Zn, 5 to 10% of Al, 4 to 10% of Mn, 1 to 5% of Fe, 0.1 to 3% of Ni, 0.5 to 3% of Si, and the balance of Cu and inevitable impurities. The high-strength brass alloy has a structure that includes a matrix of a single phase structure of the ? phase and includes at least one of Fe—Mn—Si intermetallic compounds in the form of aciculae, spheres, or petals dispersed in the ? phase.Type: ApplicationFiled: January 6, 2010Publication date: January 26, 2012Applicant: OILES CORPORATIONInventors: Shinya Nishimura, Tomoyuki Yamane, Takeshi Kondo
-
Publication number: 20110311390Abstract: The invention relates to a steel material composition, in particular for producing piston rings and cylinder sleeves, containing the following elements in the given fractions in relation to 100% by weight of the steel material: 0.5-1.2% by weight C, 6.0-20.0% by weight Cr, 45.0-88.5% by weight Fe, 3.0-15.0% by weight Mn and 2.0-10.0% by weight Si. Said composition can be produced by melting the starting materials and casting the melt in a pre-fabricated mould.Type: ApplicationFiled: October 12, 2009Publication date: December 22, 2011Inventor: Laszlo Pelsoeczy
-
Publication number: 20110311391Abstract: The invention relates to a steel material composition, in particular for producing piston rings and cylinder sleeves, containing the following elements in the given fractions in relation to 100% by weight of the steel material: 0.5-1.2% by weight C, 2.0-20.0% by weight Cr, 49.0-97.1% by weight Fe, 0.1-3.0% by weight Mn, 0.1-3.0% by weight Mo, 0.-7.0% by weight Nb, 2.0-10.0% by weight Si, 0-7.0% by weight Ti, 0.-7.0% by weight V and 0.-0.5% by weight W, the sum of the fractions of Nb, Ti, V and W being 2.0-7.0% by weight. Said composition can be produced by melting the starting materials and casting the melt in a pre-fabricated mould.Type: ApplicationFiled: October 13, 2009Publication date: December 22, 2011Applicant: FEDERAL-MOGUL BURSCHEID GMBHInventor: Laszlo Pelsoeczy
-
Publication number: 20110253262Abstract: An austenitic, substantially ferrite-free steel alloy and a process for producing components therefrom. This Abstract is not intended to define the invention disclosed in the specification, nor intended to limit the scope of the invention in any way.Type: ApplicationFiled: April 15, 2011Publication date: October 20, 2011Applicants: SCHOELLER-BLECKMANN OILFIEND TECHNOLOGY GMBHInventors: Gabriele SALLER, Herbert AIGNER, Josef BERNAUER, Raimund HUBER
-
Publication number: 20110236254Abstract: A palladium-dominated dental alloy, in particular a ceramic-bonding dental alloy for the manufacture of dental prostheses such as crowns, bridges, inlays, or onlays, containing at least gold, palladium, and silver, as well as a grain-growth inhibitor in the form of ruthenium. In order to achieve a fine-grained separation without the formation of agglomerates to obtain a dental alloy with high mechanical stability and excellent polishing characteristics, it is proposed that the dental alloy contain—in addition to ruthenium as grain-growth inhibitor—at least one element of the group tantalum, niobium, yttrium, zirconium, chromium, and molybdenum as grain-refinement control element.Type: ApplicationFiled: March 24, 2011Publication date: September 29, 2011Applicant: DEGUDENT GMBHInventors: Joerg HACHENBERG, Rudi STEINKE, Angela KLAUS, Irmgard WISSEL
-
Publication number: 20110226138Abstract: A silicon bearing, copper-nickel corrosion resistant and gall resistant alloy with the following weight percentage range is disclosed: Ni=10-40; Fe=1-10; Si=0.5-2.5; Mn=3-15; Sn=0-3; Cu=Balance. Embodiments of the alloy may be used in various sliding applications, such as bearings, bushings, gears and guides. The alloy is particularly suited for use in parts used in food processing equipment.Type: ApplicationFiled: February 27, 2011Publication date: September 22, 2011Inventors: Sudhari Sahu, Alpana Pradipkumar Sahu
-
Publication number: 20110200843Abstract: A welding material, to be used for welding a base metal made of an austenitic alloy comprising C?2.0%, Si?4.0%, Mn: 0.01 to 3.0%, P: more than 0.03% to not more 0.3%, S?0.03%, Cr: 12 to 35%, Ni: 6 to 80%, sol. Al: 0.001 to 1% and N?0.3%, with the balance being Fe and impurities to a base metal made of another austenitic alloy, which comprises C: more than 0.3% to 3.0%, Si?4.0%, Mn?3.0%, P?0.03%, S?0.03%, Cr: more than 22% to 55%, Ni: more than 30% to not more than 70%, sol. Al: 0.001 to 1% and N?0.3%, with the balance being Fe and impurities can suppress the weld solidification cracking which occurs in an austenitic alloy having a high P content and showing fully austenitic solidification. Therefore, the said welding material can be widely used in such fields where a welding fabrication is required. The said welding material may contain a specific amount or amounts of one or more elements selected from Cu, Mo, W, V, Nb, Ti, Ta, Zr, Hf, Co, B, Ca, Mg and REM.Type: ApplicationFiled: April 25, 2011Publication date: August 18, 2011Applicant: SUMITOMO METAL INDUSTRIES, LTD.Inventors: Takahiro Osuki, Kazuhiro Ogawa, Hirokazu Okada
-
Patent number: 7998230Abstract: A multi-metal powder, in particular for producing diamond tools comprises iron copper, cobalt and molybdenum whose contents are expressed in the following mass percentages: Fe+Cu+Co+Mo=98 mass %, the rest being oxygen and production impurities, wherein 15%=Cu=35%, 0.03=Mo/(Co+Fe+Mo)=0.10, —Fe/Co=2. A sintered compact is obtained by hot compaction of said multi-metal powder, for example, in the form of a diamond cutting tool.Type: GrantFiled: November 3, 2006Date of Patent: August 16, 2011Assignee: Eurotungstene PoudresInventors: Maxime Bonneau, Jean-François Lartigue, Thierry Commeau, Christian Huet
-
Publication number: 20110123383Abstract: A metal powder for use in a metal laser-sintering wherein a three-dimensional shaped object is produced by irradiating a powder layer of the metal powder with a light beam to form a sintered layer and thereby laminating the sintered layers. The metal powder of the present invention is characterized in that it comprises an iron-based powder and at least one kind of powder selected from the group consisting of a nickel powder, a nickel-based alloy powder, a copper powder, a copper-based alloy powder and a graphite powder; and the iron-based powder has been annealed. In such metal powder, the iron-based powder is in a softened state due to the annealing treatment thereof. Accordingly, the use of the metal powder in a metal laser-sintering process makes it possible to reduce a machining resistance attributable to the residual metal powder adherent to the surface of the shaped object, which leads to an achievement of an extended lifetime of a machining tool.Type: ApplicationFiled: August 23, 2007Publication date: May 26, 2011Applicant: PANASONIC ELECTRIC WORKS CO., LTD.Inventors: Isao Fuwa, Satoshi Abe
-
Publication number: 20110014491Abstract: An iron-chromium based brazing filler metal is provided which exhibits an excellent wetting behavior on a stainless steel base material. The brazing filler metal produces a brazed joint which exhibits high strength and good corrosion resistance. The brazing filler metal is suitable for brazing stainless steel and other materials where corrosion resistance and high strength is required. Typical examples of applications are heat exchangers and catalytic converters. The iron-chromium based brazing filler metal powder according to the invention comprises: between 11 and 35 wt % chromium, between 0 and 30 wt % nickel, between 2 and 20 wt % copper, between 2 and 6 wt % silicon, between 4 and 8 wt % phosporous, between 0-10 wt % manganese, and at least 20 wt % iron.Type: ApplicationFiled: March 16, 2009Publication date: January 20, 2011Applicant: HOGANAS AB (PUBL)Inventors: Owe Mars, Ulrika Persson
-
Publication number: 20110011500Abstract: A Ni—Fe—Cr—Mo alloy containing a small amount of Cu and correlated percentages of Nb, Ti and Al to develop a unique microstructure to produce 145 ksi minimum yield strength. The unique microstructure is obtained by special annealing and age hardening conditions, by virtue of which the alloy has an attractive combination of yield strength, impact strength, ductility, corrosion resistance, thermal stability and formability, and is especially suited for corrosive oil well applications that contain gaseous mixtures of carbon dioxide and hydrogen sulfide. The alloy comprises in weight percent the following: 0-15% Fe, 18-24% Cr, 3-9% Mo, 0.05 3.0% Cu, 3.6-6.5% Nb, 0.5-2.2% Ti, 0.05-1.0% Al, 0.005-0.040% C, balance Ni plus incidental impurities and a ratio of Nb/(Al+Ti) in the range of 2.5-7.5. To facilitate formability, the composition range of the alloy is balanced to be Laves phase free.Type: ApplicationFiled: November 18, 2008Publication date: January 20, 2011Applicant: HUNTINGTON ALLOYS CORPORATIONInventor: Sarwan Kumar Mannan
-
Publication number: 20100294472Abstract: The present disclosure relates to the use of a duplex stainless steel as heat exchanger material in a phosphoric acid production system using the wet method. The steel has the following composition in percent by weight: C max 0.03 Si max 0.5 Mn max 3 Cr 26-29 Ni 4.9-10 Mo 3-5 N 0.35-0.5 B max 0.0030 Co max 3.5 W max 3 Cu max 2 Ru max 0.3 balance Fe and normal occurring impurities.Type: ApplicationFiled: October 24, 2008Publication date: November 25, 2010Applicant: SANDVIK INTELLECTUAL PROPERTY ABInventors: Sabina Ronneteg, Knut Tersmeden, Anna-Lena Nyström
-
Publication number: 20100272595Abstract: High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.Type: ApplicationFiled: April 26, 2010Publication date: October 28, 2010Inventors: Phillip James Maziasz, John Paul Shingledecker, Michael Leonard Santella, Joachim Hugo Schneibel, Vinod Kumar Sikka, Harold J. Vinegar, Randy Carl John, Dong Sub Kim
-
Publication number: 20100265028Abstract: The invention discloses a soft magnetic amorphous alloy and a soft magnetic nanocomposite alloy formed from the amorphous alloy. Both alloys comprise a composition expressed by the following formula: (Fe1-x-yCoxMy)100-a-b-cTaBbNc where, M is at least one element selected from the group consisting of Ni and Mn; T is at least one element selected from the group consisting of Nb, W, Ta, Zr, Hf, Ti, Cr, Cu, Mo, V and combinations thereof, and the content of Cu when present is less than or equal to 2 atomic %; N is at least one element selected from the group consisting of Si, Ge, C, P and Al; and 0.01?x+y<0.5; Q?y?0.4; 1<a<5 atomic %; 10<b<30 atomic %; and 0<c<10 atomic %. A core, which may be used in transformers and wire coils, is made by charging a furnace with elements necessary to form the amorphous alloy, rapidly quenching the alloy, forming a core from the alloy; and heating the core in the presence of a magnetic field to form the nanocomposite alloy.Type: ApplicationFiled: February 21, 2007Publication date: October 21, 2010Applicant: CARNEGIE MELLON UNIVESITYInventors: Michael E. McHenry, Jianguo Long, Vladimir Keylin, David Laughlin, Joseph Huth, Edward Conley