Tin Containing Patents (Class 420/589)
  • Patent number: 11142816
    Abstract: A continuous coating line includes a roll assembly exposed to molten metal. The roll assembly includes a roll rotatable relative to a bearing block. The roll includes a roll portion and a journal protruding from each end of the roll portion. The roll is made from a refractory ceramic material that is resistant to wear, abrasion, and corrosion when the roll is exposed to the molten metal.
    Type: Grant
    Filed: December 20, 2018
    Date of Patent: October 12, 2021
    Assignee: Cleveland-Cliffs Steel Properties Inc.
    Inventors: Daniel J. Cadotte, Joyce C. Niedringhaus
  • Patent number: 10418497
    Abstract: Metallization pastes for use with semiconductor devices are disclosed. The pastes contain silver particles, low-melting-point base-metal particles, organic vehicle, and optional crystallizing agents. Specific formulations have been developed that produce stratified metal films that contain less silver than conventional pastes and that have high peel strengths. Such pastes can be used to make high contact resistance metallization layers on silicon.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: September 17, 2019
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Brian E. Hardin, Stephen T. Connor, James Randy Groves, Craig H. Peters
  • Patent number: 9587293
    Abstract: A lead-free solder alloy includes a tin-copper alloy that also includes a minor amount of cobalt, which has been found to provide a shiny and reflective appearance to the solder alloy. Methods of soldering using such an alloy, as well as a solder joint including such an alloy also are disclosed.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: March 7, 2017
    Inventor: Stanley R. Rothschild
  • Publication number: 20150122302
    Abstract: According to an embodiment, a thermoelectric conversion material is made of a polycrystalline material which is represented by a composition formula (1) shown below and has a MgAgAs type crystal structure. The polycrystalline material includes a MgAgAs type crystal grain having regions of different Ti concentrations. (AaTib)cDdXe??Composition formula (1) wherein 0.2?a?0.7, 0.3?b?0.8, a+b=1, 0.93?c?1.08, and 0.93?e?1.08 hold when d=1; A is at least one element selected from the group consisting of Zr and Hf, D is at least one element selected from the group consisting of Ni, Co, and Fe, and X is at least one element selected from the group consisting of Sn and Sb.
    Type: Application
    Filed: January 15, 2015
    Publication date: May 7, 2015
    Inventor: Takao SAWA
  • Patent number: 8865062
    Abstract: A Sn—Sb—Ag—Cu based high-temperature lead-free solder alloy which has excellent connection reliability and which does not form a low melting point phase even when solidified by slow cooling is provided. It has an alloy composition consisting essentially of, in mass percent, Sb: 35-40%, Ag: 13-18%, Cu: 6-8%, and a remainder of Sn.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: October 21, 2014
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Minoru Ueshima, Rei Fujimaki
  • Publication number: 20140271335
    Abstract: Provided is a super elastic alloy for biological use having a high biocompatibility, good processability and super elasticity, said super elastic alloy being a super elastic zirconium alloy for biological use comprising 27-54 mol % inclusive of titanium, 5-9 mol % inclusive of niobium which is a ? phase-stabilizing element capable of stabilizing the ? phase of zirconium, and 1-4 mol % inclusive in total of tin and/or aluminum which are ? phase-suppressing elements capable of suppressing the ? phase of zirconium, with the balance consisting of zirconium and inevitable impurities.
    Type: Application
    Filed: August 28, 2012
    Publication date: September 18, 2014
    Applicant: UNIVERSITY OF TSUKUBA
    Inventors: Shuichi Miyazaki, Heeyoung Kim, Yosuke Sato
  • Publication number: 20140234158
    Abstract: Disclosed is a pipe made of an iron-base material, having a corrosion prevention layer formed on the surface thereof. The corrosion prevention layer includes a Zn—Sn sprayed coating including Sn in a content of more than 1% by mass and less than 50% by mass and the balance composed of Zn. Alternatively, the corrosion prevention layer includes a Zn—Sn—Mg sprayed coating including Sn in a content of more than 1% by mass and less than 50% by mass, Mg in a content of more than 0.01% by mass and less than 5% by mass and the balance composed of Zn. Preferably, the sprayed coating of the corrosion prevention layer includes at least any one of Ti, Co, Ni and P, and the content of each of these elements is more than 0.001% by mass and less than 3% by mass.
    Type: Application
    Filed: April 30, 2014
    Publication date: August 21, 2014
    Applicant: Kubota Corporation
    Inventors: Hiroaki Shimizu, Goro Funahashi, Hiroaki Fujii
  • Publication number: 20140219711
    Abstract: High Impact Toughness Alloy The invention provides an alloy, preferably a lead-free solder alloy, comprising: from 35 to 59% wt Bi; from 0 to 0.0 wt % Ag; from 0 to 1.0% wt Au; from 0 to 1.0% wt Cr; from 0 to 2.0% wt In; from 0 to 1.0% wt P; from 0 to 1.0% wt Sb; from 0 to 1.0% wt Sc; from 0 to 1.0% wt Y; from 0 to 1.0% wt Zn; from 0 to 1.0% wt rare earth elements; one or more of: 10 from greater than 0 to 1.0% wt Al; from 0.01 to 1.0% wt Ce; from greater than 0 to 1.0% wt Co; from greater than 0 to 0.0% wt Cu; from 0.001 to 1.0% wt Ge; from greater than 0 to 0.0% wt Mg; from greater than 0 to 1.0% wt Mn; from 0.01 to 1.0% wt Ni; and from greater than 0 to 1.0% wt Ti, and the 1 balance Sn, together with any unavoidable impurities.
    Type: Application
    Filed: August 2, 2012
    Publication date: August 7, 2014
    Applicant: ALPHA METALS, INC.
    Inventors: Ranjit Pandher, Bawa Singh, Siuli Sarkar, Sujatha Chegudi, Anil K.N. Kumar, Kamanio Chattopadhyay, Dominic Lodge, Morgana de Avila Ribas
  • Patent number: 8698184
    Abstract: A light emitting diode chip a support layer having a first face and a second face opposite the first face, a diode region on the first face of the support layer, and a bond pad on the second face of the support layer. The bond pad includes a gold-tin structure having a weight percentage of tin of 50% or more. The light emitting diode chip may include a plurality of active regions that are connected in electrical series on the light emitting diode chip.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: April 15, 2014
    Assignee: Cree, Inc.
    Inventors: Michael John Bergmann, Christopher D. Williams, Kevin Shawne Schneider, Kevin Haberern, Matthew Donofrio
  • Publication number: 20140099229
    Abstract: A negative electrode active material for an electric device includes an alloy containing Si in a range of greater than or equal to 27% by mass and less than 100% by mass, Sn in a range of greater than 0% by mass and less than or equal to 73% by mass, V in a range of greater than 0% by mass and less than or equal to 73% by mass, and inevitable impurities as a residue. The negative electrode active material can be obtained with, for example, a multi DC magnetron sputtering apparatus by use of Si, Sn, and V as targets. An electric device using the negative electrode active material can achieve long cycle life and ensure a high capacity and cycle durability.
    Type: Application
    Filed: March 9, 2012
    Publication date: April 10, 2014
    Inventors: Manabu Watanabe, Masao Yoshida, Osamu Tanaka
  • Publication number: 20140086792
    Abstract: The negative electrode active material for an electric device of the present invention has an alloy containing Si in a range from 12% by mass or more to less than 100% by mass, Sn in a range from more than 0% by mass to 45% by mass or less, Al in a range from more than 0% by mass to 43% by mass or less, and indispensable impurities as remains. The negative electrode active material can be obtained, for example, using a multiple DC magnetron sputtering apparatus with Si, Sn and Al as targets. Electric devices to which the negative electrode active material of the present invention is applied have an improved cycle life and are excellent in the capacity and cycle durability.
    Type: Application
    Filed: March 16, 2012
    Publication date: March 27, 2014
    Inventors: Manabu Watanabe, Masao Yoshida, Osamu Tanaka
  • Patent number: 8679635
    Abstract: Disclosed is a solder material which enables to realize a lower mounting temperature when an electronic component is mounted. Also disclosed are a solder paste and a conductive adhesive. Specifically disclosed is a solder material having a basic composition composed of Sn, Bi and In. This solder material may further contain at least one metal selected from the group consisting of Cu, Ge and Ni. A solder paste which enables to realize a low-temperature mounting can be obtained by blending a flux component into the solder material. A conductive adhesive which enables to realize a low-temperature mounting can be obtained by blending a resin component into the solder material.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 25, 2014
    Assignee: Panasonic Corporation
    Inventors: Atsushi Yamaguchi, Kazuhiro Nishikawa, Hidenori Miyakawa
  • Publication number: 20140044589
    Abstract: The present invention provides a lead-free solder composition for glass. The lead-free solder composition for glass includes indium, zinc, and tin. The indium (In) ranges from about 30.0 wt % to about 60 wt %. The zinc (Zn) ranges from about 0.01 wt % to about 11.0 wt %. The tin (Sn) is included as a remaining component.
    Type: Application
    Filed: December 12, 2012
    Publication date: February 13, 2014
    Applicants: HYUNDAI MOTOR COMPANY, HEESUNG MATERIAL LTD., KOREA AUTOGLASS CORPORATION, KIA MOTORS CORPORATION
    Inventors: Hae Won Jeong, Hyun Dal Park, Tae Seung Lee, Seung Kyu Kim, Hong Nho Joo, Ho June Yoon, Min Ho Bak, Joo Dong Lee, Hyun Chae Jung, Sun Myung Lee
  • Patent number: 8541336
    Abstract: A tin-carbon compound that is a reaction product of tin and carbon, wherein the tin and the carbon form a single phase material that is meltable. The compound is one in which the carbon does not phase separate from the tin when the single phase material is heated to a melting temperature.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: September 24, 2013
    Assignee: Third Millennium Metals, LLC
    Inventors: Jason V. Shugart, Roger C. Scherer
  • Publication number: 20130098691
    Abstract: Implementations of the present invention include a binder with high hardness and tensile strength that allows for the creation of drilling tools with increased wear resistance. In particular, one or more implementations include a binder having about 5 to about 50 weight % of nickel, about 35 to about 60 weight % of zinc, and about 0.5 to about 35 weight % of tin. Implementations of the present invention also include drilling tools, such as reamers and drill bits, formed from such binders.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 25, 2013
    Applicant: LONGYEAR TM, INC.
    Inventors: Cody A. Pearce, Christian M. Lambert
  • Publication number: 20130037314
    Abstract: Disclosed is a solder material which enables to realize a lower mounting temperature when an electronic component is mounted. Also disclosed are a solder paste and a conductive adhesive. Specifically disclosed is a solder material having a basic composition composed of Sn, Bi and In. This solder material may further contain at least one metal selected from the group consisting of Cu, Ge and Ni. A solder paste which enables to realize a low-temperature mounting can be obtained by blending a flux component into the solder material. A conductive adhesive which enables to realize a low-temperature mounting can be obtained by blending a resin component into the solder material.
    Type: Application
    Filed: September 14, 2012
    Publication date: February 14, 2013
    Inventors: Atsushi Yamaguchi, Kazuhiro Nishikawa, Hidenori Miyakawa
  • Publication number: 20120313230
    Abstract: A solder alloy is providing, the solder alloy including zinc, aluminum, magnesium and gallium, wherein the aluminum constitutes by weight 8% to 20% of the alloy, the magnesium constitutes by weight 0.5% to 20% of the alloy and the gallium constitutes by weight 0.5% to 20% of the alloy, the rest of the alloy including zinc.
    Type: Application
    Filed: June 7, 2011
    Publication date: December 13, 2012
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Manfred MENGEL, Alexander HEINRICH, Steffen ORSO, Thomas BEHRENS, Oliver EICHINGER, Lim FONG, Evelyn NAPETSCHNIG, Edmund RIEDL
  • Patent number: 8293370
    Abstract: Disclosed is a solder material which enables to realize a lower mounting temperature when an electronic component is mounted. Also disclosed are a solder paste and a conductive adhesive. Specifically disclosed is a solder material having a basic composition composed of Sn, Bi and In. This solder material may further contain at least one metal selected from the group consisting of Cu, Ge and Ni. A solder paste which enables to realize a low-temperature mounting can be obtained by blending a flux component into the solder material. A conductive adhesive which enables to realize a low-temperature mounting can be obtained by blending a resin component into the solder material.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: October 23, 2012
    Assignee: Panasonic Corporation
    Inventors: Atsushi Yamaguchi, Kazuhiro Nishikawa, Hidenori Miyakawa
  • Publication number: 20120193800
    Abstract: A solder includes Sn (tin), Bi (bismuth) and Zn (zinc), wherein the solder has a Zn content of 0.01% by weight to 0.1% by weight.
    Type: Application
    Filed: December 7, 2011
    Publication date: August 2, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Toshiya Akamatsu, Nobuhiro Imaizumi, Seiki Sakuyama, Keisuke Uenishi, Tetsuhiro Nakanishi
  • Publication number: 20120055586
    Abstract: The present invention relates to variable melting point solder formulations. The solder is comprised of at least one base metal or base metal alloy, preferably alloyed with at least one melting point depressant metal, such that the solidus point of the solder composition is reduced to an initial solidus temperature. Said base metal or base metal alloy, alloyed with at least one melting point depressant metal is mixed with at least one additive metal or additive metal alloy. When heated to a process temperature above said initial solidus temperature, a reaction occurs between the melting point depressant metal, and the additive metal, such that solidification occurs at the process temperature via the formation of intermetallic phases, effectively increasing the solidus of the base metal, and of the overall solder.
    Type: Application
    Filed: August 26, 2011
    Publication date: March 8, 2012
    Applicant: DYNAJOIN CORPORATION
    Inventors: Douglas J. McIsaac, Mark A. Whitney, Stephen F. Corbin
  • Patent number: 8128868
    Abstract: Micro-addition of a metal to a Sn-based lead-free C4 ball is employed to enhance reliability. Specifically, a metal having a low solubility in Sn is added in a small quantity corresponding to less than 1% in atomic concentration. Due to the low solubility of the added metal, fine precipitates are formed during solidification of the C4 ball, which act as nucleation sites for formation multiple grains in the solidified C4 ball. The fine precipitates also inhibit rapid grain growth by plugging grain boundaries and act as agents for pinning dislocations in the C4 ball. The grain boundaries enable grain boundary sliding for mitigation of stress during thermal cycling of the semiconductor chip and the package on the C4 ball. Further, the fine precipitates prevent electromigration along the grain boundaries due to their pinned nature.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: March 6, 2012
    Assignee: International Business Machines Corporation
    Inventor: Mukta G. Farooq
  • Publication number: 20120038042
    Abstract: A lead-free solder alloy, a solder ball and an electronic member comprising a solder bump which enable the prevention of the occurrence of yellow discoloration on the surface of a solder after soldering, the surface of a solder bump after the formation of the bump in a BGA, and the surface of a solder bump after a burn-in test of a BGA. Specifically disclosed are: a lead-free solder alloy; a solder ball; and an electronic member comprising a solder bump, containing at least one additive element selected from Li, Na, K, Ca, Be, Mg, Sc, Y, lanthanoid series elements, Ti, Zr, Hf, Nb, Ta, Mo, Zn, Al, Ga, In, Si and Mn in the total amount of 1 ppm by mass to 0.1% by mass inclusive, with the remainder being 40% by mass or more of Sn.
    Type: Application
    Filed: April 12, 2010
    Publication date: February 16, 2012
    Applicants: Nippon Micrometal Corporation, Nippon Steel Materials Co., Ltd.
    Inventors: Tsutomu Sasaki, Shinichi Terashima, Masamoto Tanaka, Katsuichi Kimura
  • Publication number: 20110236254
    Abstract: A palladium-dominated dental alloy, in particular a ceramic-bonding dental alloy for the manufacture of dental prostheses such as crowns, bridges, inlays, or onlays, containing at least gold, palladium, and silver, as well as a grain-growth inhibitor in the form of ruthenium. In order to achieve a fine-grained separation without the formation of agglomerates to obtain a dental alloy with high mechanical stability and excellent polishing characteristics, it is proposed that the dental alloy contain—in addition to ruthenium as grain-growth inhibitor—at least one element of the group tantalum, niobium, yttrium, zirconium, chromium, and molybdenum as grain-refinement control element.
    Type: Application
    Filed: March 24, 2011
    Publication date: September 29, 2011
    Applicant: DEGUDENT GMBH
    Inventors: Joerg HACHENBERG, Rudi STEINKE, Angela KLAUS, Irmgard WISSEL
  • Publication number: 20110218109
    Abstract: A clathrate compound of formula (I): M8AxBy-x (I) wherein: M is an alkaline earth metal, a rare earth metal, an alkali metal, Cd, or a combination thereof, A is Ga, Al, In, Zn or a combination thereof; B is Ge, Si, Sn, Ni or a combination thereof; and 12?x?16, 40?y?43, x and y each is or is not an integer. Embodiments of the invention also include method of making and using the clathrate compound.
    Type: Application
    Filed: November 4, 2009
    Publication date: September 8, 2011
    Inventors: Shengqiang Bai, Lidong Chen, Lin He, Li Wang, Wenbin Zhang, Yanfei Zhou
  • Patent number: 7988908
    Abstract: Provided is a filler metal alloy composition capable of improving appearance of a welded zone and fluidity, penetration, etc., of an inexpensive filler metal by minimizing a content of silver (Ag) and adding tin (Sn) and silicon (Si) components. The filler metal alloy composition, brazed to a joint between parent metals to stably join the parent metals formed of the same material or different materials, is characterized in that the composition comprises silver (Ag), copper (Cu), zinc (Zn), tin (Sn), silicon (Si), and other unavoidable impurities.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: August 2, 2011
    Assignee: Korea Bundy Co., Ltd.
    Inventors: Dong Ha Lee, Jae Jung Park, Chung Yun Kang, Myoung Bok Kim
  • Publication number: 20110182766
    Abstract: A first multi phase niobium silicide alloy composition consists essentially of: from 15 to 24 at % of Si; from 0 to 25 at % of one or more sp outer electron configuration element which is not Si; from 1 to 26 at % of one or more sd outer electron configuration element which is not Nb; and a balance of Nb, interstitials and impurities. This alloy may be used to increase the creep resistance of an article, for example a gas turbine engine blade. A second multi phase niobium silicide alloy composition consists essentially of: from 1 to 24 at % of Si; from 0 to 34 at % of one or more sp outer electron configuration element which is not Si; from 19.5 to 48.5 at % of one or more sd outer electron configuration element which is not Nb or Cr; from 0.5 to 9 at % Cr; and a balance of Nb, interstitials and impurities. This alloy may be used to increase the creep resistance and/or to increase the oxidation resistance of an article, for example a gas turbine engine blade.
    Type: Application
    Filed: June 17, 2009
    Publication date: July 28, 2011
    Inventor: Panos Tsakiropoulos
  • Publication number: 20110117383
    Abstract: A sliding contact material containing 40 to 60% by weight of Au, 15 to 25% by weight of Pd, and Sn and In as essential elements, the total amount of Sn and In being 1 to 4% by weight and the balance being Ag, and a sliding contact material containing 40 to 60% by weight of Au, 15 to 25% by weight of Pd, and Zn, the amount of Zn being 0.1 to 5% by weight and the balance being Ag. The sliding contact material is insusceptible to the interaction with grease essential for the use of such contact materials, and has stable contact resistance, and therefore can be used for a long time.
    Type: Application
    Filed: May 28, 2010
    Publication date: May 19, 2011
    Inventors: Takao Asada, Junichi Takeuchi, Tomokazu Satoh
  • Publication number: 20100303668
    Abstract: The present invention relates to a fusible alloy for pressure relief devices (PRDs), and the present invention provides a fusible alloy for PRD, the alloy comprising 29.0 to 33.0% by weight of Bi, 14.0 to 21.0% by weight of Sn, 2.0 to 5.0% by weight of In, and substantially Pb for the balance. The fusible alloy for PRD of the invention has a melting point appropriate for use according to the 110° C.-grade standards, and has excellent wettability upon melting.
    Type: Application
    Filed: December 28, 2006
    Publication date: December 2, 2010
    Applicant: YOUNGDO IND. CO., LTD.
    Inventor: Kwang Ho Lee
  • Patent number: 7803314
    Abstract: Non-toxic shot having 40-60% tungsten, 20-60% tin and 0-10% iron. A process of formulating the material is disclosed in which 95% by weight of the particles of each component having mesh sizes less than 325 are blended with a flux having 99.9% by weight particles less than 100 mesh. The blended material is then compaction formed into shape at a pressure range of between 20 and 40 tons per square inch. Finally, the blended material is sintered at a temperature in the range of 350 and 425° F. bonding the powdered metals and driving off the flux.
    Type: Grant
    Filed: December 18, 2003
    Date of Patent: September 28, 2010
    Inventor: Daniel George Tercho
  • Publication number: 20100193063
    Abstract: Disclosed is a pipe made of an iron-base material, having a corrosion prevention layer formed on the surface thereof. The corrosion prevention layer includes a Zn—Sn sprayed coating including Sn in a content of more than 1% by mass and less than 50% by mass and the balance composed of Zn. Alternatively, the corrosion prevention layer includes a Zn—Sn—Mg sprayed coating including Sn in a content of more than 1% by mass and less than 50% by mass, Mg in a content of more than 0.01% by mass and less than 5% by mass and the balance composed of Zn. Preferably, the sprayed coating of the corrosion prevention layer includes at least any one of Ti, Co, Ni and P, and the content of each of these elements is more than 0.001% by mass and less than 3% by mass.
    Type: Application
    Filed: March 18, 2009
    Publication date: August 5, 2010
    Inventors: Hiroaki Shimizu, Goro Funahashi, Hiroaki Fujii
  • Patent number: 7744706
    Abstract: The invention provides a solder alloy for bonding an oxide material, including more than 0% but not more than 1.0% of Mg and the balance being substantially Bi and Sn. Preferably, the alloy includes 0.01 to 0.6% of Mg, 35 to 86% of Bi, and the balance being substantially Sn. The invention can be used for bonding an oxide material, such as bonding glasses to each other. According to the invention, a low-cost solder joint of an oxide material is also provided.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: June 29, 2010
    Assignee: Hitachi Metals, Ltd.
    Inventors: Minoru Yamada, Nobuhiko Chiwata, Takayuki Moriwaki
  • Publication number: 20100054985
    Abstract: The present invention relates to a magnesium aluminum alloy with enhanced creep resistance. The alloy contains barium and calcium in low proportions, and possesses a higher creep resistance in comparison to alloys containing rare earth elements. The alloy may additionally include zinc, tin, lithium, manganese, yttrium, neodymium, cerium and/or praseodymium in proportions of up to 7% by weight, respectively.
    Type: Application
    Filed: August 13, 2009
    Publication date: March 4, 2010
    Applicant: Gkss-Forschungszentrum Geesthacht GmbH
    Inventors: HAJO DIERINGA, Norbert Hort, Karl U. Kainer
  • Publication number: 20080110609
    Abstract: A melting temperature adjustable metal thermal interface material (TIM) is provided. The metal TIM includes In, Bi, Sn, and Ga. A content of Ga ranges from 0.01 wt % to 3 wt %. The metal TIM has an initial melting temperature lower than 60° C. and has no element hazardous to the environment.
    Type: Application
    Filed: April 14, 2007
    Publication date: May 15, 2008
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Yuan-Chang Fann, Jen-Dong Hwang, Cheng-Chou Wong
  • Patent number: 7048813
    Abstract: The present invention provides a processing method capable of continuously working an Au—Sn soldering metal having a foil form in room temperature. The foil-form soldering metal containing from 10% by weight to 90% by weight of Au and balance comprising Sn is subjected to heat treatment for five minutes to ten hours at 200° C. to 270° C., and subsequently the foil-form soldering metal is slit. Thus, the heat treatment of the Au—Sn soldering metal before slitting enables continuous slitting of the Au—Sn foil-form soldering metal in room temperature and facilitates the production of a ribbon-form soldering metal.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: May 23, 2006
    Assignee: Tanaka Kikinzoku Kogyo K.K.
    Inventor: Ken-ichi Miyazaki
  • Patent number: 7041180
    Abstract: A method of joining workpieces using a solder alloy. The alloy contains either at least 1% or a maximum of about 10% by weight of an element or a mixture of elements selected from the group consisting of titanium, zirconium, hafnium, vanadium, niobium, and tantalum; either at least 0.01% or 0.01–10% by weight of an element or a mixture of elements selected from the group of the lanthanides (rare earths); either at least 0.5% or 0.5–10% by weight of an element or a mixture of elements selected from the group consisting of silver, copper, and indium; optionally either at least 0.01% or 0.01–1% by weight of gallium; and a remainder consisting of tin, lead, or of a mixture of tin and lead.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: May 9, 2006
    Assignee: Materials Resources International
    Inventors: Erich Lugscheider, Wolfgang Tillmann, Hongshou Zhuang
  • Patent number: 6863746
    Abstract: The present invention discloses a white gold composition consisting essentially of copper, silver, zinc, and manganese, and further consisting of small amounts of tin, cobalt, silicon/copper and boron/copper. More particularly, the white gold composition of the present invention discloses a white gold composition consisting essentially of about 36% to about 57% copper, about 10% silver, about 18.2% to about 24.2% zinc, about 14% to about 28.9% manganese, and the balance further consisting of about 1% tin, about 0.025% to about 0.03% cobalt, about 0.52% silicon/copper, and about 0.2% boron/copper. An objective of the present invention is to provide for methods and compositions of casting, fabricating and soldering white gold that does not incorporate nickel or palladium. The present invention also discloses no tarnish results when hydrogen is used as a catalyst to all compositions.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: March 8, 2005
    Inventor: Keith Weinstein
  • Patent number: 6770105
    Abstract: A fuel catalyst for improving combustion efficiency is provided that includes at least one hydride producing element, and at least one element of greater activity on the electrolytic scale than the hydride producing element and at least one element of lesser activity on the electrolytic scale than the hydride producing element. The hydride producing element preferably includes an element from at least one of a Group IV and Group V of the periodic table. The element of greater activity and the element of lesser activity preferably includes at least one of zinc, magnesium, aluminum, palladium, silver, copper and cerium. Preferred formulations of the catalyst element include: a) 20-60% wt antimony, 10-30% wt tin, 10-80% wt zinc and 1-5% wt silver; b) 40% wt antimony, 18 % wt tin, 40% wt zinc and 2% wt silver; c) 20-60% wt antimony, 10-30% wt tin, 20-80 % wt magnesium, 1-8% wt cerium and 0.1-1.0% wt palladium; d) 40% wt antimony, 25 % wt tin, 30% wt magnesium, 4.8% wt cerium and 0.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: August 3, 2004
    Assignee: Advanced Power Systems International, Inc.
    Inventors: Alvin J. Berlin, Ralph H. Wright
  • Patent number: 6767653
    Abstract: A turbine component comprises a substrate; and a crystalline coating disposed on a surface of the substrate, wherein the crystalline coating comprises tin and yttrium in an amount greater than or equal to about 0.05 atomic percent based upon the total coating. A method of making a turbine component comprises disposing a coating composition on a substrate, wherein the coating composition comprises tin and yttrium in an amount greater than or equal to about 0.1 atomic percent based upon the total coating composition. A crystalline coating comprises tin and yttrium in an amount greater than or equal to about 0.05 atomic percent based upon the total coating.
    Type: Grant
    Filed: December 27, 2002
    Date of Patent: July 27, 2004
    Assignee: General Electric Company
    Inventors: Bernard Bewlay, Melvin Jackson, Ji-Cheng Zhao
  • Publication number: 20040091385
    Abstract: The invention relates to ternary tin zinc alloy coatings 30-65 wt. % tin, 30-65 wt. % zinc and 0.1-15 wt. % metal from the following group as a third alloy component; iron, cobalt, nickel. Correspondingly, alloy coatings can be produced by means of electrolytic deposition from aqueous galvanic electroplating solutions which contain the components of the alloy in a dissolved form. The alloy coatings are characterised in that they have a particularly high resistance to corrosion and are particularly suitable as anti-corrosion protective coatings on iron-based materials.
    Type: Application
    Filed: December 18, 2003
    Publication date: May 13, 2004
    Inventors: Klaus Leyendecker, G?uuml;nter Wirth, Klaus Reissmller, Steffen Dumke
  • Patent number: 6613275
    Abstract: The present invention concerns a non-precious dental alloy, including the following components, with the approximate proportions, in weight, given in %: gold, between 0.5 and 4, molybdenum, between 4 and 6, tungsten, between 2 and 7, indium, between 0.5 and 4, gallium, between 0.5 and 4, tin, between 0 and 4, titanium, between 0 and 2, copper, between 0 and 2, the remainder being obtained with a mixture containing approximately 70% cobalt and 30% chromium.
    Type: Grant
    Filed: July 19, 2002
    Date of Patent: September 2, 2003
    Assignee: Metalor Technologies SA
    Inventor: Nicolas Vuilleme
  • Patent number: 6319617
    Abstract: A solder composition that bonds well to oxides and other surfaces to which solder bonding is conventionally difficult is provided. The solder is particularly useful for reliable bonding and packaging of optical components that often have oxide surfaces. The solder composition exhibits a microstructure containing a solder matrix in which is distributed fine, micron-scale islands of rare-earth-containing intermetallic particles. The existence of the islands makes the rare earth elements better available for bonding, and reduce the extent to which the rare earths are oxidized. Advantageously, the solder contains Au and/or Ag, in which the rare earth elements tend to have some solid solubility. Due to this solubility, the Au and/or Ag tend to provide some additional protection of the rare earths against oxidation, and thereby also provide accelerated dissolution of the rare earth into the molten solder.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: November 20, 2001
    Assignee: Agere Systems Gaurdian Corp.
    Inventors: Sungho Jin, Guenther Wilhelm Kammlott, Hareesh Mavoori, Ainissa G Ramirez
  • Patent number: 6306516
    Abstract: The invention provides an article comprising a solder that bonds well to oxides and other surfaces to which solder bonding is problematic. The solder composition contains one or more rare earth elements, which react with the oxide or other surface to promote bonding, and further contains sufficient Au and/or Ag to act as carriers for the rare earths. Because rare earths have some solid solubility in Au and Ag, the problem of intermetallic formation is lessened or eliminated, and improved bonding to oxide surfaces is attained.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: October 23, 2001
    Assignee: Agere Systems Guardian Corp.
    Inventors: Sungho Jin, Hareesh Mavoori, Ainissa G Ramirez
  • Patent number: 6306185
    Abstract: A fuel catalyst for improving combustion efficiency is provided that includes at least one hydride producing element, and at least one element of greater activity on the electrolytic scale than the hydride producing element and at least one element of lesser activity on the electrolytic scale than the hydride producing element. The hydride producing element preferably includes an element from at least one of a Group IV and Group V of the periodic table. The element of greater activity and the element of lesser activity preferably includes at least one of zinc, magnesium, aluminum, palladium, silver, copper and cerium. Preferred formulations of the catalyst element include: a) 20-60% wt antimony, 10-30% wt tin, 10-80% wt zinc and 1-5% wt silver; b) 40% wt antimony, 18% wt tin, 40% wt zinc and 2% wt silver; c) 20-60% wt antimony, 10-30% wt tin, 20-80% wt magnesium, 1-8% wt cerium and 0.1-1.0% wt palladium; d) 40% wt antimony, 25 % wt tin, 30% wt magnesium, 4.8% wt cerium and 0.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: October 23, 2001
    Assignee: Advanced Power Systems International, Inc.
    Inventors: Alvin J. Berlin, Ralph H. Wright
  • Patent number: 6238823
    Abstract: The present invention provides a non-stoichiometric alloy comprising a composition having the formula AB5+X an atomic ratio wherein A is selected from the group consisting of the rare earth metals, yttrium, mischmetal, or a combination thereof; B is nickel and tin, or nickel and tin and at least a third element selected from the group consisting of the elements in group IVA of the periodic table, aluminum, manganese, iron, cobalt, copper, antimony or a combination thereof; X is greater than 0 and less than or equal to about 2.0; and wherein at least one substituted A site is occupied by at least one of the B elements. An electrode incorporating said alloy and an electrochemical cell incorporating said electrode are also described.
    Type: Grant
    Filed: September 30, 1998
    Date of Patent: May 29, 2001
    Assignee: Brookhaven Science Associates
    Inventors: James J. Reilly, Gordana D. Adzic, John R. Johnson, Thomas Vogt, James McBreen
  • Patent number: 6231693
    Abstract: The invention, which enables wider use to be made of soft-soldering techniques, concerns an alloy, in particular a solder alloy, a method of joining workpieces by soldering using the solder alloy and the use of the alloy for soldering. The alloy proposed is characterized in that it contains at least 1% by wt. of an element or a mixture of elements from sub-group IVa and/or Va in the periodic table, at least 0.01% by wt. of an element or a mixture of elements from the lanthanide series; optionally at least 0.5% of silver or copper or indium or a mixture silver and/or copper and/or indium; and optionally at least 0.01% by wt. of gallium, the remainder consisting of tin or lead or a mixture of tin and lead plus, as applicable, the usual impurities. The alloy proposed can be used as solder in oxygen-containing atmospheres such as air, can be used at relatively low temperatures and efficiently wets normally difficult to wet surfaces such as ceramic surfaces.
    Type: Grant
    Filed: April 23, 1998
    Date of Patent: May 15, 2001
    Assignee: Materials Resources International
    Inventors: Erich Lugscheider, Wolfgang Tillmann, Hongshou Zhuang
  • Patent number: 6156132
    Abstract: Lead-free alloys of the present invention includes bismuth in the amount of 30 to 58% by weight and one of the following first to fourth compositions in addition to tin as a main component. In the first composition, germanium is present in the amount of 0.1 or less % by weight. In the second composition, silver is present in the amount of 5% by weight or less and antimony is present in the amount of 5% by weight or less in addition to 0.1% by weight or less of germanium of silver. In the third composition, nickel and copper are included, preferably 0.2 or less % by weight or less of nickel and 1% by weight of copper. In the fourth composition, at least one selected from the group of 5 or less % by weight of silver, 5 or less % by weight of antimony, and 0.1 or less % by weight of germanium in addition to 0.2 or less % by weight of nickel and 1 or less % by weight of copper.
    Type: Grant
    Filed: February 4, 1999
    Date of Patent: December 5, 2000
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Mitsuo Yamashita, Shinji Tada, Kunio Shiokawa
  • Patent number: 6071359
    Abstract: Tin and zinc based shot for use as ammunition having a diameter of from 1.5 to 5.5 mm, containing, by weight, in addition to tin and the usual unavoidable contaminants, from 12 to 60% of zinc and from 0 to 5% of aluminum, but less than 0.1% of copper, less than 0.1% of iron, and less than 1% of lead.
    Type: Grant
    Filed: October 24, 1997
    Date of Patent: June 6, 2000
    Assignee: Grillo-Werke AG
    Inventors: Jurgen Wisniewski, Jochen Spriestersbach
  • Patent number: 5871690
    Abstract: Low temperature electrical solder compositions (by weight percent) having between 45-60% Sn; 25-40% Pb; 5-15% Bi; and 0.5-2.5% In. Preferably, the solder compositions have a melting temperature of about 154.degree.-162.degree. C. The solder compositions have microstructure similarly to Sn/Pb eutectic microstructure which makes them have excellent properties like higher yield strength and better creep resistance providing long term reliability to solder joints.
    Type: Grant
    Filed: September 29, 1997
    Date of Patent: February 16, 1999
    Assignee: Ford Motor Company
    Inventors: Achyuta Achari, Mohan R. Paruchuri, Dongkai Shangguan
  • Patent number: 5833921
    Abstract: Electrical solder compositions (by weight percent) having between 43-58% Sn; 38-52% Bi; and at least one of: 5-15%Sb; 1-4.0% Cu; 2% In; and 1-2% Ag, and having a melting temperature 133.degree.-167.degree. C. The solders are lead-free and have low melting points making them particularly useful for applications wherein components being joined involve thermoplastic substrates.
    Type: Grant
    Filed: September 26, 1997
    Date of Patent: November 10, 1998
    Assignee: Ford Motor Company
    Inventors: Mohan R. Paruchuri, Dongkai Shangguan
  • Patent number: 5755896
    Abstract: Solder compositions (by weight percent) (1) comprising between 37-53% tin, 37-57% bismuth, and 6-10% indium and having a melting temperature between 99.degree.-124.degree. C., and (2) comprising between 48-58% tin, 40-50% bismuth, and 2-5% indium and having a melting temperature between 125-157.
    Type: Grant
    Filed: November 26, 1996
    Date of Patent: May 26, 1998
    Assignee: Ford Motor Company
    Inventors: Mohan R. Paruchuri, Dongkai Shangguan