Containing Over 50 Per Cent Metal But No Base Metal Patents (Class 420/580)
-
Patent number: 12098081Abstract: The present disclosure relates to the field of new materials, and aims at providing an A-site high-entropy nanometer metal oxide with high conductivity, and a preparation method thereof. The metal oxide has molecular formula of Gd0.4Er0.3La0.4Nd0.5Y0.4)(Zr0.7, Sn0.8, V0.5)O7 and is a powder, and has microstructure of the metal oxide as a square nanometer sheet with a side length of 4-12 nm and a thickness of 1-3 nm. Compared with an existing high-entropy oxide, the product in the present disclosure has high conductivity, and can be well applied to a conductive alloy, an electrical contact composite material, a conductive composite material, a multifunctional bio-based composite material, a conductive/antistatic composite coating and the like.Type: GrantFiled: September 21, 2023Date of Patent: September 24, 2024Assignee: Zhejiang UniversityInventors: Lingjie Zhang, Weiwei Cai, Ningzhong Bao
-
Patent number: 12060627Abstract: High entropy alloys (HEAs) are provided, which exhibit hard magnetic properties, including increased saturation magnetization, improved coercivity, and thermal stability at temperatures exceeding about 200° C. Methods of making the HEAs are also provided, as well as methods for using the HEAs, particularly in extreme environments.Type: GrantFiled: October 28, 2021Date of Patent: August 13, 2024Assignee: The United States of America, as represented by the Secretary of the NavyInventors: Suok-Min Na, Nicholas J. Jones, Paul K. Lambert
-
Patent number: 12005155Abstract: Medical devices, such as implants, having a high-modulus alloy. The alloy includes a biocompatible refractory-metal-based alloy having multiple refractory metals. The alloy has an elastic modulus above about 300 GPa. The alloy comprises 30-35% tungsten, 60% molybdenum, and 5-10% niobium. The alloy is absent of rhenium.Type: GrantFiled: December 7, 2020Date of Patent: June 11, 2024Assignee: WARSAW ORTHOPEDIC, INC.Inventors: James Davidson, William Rezach, Rodney Ballard
-
Patent number: 11987489Abstract: Methods and systems for the production and delivery of lithium metal of high purity are provided herein. In one or more embodiments, method for flowing liquid lithium to a processing chamber is provided and includes flowing liquid lithium from a lithium refill container to a liquid lithium delivery module, where the liquid lithium delivery module is fluidly coupled to the lithium refill container, and flowing the liquid lithium from the liquid lithium delivery module to the processing chamber. The liquid lithium delivery module contains a lithium storage region operable to store liquid lithium and containing a fluid supply line fluidly coupling an outlet port of a liquid lithium storage tank, and a flow meter positioned downstream from the lithium storage region along the fluid supply line and operable to monitor the flow of the liquid lithium through the fluid supply line.Type: GrantFiled: March 10, 2023Date of Patent: May 21, 2024Assignee: APPLIED MATERIALS, INC.Inventors: Jean Delmas, Bernard Frey
-
Patent number: 11990251Abstract: A method for manufacturing a superconductor is described. A metal assembly precursor can be formed within a hollow copper support element. Forming the metal assembly precursor within a hollow copper support element by positioning a plurality of conductor elements about a core including Sn to provide a first plurality of inner interstitial spaces between the plurality of conductor elements between the core and conductor elements and a second plurality of outer interstitial spaces between the hollow copper support element and the core, the plurality of conductor elements including unreacted Nb. The metal assembly precursor can be reduced via cold drawing to produce a reduced metal assembly. The reduced metal assembly can be reaction heat treated so that the unreacted Nb undergoes a phase transformation to a reacted superconductor.Type: GrantFiled: March 14, 2023Date of Patent: May 21, 2024Assignee: LUVATA WATERBURY, INC.Inventors: Taeyoung Pyon, Antti Kilpinen
-
Patent number: 11970762Abstract: A high purity gold alloy alloyed with at least two of the metals zirconium, titanium and magnesium for jewelry manufacture, containing 75-99.5% Gold; at least two of 0.01-1.5% Zirconium, 0.01-1.5% Magnesium, and 0.01-1.5% Titanium; 0-24.98% Copper; 0-24.98% Zinc; and 0-24.98% Silver by weight. The gold alloy has 75-260 Vickers hardness and specific gravity 14-19 g/cc. A gold alloy with zirconium, magnesium, and titanium has a rich yellow colour. A gold alloy with zirconium and magnesium has a greenish yellow colour. A gold alloy with zirconium and titanium has a whitish yellow colour. A gold alloy with magnesium and titanium has a pale yellow colour. The gold alloy shows low wear during polishing. The gold alloy includes 18-24 Caratage, suitable for jewelry manufacture due to its low specific gravity.Type: GrantFiled: June 28, 2017Date of Patent: April 30, 2024Inventors: Subodh Pethe, Sharad Parab
-
Patent number: 11905585Abstract: A novel medium heavy alloy (MHA) a composition designed and processed such that the MHA has properties comprising a tensile strength of about 1527 MPa, a proof strength of about 1337 MPa, and an impact toughness of about 180 J, when the MHA is forged, and the tensile strength of about 1746 MPa, the proof strength of about 1571 MPa, and the impact toughness of about 55 J, when the MHA is agedly treated. The superior strength-toughness is attributed to the face-centered cubic matrix and/or the nano-sized secondary phases. The superior dynamic performance is attributed to the widening of adiabatic shear bands.Type: GrantFiled: May 4, 2020Date of Patent: February 20, 2024Assignee: NORTHWESTERN UNIVERSITYInventors: Xiaobing Hu, Shaozun Liu, Chunxu Wang, Yong Li, Vinayak P. Dravid
-
Patent number: 11866343Abstract: The present disclosure relates to the field of new materials, and aims at providing an A-site high-entropy nanometer metal oxide with high conductivity, and a preparation method thereof. The metal oxide has molecular formula of Gd0.4Er0.3La0.4Nd0.5Y0.4)(Zr0.7, Sn0.8, V0.5)O7 and is a powder, and has microstructure of the metal oxide as a square namometer sheet with a side length of 4-12 nm and a thickness of 1-3 nm. Compared with an existing high-entropy oxide, the product in the present disclosure has high conductivity, and can be well applied to a conductive alloy, an electrical contact composite material, a conductive composite material, a multifunctional bio-based composite material, a conductive/antistatic composite coating and the like.Type: GrantFiled: February 8, 2022Date of Patent: January 9, 2024Assignee: Zhejiang UniversityInventors: Lingjie Zhang, Weiwei Cai, Ningzhong Bao
-
Patent number: 11866815Abstract: A method for preparing a high entropy alloy (HEA) structure includes the steps of: preparing an alloy by arc melting raw materials comprising five or more elements; drop casting the melted alloy into a cooled mold to form a bulk alloy; applying an external force against the bulk alloy to reshape the bulk alloy; and heat-treating the reshaped bulk alloy, wherein the bulk alloy is reshaped and/or heat-treated for manipulating the distribution of the microstructure therein. The present invention also relates to a high entropy alloy structure prepared by the method.Type: GrantFiled: November 2, 2021Date of Patent: January 9, 2024Assignee: City University of Hong KongInventors: Yong Yang, Quanfeng He, Zhaoyi Ding
-
Patent number: 11832519Abstract: A thermoelectric conversion material is constituted of a semiconductor that contains a constituent element and an additive element having a difference of 1 in the number of electrons in an outermost shell from the constituent element, the additive element having a concentration of not less than 0.01 at % and not more than 30 at %. The semiconductor has a microstructure including an amorphous phase and a granular crystal phase dispersed in the amorphous phase. The amorphous phase includes a first region in which the concentration of the additive element is a first concentration, and a second region in which the concentration of the additive element is a second concentration lower than the first concentration. The first concentration and the second concentration have a difference of not less than 15 at % and not more than 25 at % therebetween.Type: GrantFiled: September 16, 2020Date of Patent: November 28, 2023Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., TOYOTA SCHOOL FOUNDATIONInventors: Kotaro Hirose, Masahiro Adachi, Tsunehiro Takeuchi
-
Patent number: 11631508Abstract: A method for manufacturing a superconductor is described. A metal assembly precursor can be formed within a hollow copper support element. Forming the metal assembly precursor within a hollow copper support element by positioning a plurality of conductor elements about a core including Sn to provide a first plurality of inner interstitial spaces between the plurality of conductor elements between the core and conductor elements and a second plurality of outer interstitial spaces between the hollow copper support element and the core, the plurality of conductor elements including unreacted Nb. The metal assembly precursor can be reduced via cold drawing to produce a reduced metal assembly. The reduced metal assembly can be reaction heat treated so that the unreacted Nb undergoes a phase transformation to a reacted superconductor.Type: GrantFiled: February 8, 2019Date of Patent: April 18, 2023Assignee: LUVATA WATERBURY, INC.Inventor: Taeyoung Pyon
-
Patent number: 11602808Abstract: Some implementations of the disclosure are directed to a solder preform, comprising: a solder alloy body, the solder alloy body comprising at least one opening; and a flux core embedded in the solder alloy body, the flux core comprising a thermochromic indicator, wherein during reflow soldering, the flux core comprising the thermochromic indicator is configured to flow out of the at least one opening of the solder alloy.Type: GrantFiled: April 29, 2020Date of Patent: March 14, 2023Assignee: INDIUM CORPORATIONInventors: Craig K. Merritt, Anthony D. Lanza, Jr., James B. Hevel
-
Patent number: 11565318Abstract: A reactive matrix infiltration process is described herein, which includes contacting a surface of a preform comprising reinforcement material particles with a molten infiltrant comprising a matrix material, the matrix material comprising an Al—Ce alloy, whereby the infiltrant at least partially fills spaces between the reinforcement material particles by capillary action and reacts with the reinforcement material particles to form a composite material form, the composite material comprising the matrix material, at least one intermetallic phase, and, optionally, reinforcement material particles. A composite material form also is described, which includes a plurality of reinforcement material particles comprising a metal alloy or a ceramic, a matrix material at least partially filling spaces between the reinforcement material particles; and at least one intermetallic phase surrounding at least some of the reinforcement material particles.Type: GrantFiled: September 3, 2020Date of Patent: January 31, 2023Assignees: UT-Battelle, LLC, University of Tennessee Research Foundation, Eck Industries IncorporatedInventors: Orlando Rios, Craig A. Bridges, Amelia M. Elliott, Hunter B. Henderson, Michael S. Kesler, Zachary Sims, David Weiss
-
Patent number: 11466344Abstract: This disclosure provides alloy compositions comprising the main constituent elements iron, nickel, cobalt, molybdenum, and chromium. In one embodiment, the alloy comprises 10.0 to 30.0 wt % iron; 30.0 to 60.0 wt % nickel; 10.0 to 25.0 wt % cobalt; 1.0 to 15.0 wt % molybdenum; 15.0 to 25.0 wt % chromium by weight; where the sum of iron and nickel is at least 50 wt %; and, where the balance comprises minor elements, the total amount of minor elements being about 5% or less by weight. The alloy compositions have use as coatings to protect metals and alloys from corrosion in extreme environments where corrosion is a major concern such as with exposure to sea water or sea water with CO2.Type: GrantFiled: March 5, 2020Date of Patent: October 11, 2022Assignee: Energy, United States Department ofInventors: Jeffrey A. Hawk, Paul D. Jablonski, Malgorzata Ziomek-Moroz, Joseph H. Tylczak, Michael C. Gao, Alvaro A. Rodriguez
-
Patent number: 11434551Abstract: The present disclosure is directed to novel high entropy alloys, including refractory high entropy alloys, and methods of selecting high entropy alloys and refractory high entropy alloys with select nuclear application predetermined properties.Type: GrantFiled: October 2, 2020Date of Patent: September 6, 2022Assignee: National Technology & Engineering Solutions of Sandia, LLCInventors: Salvador B. Rodriguez, Andrew Kustas, David Ames
-
Patent number: 11404800Abstract: A conductor joint (1) is provided for connecting two conductors along a longitudinal direction. The conductor joint comprises a first segment having a first segment end (202) adapted connecting to an end portion of a first conductor and a second segment (300) comprising a second segment end (302) relative to the longitudinal direction adapted for receiving a second conductor end of a second conductor. The second segment further has an opposite second segment end (304) fixed, or forming an integral part with, an opposite first segment end (204) of the first segment (200), a tubular sleeve (310) and a core rod (320) wherein ends (310a, 320a) of the tubular sleeve (310) and the core rod (320) are arranged with a radial offset forming a sleeve opening for receiving at the end portion of the second conductor end of the second conductor.Type: GrantFiled: May 26, 2021Date of Patent: August 2, 2022Assignee: NEXANSInventors: Mats Johansson, Alf Erik Rod, Audun Johanson, Robin Sangar, Brynjar Jacobsen
-
Patent number: 11359266Abstract: A method for preparing a high entropy alloy (HEA) structure includes the steps of: preparing an alloy by arc melting raw materials comprising five or more elements; drop casting the melted alloy into a cooled mold to form a bulk alloy with eutectic microstructure therein; and subjecting the bulk alloy to an acidic condition to form a bulk porous structure with eutectic microstructure therein. A high entropy alloy structure is also provided as prepared by the method.Type: GrantFiled: November 20, 2018Date of Patent: June 14, 2022Assignee: City University of Hong KongInventors: Yong Yang, Zhaoyi Ding, Quanfeng He
-
Patent number: 11305363Abstract: A method may include removing a portion of a base component adjacent to a damaged portion of the base component to define a repair portion of the base component. The base component may include a cobalt- or nickel-based superalloy, and the repair portion of the base component may include a through-hole extending from a first surface of the base component to a second surface of the base component. The method also may include forming a braze sintered preform to substantially reproduce a shape of the through-hole. The braze sintered preform may include a Ni- or Co-based alloy. The method additionally may include placing the braze sintered preform in the through-hole and heating at least the braze sintered preform to cause the braze sintered preform to join to the repair portion of the base component and change a microstructure of the braze sintered preform to a brazed and diffused microstructure.Type: GrantFiled: February 11, 2019Date of Patent: April 19, 2022Assignee: Rolls-Royce CorporationInventors: Raymond Ruiwen Xu, Scott Nelson, Joseph Peter Henderkott
-
Patent number: 11168386Abstract: The present invention relates to a high-entropy alloy especially having excellent low-temperature tensile strength and elongation by means of having configured, through thermodynamic calculations, an alloy composition region having an FCC single-phase microstructure at 700° C. or higher, and enabling the FCC single-phase microstructure at room temperature and at an ultra-low temperature. The high-entropy alloy, according to the present invention, comprises: Co: 3-12 at %; Cr: 3-18 at %; Fe: 3-50 at %; Mn: 3-20 at %; Ni: 17-45 at %; V: 3-12 at %; and unavoidable impurities, wherein the ratio of the V content to the Ni content (V/Ni) is 0.5 or less, and the sum of the V content and the Co content is 22 at % or less.Type: GrantFiled: March 21, 2017Date of Patent: November 9, 2021Assignees: POSTECH ACADEMY-INDUSTRY FOUNDATION, THE INDUSTRY & ACADEMIC COOPERATION IN CHUNGNAM NATIONAL UNIVERSITYInventors: Byeong-joo Lee, Sung-hak Lee, Hyoung-seop Kim, Young-sang Na, Sun-ig Hong, Won-mi Choi, Chang-woo Jeon, Seung-mun Jung
-
Patent number: 11047038Abstract: A metallization for a thin-film component includes at least one layer composed of an Mo-based alloy containing Al and Ti and usual impurities. A process for producing a metallization includes providing at least one sputtering target, depositing at least one layer of an Mo-based alloy containing Al and Ti and usual impurities, and structuring the metallization by using at least one photolithographic process and at least one subsequent etching step. A sputtering target is composed of an Mo-based alloy containing Al and Ti and usual impurities. A process for producing a sputtering target composed of an Mo-based alloy includes providing a powder mixture containing Mo and also Al and Ti and cold gas spraying (CGS) of the powder mixture onto a suitable support material.Type: GrantFiled: August 10, 2015Date of Patent: June 29, 2021Assignee: Plansee SEInventors: Harald Koestenbauer, Judith Koestenbauer, Gerhard Leichtfried, Joerg Winkler, Moo Sung Hwang, Martin Kathrein, Elisabeth Eidenberger
-
Patent number: 10570491Abstract: A metallic alloy, more particularly, a high-entropy alloy with a composite structure exhibits high strength and good ductility, and is used as a component material in electromagnetic, chemical, shipbuilding, machinery, and other applications, and in extreme environments, and the like.Type: GrantFiled: March 10, 2017Date of Patent: February 25, 2020Assignee: The Industry & Academic Cooperation in Chungnam National University (IAC)Inventors: Sun Ig Hong, Jae Sook Song
-
Patent number: 10563291Abstract: A method of forming a sintered nickel-titanium-rare earth (Ni—Ti-RE) alloy includes adding one or more powders comprising Ni, Ti, and a rare earth constituent to a powder consolidation unit comprising an electrically conductive die and punch connectable to a power supply. The one or more powders are heated at a ramp rate of about 35° C./min or less to a sintering temperature, and pressure is applied to the powders at the sintering temperature, thereby forming a sintered Ni—Ti-RE alloy.Type: GrantFiled: May 14, 2018Date of Patent: February 18, 2020Assignee: University of LimerickInventors: Syed Ansar Md. Tofail, James Butler
-
Patent number: 10350733Abstract: Methods for joining an ultra-hard body, such as a thermally stable polycrystalline diamond (TSP) body, to a substrate and mitigating the formation of high stress concentration regions between the ultra-hard body and the substrate. One method includes covering at least a portion of the ultra-hard body with an intermediate layer, placing the ultra-hard body and the intermediate layer in a mold, filling a remaining portion of mold with a substrate material including a matrix material and a binder material such that the intermediate layer is disposed between the ultra-hard body and the substrate material, and heating the mold to an infiltration temperature configured to melt the binder material and form the substrate.Type: GrantFiled: December 3, 2015Date of Patent: July 16, 2019Assignee: SMITH INTERNATIONAL, INC.Inventors: Liang Zhao, Xiaoge Gan, Yahua Bao, Yuri Y. Burhan, Youhe Zhang, J. Daniel Belnap, Zhijun Lin
-
Patent number: 9859531Abstract: Provided are sealed pouch-cell batteries that are alkaline batteries or non-aqueous proton-conducing batteries. A pouch cell includes a flexible housing such as is used for pouch cell construction where the housing is in the form of a pouch, a cathode comprising a cathode active material suitable for use in an alkaline battery, an anode comprising an anode active material suitable for use in an alkaline battery, an electrolyte that is optionally an alkaline or proton-conducting electrolyte, and wherein the pouch does not include or require a safety vent or other gas absorbing or releasing system as the anode active material and the cathode active material do not increase the internal atmospheric pressure any more than 2 psig during cycling. The batteries provided function contrary to the art recognized belief that such battery systems were impossible due to unacceptable gas production during cycling.Type: GrantFiled: February 6, 2015Date of Patent: January 2, 2018Assignee: Ovonic Battery Company, Inc.Inventors: Kwo-hsiung Young, Jean Nei, Tiejun Meng
-
Patent number: 9663546Abstract: Compounds, and oligomers of the compounds, are synthesized with cyclic amine ligands attached to a metal atom. These compounds are useful for the synthesis of materials containing metals. Examples include pure metals, metal alloys, metal oxides, metal nitrides, metal phosphides, metal sulfides, metal selenides, metal tellurides, metal borides, metal carbides, metal silicides and metal germanides. Techniques for materials synthesis include vapor deposition (chemical vapor deposition and atomic layer deposition), liquid solution methods (sol-gel and precipitation) and solid-state pyrolysis. Suitable applications include electrical interconnects in microelectronics and magnetoresistant layers in magnetic information storage devices. The films have very uniform thickness and high step coverage in narrow holes.Type: GrantFiled: July 25, 2014Date of Patent: May 30, 2017Assignee: President and Fellows of Harvard CollegeInventor: Roy Gerald Gordon
-
Patent number: 9169538Abstract: An alloy material with a constant electrical resistivity in a wide temperature range comprises the following chemical formula: AlvCowCrxFeyNiz, wherein v is in the range of 1.9 to 2.1, w is in the range of 0.9 to 1.1, x is in the range of 0.9 to 1.1, y is in the range of 0.9 to 1.1, and z is in the range of 0.9 to 1.1. A method for producing the alloy material comprises the steps of: providing raw metal materials and mixing them according to the molar ratio of the prescription of the alloy materials; disposing the mixed raw metal materials into a furnace and homogeneously smelting each of the raw metal materials under a protective Ar atmospheric environment; cooling and solidifying the smelted raw metal materials in order to obtain the alloy; and deforming and/or shaping the solidified alloy to predefined figures and dimensions.Type: GrantFiled: May 31, 2012Date of Patent: October 27, 2015Assignee: National Tsing Hua UniversityInventor: Swe-Kai Chen
-
Publication number: 20150140357Abstract: A contact layer for an electrical contact is disclosed having bismuth and being tin-free.Type: ApplicationFiled: January 30, 2015Publication date: May 21, 2015Applicant: TYCO ELECTRONICS AMP GMBHInventors: Helge Schmidt, Stefan Thoss
-
Publication number: 20150104703Abstract: Disclosed is an alloy powder for electrodes for nickel-metal hydride storage batteries having a high battery capacity and being excellent in life characteristics and high-temperature storage characteristics. The alloy powder includes a hydrogen storage alloy containing elements L, M, Ni, Co, and E. L includes La as an essential component. L includes no Nd, or when including Nd, the percentage of Nd in L is less than 5 mass %. The percentage of La in the hydrogen storage alloy is 23 mass % or less. M is Mg, Ca, Sr and/or Ba. A molar ratio ? to a total of L and M is 0.045???0.133. A molar ratio x of Ni to the total of L and M is 3.5?x?4.32, and a molar ratio y of Co is 0.13?y?0.5. The molar ratios x and y, and a molar ratio z of E to the total of L and M satisfy 4.78?x+y+z<5.03.Type: ApplicationFiled: February 19, 2014Publication date: April 16, 2015Inventors: Akiko Okabe, Hideaki Ohyama, Shinichi Sumiyama, Yasushi Nakamura, Kiyoshi Hayashi, Hiroki Takeshima, Fumio Kato
-
Publication number: 20150098858Abstract: The purpose of the present invention is to provide novel solid gold-nickel alloy nanoparticles and a production method thereof. Provided are solid gold-nickel alloy nanoparticles having a particle diameter of 500 nm or less. In particular, gold-nickel alloy nanoparticle are provided in which the concentration of nickel in the gold-nickel alloy is 2.0-92.7 wt %, and the main component is a gold-nickel alloy in which gold and nickel are in a nano-level fine mixed state. The gold-nickel alloy particles have as the main component a substitutional solid solution of gold and nickel. These gold-nickel alloy particles are optimally formed by mixing and discharging gold ions, and a substance having reducing characteristics in the thin film fluid occurring between processing surfaces which are arranged facing each other, which can move towards and away from each other, and at least one of which rotates relative to the other.Type: ApplicationFiled: March 15, 2013Publication date: April 9, 2015Applicant: M. TECHNIQUE CO., LTD.Inventors: Masaki Maekawa, Kazuya Araki, Daisuke Honda, Masakazu Enomura
-
Patent number: 8980168Abstract: The beryllium content of beryllium aluminum alloys suitable for investment casting which contain a small but suitable amount of silver can be significantly reduced without adversely affecting their thermal or investment casting properties by including significantly more silicon in the alloy than done in the past.Type: GrantFiled: February 16, 2012Date of Patent: March 17, 2015Assignee: Materion Brush Inc.Inventor: Randolf S. Beals
-
Publication number: 20150044491Abstract: The invention provides tantalum alloys, methods for forming tantalum alloys having a luminous, black, ceramic surface, and articles, such as, but not limited to, jewelry and watches, formed from the tantalum alloys.Type: ApplicationFiled: August 7, 2013Publication date: February 12, 2015Inventor: Daniel S. PISCITELLI
-
Publication number: 20150004337Abstract: The present invention provides a cold sprayed layer of tungsten, molybdenum, titanium, zirconium, or of mixtures of two or more of tungsten, molybdenum, titanium and zirconium, or of alloys of two or more of tungsten, molybdenum, titanium and zirconium, or of alloys of tungsten, molybdenum, titanium, zirconium with other metals, wherein the cold spayed layer has an oxygen content of below 1,000 ppm.Type: ApplicationFiled: July 4, 2014Publication date: January 1, 2015Inventors: STEFAN ZIMMERMANN, UWE PAPP, HEINRICH KREYE, TOBIAS SCHMIDT
-
Patent number: 8888461Abstract: A material for a gas turbine component, to be specific a titanium-aluminum-based alloy material, including at least titanium and aluminum. The material has a) in the range of room temperature, the ?/B2-Ti phase, the ?2-Ti3Al phase and the ?-TiAl phase with a proportion of the ?/B2-Ti phase of at most 5% by volume, and b) in the range of the eutectoid temperature, the ?/B2-Ti phase, the ?2-Ti3Al phase and the ?-TiAl phase, with a proportion of the ?/B2-Ti phase of at least 10% by volume.Type: GrantFiled: October 18, 2008Date of Patent: November 18, 2014Assignees: MTU Aero Engines GmbH, Montanuniversitaet Leoben, Boehler Schmiedetechnik GmbH & Co. KG, GFE Metalle Unf Materialien GmbHInventors: Wilfried Smarsly, Helmut Clemens, Volker Guether, Sascha Kremmer, Andreas Otto, Harald Chladil
-
Publication number: 20140314617Abstract: A dental alloy contains palladium (Pd) and indium (In) for CAD/CAM machining. The dental alloy can further include one component selected from the group consisting of gold (Au), silver (Ag), nickel (Ni), cobalt (Co), and platinum (Pt). The dental alloy has a yield strength of 250 MPa to 450 MPa, breaking elongation of 2% to 8%, metal-ceramic adhesion of 20 MPa to 70 MPa, coefficient of linear thermal expansion of 14.0×10?6/K to 17.0×10?6/K, or density of 8 g/cm3 to 15 g/cm3.Type: ApplicationFiled: April 13, 2012Publication date: October 23, 2014Applicant: CERAGEM BIOSYS CO., LTD.Inventors: Kyeong Jun Park, Jeong Jong Park, Sun Wook Cho
-
Publication number: 20140294676Abstract: Hydrogen sensor including a substrate (S) on which there is deposited an active layer of material comprising a first element selected from the rare earth family, a second element selected from the platinum group metals (PGMs) and a third element selected from the alkaline earth metal family.Type: ApplicationFiled: June 6, 2012Publication date: October 2, 2014Applicant: THE SWATCH GROUP RESEARCH AND DEVELOPMENT LTDInventors: Klaus Yvon, Edmond Koller, Jean-Philippe Rapin, Michael Stalder
-
Publication number: 20140271335Abstract: Provided is a super elastic alloy for biological use having a high biocompatibility, good processability and super elasticity, said super elastic alloy being a super elastic zirconium alloy for biological use comprising 27-54 mol % inclusive of titanium, 5-9 mol % inclusive of niobium which is a ? phase-stabilizing element capable of stabilizing the ? phase of zirconium, and 1-4 mol % inclusive in total of tin and/or aluminum which are ? phase-suppressing elements capable of suppressing the ? phase of zirconium, with the balance consisting of zirconium and inevitable impurities.Type: ApplicationFiled: August 28, 2012Publication date: September 18, 2014Applicant: UNIVERSITY OF TSUKUBAInventors: Shuichi Miyazaki, Heeyoung Kim, Yosuke Sato
-
Publication number: 20140255246Abstract: Guide wire devices and other intra-corporal medical devices fabricated from a Ni—Ti—Nb alloy and methods for their manufacture. The Ni—Ti alloy includes nickel, titanium, and niobium either up to its solubility limit in Ni—Ti, or in amounts over 15 atomic percent so as to provide a dual phase alloy. In either case, the Ni—Ti—Nb alloy provides increased stiffness to provide better torque response, steerability, stent scaffolding strength, and similar properties associated with increased stiffness, while still providing super-elastic or linear pseudo-elastic properties.Type: ApplicationFiled: March 8, 2013Publication date: September 11, 2014Applicant: ABBOTT LABORATORIESInventors: John A. Simpson, John F. Boylan
-
Publication number: 20140257451Abstract: Medical devices that include a Ni—Ti ternary alloy and methods for their manufacture. The medical devices described herein include at least one part fabricated from the Ni—Ti ternary alloy. In the Ni—Ti alloys, the ternary alloying element is selected to be compatible with Ni—Ti. Example Ni—Ti ternary alloys include nickel (Ni), titanium (Ti), and one or more of tantalum (Ta), hafnium (Hf), vanadium (V), zirconium (Zr), scandium (Sc), or yttrium (Y). By virtue of their compatibility with Ni—Ti, additions of the ternary alloying element(s) may substitute for titanium in the Ni—Ti phase up to the solubility of the ternary element and the remainder can exist as a second phase whose mechanical properties resemble that of the pure ternary element and whose elastic modulus exceeds that of the Ni—Ti matrix.Type: ApplicationFiled: March 8, 2013Publication date: September 11, 2014Applicant: ABBOTT LABORATORIESInventors: John A. Simpson, John F. Boylan
-
Patent number: 8795587Abstract: Ferrous metallurgy for producing an alloy for reducing, doping and modifying steel is disclosed. The quality of the steel treated with the inventive alloy is improved owing to the deep reduction and modification of non-metallic impurities and the simultaneous microalloying of steel with barium, titanium and vanadium. Barium, titanium and vanadium are added into the inventive alloy, which contains aluminum, silicon, calcium, carbon and iron, with the following component ratio, in mass %: 45.0-63.0 silicon, 10.0-25.0 aluminum, 1.0-10.0 calcium, 1.0-10.0 barium, 0.3-5.0 vanadium, 1.0-10.0 titanium, 0.1-1.0 carbon, the rest being iron.Type: GrantFiled: September 18, 2008Date of Patent: August 5, 2014Assignee: RSE the National Center on Complex Processing of Mineral Raw Material of the Republic KazakhstanInventors: Nursultan Abishevich Nazarbaev, Vladimir Sergeevich Shkolnik, Abdurassul Aldashevich Zharmenov, Manat Zhaksybergenovich Tolymbekov, Sailaubay Omarovich Baisanov
-
Publication number: 20140212324Abstract: Provided by the present invention are a fine crystallite high-function metal alloy member, a method for manufacturing the same, and a business development method thereof, in which a crystallite of a metal alloy including a high-purity metal alloy whose crystal lattice is a face-centered cubic lattice, a body-centered cubic lattice, or a close-packed hexagonal lattice is made fine with the size in the level of nanometers (10?9 m to 10?6 m) and micrometers (10?6 m to 10?3 m), and the form thereof is adjusted, thereby remedying drawbacks thereof and enhancing various characteristics without losing superior characteristics owned by the alloy.Type: ApplicationFiled: April 10, 2012Publication date: July 31, 2014Applicant: THREE-O CO., LTD.Inventor: Kazuo Ogasa
-
Publication number: 20140186102Abstract: A method for joining, assembling, at least two parts made of silicon carbide-based materials by non-reactive brazing is provided. According to the method, the parts are contacted with a non-reactive brazing composition, the assembly formed by the parts and the brazing composition is heated to a brazing temperature sufficient to melt the brazing composition totally or at least partly, and the parts and brazing composition are cooled to that, after solidification of the brazing composition, a moderately refractory joint is formed; wherein the non-reactive brazing composition is an alloy comprising, in atomic percentages, 45% to 65% silicon, 28% to 45% nickel and 5% to 15% aluminium. A brazing composition as defined above is provided. A brazing paste, suspension comprising a powder of said brazing composition and an organic binder as well as a joint and assembly obtained the foregoing method are also provided.Type: ApplicationFiled: March 7, 2014Publication date: July 3, 2014Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVESInventors: Valérie Chaumat, Jean-Francois Henne, Nadia Miloud-Ali
-
Publication number: 20140112824Abstract: Provided are films comprising aluminum, carbon and a metal, wherein the aluminum is present in an amount greater than about 16% by elemental content and less than about 50% carbon. Also provided are methods of depositing the same.Type: ApplicationFiled: October 21, 2013Publication date: April 24, 2014Inventors: David Thompson, Srinivas Gandikota, Xinliang Lu, Wei Tang, Jing Zhou, Seshadri Ganguli, Jeffrey W. Anthis, Atif Noori, Faruk Gungor, Dien-Yeh Wu, Mei Chang, Shih Chung Chen
-
Patent number: 8697481Abstract: Multijunction solar cells having at least four subcells are disclosed, in which at least one of the subcells comprises a base layer formed of an alloy of one or more elements from group III on the periodic table, nitrogen, arsenic, and at least one element selected from the group consisting of Sb and Bi, and each of the subcells is substantially lattice matched. Methods of manufacturing solar cells and photovoltaic systems comprising at least one of the multijunction solar cells are also disclosed.Type: GrantFiled: December 7, 2012Date of Patent: April 15, 2014Assignee: Solar Junction CorporationInventors: Rebecca Elizabeth Jones-Albertus, Pranob Misra, Michael J. Sheldon, Homan B. Yuen, Ting Liu, Daniel Derkacs, Vijit Sabnis, Micahel West Wiemer, Ferran Suarez
-
Publication number: 20140099279Abstract: A medical device that is at least partially formed of a novel metal alloy, which novel metal alloy improves the physical properties of the medical device.Type: ApplicationFiled: October 5, 2012Publication date: April 10, 2014Applicant: ICON MEDICAL CORP.Inventors: JOSEPH G. FURST, UDAYAN PATEL, RAYMOND BUCKMAN
-
Publication number: 20140093360Abstract: A turbomachine has a seal which mates to a plurality of airfoils. The seal is formed from an abradable aluminum based material having a plurality of hard phase particles embedded therein and having a melting point higher than a melting point of the melting point of the abradable coating matrix alloy.Type: ApplicationFiled: October 1, 2012Publication date: April 3, 2014Applicant: UNITED TECHNOLOGIES CORPORATIONInventor: Christopher W. Strock
-
Publication number: 20140030596Abstract: A cathode for a sodium-metal halide battery, wherein the cathode comprises a metal microwire. Embodiments of the present invention also relate to a battery comprising a cathode for a sodium-metal halide battery wherein the cathode comprises a metal microwire, and methods for preparing the same and use thereof.Type: ApplicationFiled: July 24, 2012Publication date: January 30, 2014Inventors: Huiqing Wu, Michael Alan Vallance
-
Publication number: 20140010701Abstract: Alloys based on titanium aluminides, such as ? (TiAl) which may be made through the use of casting or powder metallurgical processes and heat treatments. The alloys contain titanium, 38 to 46 atom % aluminum, and 5 to 10 atom % niobium, and they contain composite lamella structures with B19 phase and ? phase there in a volume ratio of the B19 phase to ? phase 0.05:1 and 20:1.Type: ApplicationFiled: June 28, 2013Publication date: January 9, 2014Applicant: GKSS-Forschungszentrum Geesthacht GmbHInventors: Fritz Appel, Jonathan Paul, Michael Oehring
-
Publication number: 20130333678Abstract: A railgun which has a conductive lubricant and system of delivery reduces the electrical resistance and friction of the armature-rail sliding contact, thereby decreasing the amount of heat generated at the electrical contact. The conductive lubricant may be a ternary alloy of bismuth, indium and tin. The system of delivery for the conductive lubricant may include a plurality of surface reservoirs formed in either the rail surface, the armature face, or both.Type: ApplicationFiled: September 20, 2011Publication date: December 19, 2013Applicant: United States Government, as represented by the Secretary of the NavyInventor: Peter Yaw-Ming Hsieh
-
Patent number: 8546292Abstract: A zinc-carbon compound that is a reaction product of zinc and carbon, wherein the zinc and the carbon form a single phase material that is meltable. The compound is one in which the carbon does not phase separate from the zinc when the single phase material is heated to a melting temperature.Type: GrantFiled: November 15, 2012Date of Patent: October 1, 2013Assignee: Third Millennium Metals, LLCInventors: Jason V. Shugart, Roger C. Scherer
-
Patent number: 8541335Abstract: A lead-carbon compound that is a reaction product of lead and carbon, wherein the lead and the carbon form a single phase material that is meltable. The compound is one in which the carbon does not phase separate from the lead when the single phase material is heated to a melting temperature.Type: GrantFiled: November 15, 2012Date of Patent: September 24, 2013Assignee: Third Millennium Metals, LLCInventors: Jason V. Shugart, Roger C. Scherer