Support Layer Patents (Class 422/429)
  • Patent number: 8383414
    Abstract: An optic light guide test sensor comprises a light guide, a reagent-coated membrane, and a mesh layer. The reagent-coated membrane and the mesh layer are attached to the light guide at an output end of the light guide. The light guide test sensor is adapted to be used to test the level of an analyte in a biological fluid sample when used with a readhead. A method of manufacturing the light guide test sensor involves providing a plurality of light guides, providing a strip of reagent-coated membrane, and providing a strip of mesh layer. The reagent-coated membrane and mesh layer are attached to the light guides by ultrasonic welding. The reagent-coated membrane and mesh layer may also be attached to the light guides by adhesive.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: February 26, 2013
    Assignee: Bayer HealthCare LLC
    Inventors: Jeffery S. Reynolds, Steven C. Charlton, Sung-Kwon Jung, Suny J. George
  • Patent number: 8372649
    Abstract: The present invention describes the development of a end-capped bipyridine compound having formula A and the zinc complex having formula B. The assay having formula 1 can be used to estimate and quantify the amount of zinc ions by monitoring the fluorescence changes. The assay with formula 1 can be use to image and detect Zn2+ ions in MCF7 cell lines. The zinc complex of formula 2 and 4 can be used as a fluorescent sensor for cyanide anions using analyte replacement protocol. The assay with formula 2 is selective only to cyanide anions even in the presence of other competing anions. The assay with formula 3 having bright green solid state emission is used for the preparation of formula 4. The orange fluorescent powder of assay with formula 4 is used for the selective detection of CN? ions in aqueous solution.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: February 12, 2013
    Assignee: Council of Scientific & Industrial Research
    Inventors: Ajayaghosh Ayyapanpillai, Sreejith Sivaramapanicker, Divya P Kizhumuri, Jayamurthy Purushothaman
  • Patent number: 8343778
    Abstract: The invention encompasses microfluidic microarray assemblies (MMA) and subassemblies and methods for their manufacture and use. In one embodiment, first and second channel plates are provided and are sealingly connected to a test chip in consecutive steps. Each plate includes microfluidic channels configured in a predetermined reagent distribution pattern. The test chip comprises a plurality of discrete test positions, each test position being located at the intersection between a first predetermined reagent pattern and a second predetermined reagent pattern, wherein at least one of said patterns is non-linear. The first channel plate allows the distribution of a first reagent on said test chip, wherein said first reagent is immobilized at said test positions. The second channel plate allows the distribution of a second reagent on said test chip, wherein said second reagent comprises a plurality of different test samples.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: January 1, 2013
    Assignee: Simon Fraser University
    Inventors: Hua Zhong Yu, Meenakshinathan Parameswaren, Paul Chi Hang Li, Xing Yue Peng, Hong Chen, Wa Lok Chou
  • Patent number: 8313710
    Abstract: A multilayered optical sensing patch, for the measurement of conditions, such as pH, oxygen level, etc, within containers, is provided. The multilayered optical sensing patch of the present invention is comprised of a heat sealable polymer substrate layer, and a polymeric sensing membrane later attached thereto. The polymer sensing membrane layer is formed of a porous polymer support membrane, and an optical sensing composition (comprising a reactive indicator) covalently bonded thereto. The heat sealable polymer substrate layer is capable of being securely bonded to the inner layer of bioreactor bags, as well as the porous polymer support substrate layer. Further, the porous polymer support membrane layer provides a firm supporting structure for the polymeric sensing layer, thereby protecting the optical sensing composition disposed therein from degradation/damage.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: November 20, 2012
    Assignee: Polestar Technologies, Inc.
    Inventor: James A Kane
  • Patent number: 8313699
    Abstract: The invention relates to a sterilization testing device comprised of a housing with a test chamber, an indicator placed therein, and with a supply for supplying the sterilization medium. According to the invention, the sterilization testing device consists of at least two housing parts that are matched to one another. A supply channel is made inside the housing part and serves to supply the sterilization medium. The supply channel is configured in such a manner that it forms the base body of the test chamber. The test chamber accommodates the indicator that indicates the completion of the sterilization process. Alternatively to this solution, the invention provides a variant, which is very effective with regard to manufacturing and which permits a quantitative statement regarding the sterilization. Webs are formed inside the housing in the at least partially meandering and/or spiral configuration of the supply channel.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: November 20, 2012
    Inventors: Harald Kretschmann, Andreas Rauch
  • Publication number: 20120258024
    Abstract: A chemical exposure indication device is disclosed. The device is removably attachable to a structure and includes a substrate having a first surface and a second surface and an indicating layer overlying the first substrate surface. The indicating layer includes a coating material that is chemically reactive with a pre-determined chemical compound that is known to degrade the structure. When the coating material is exposed to that corrosive compound in a pre-determined level associated with degradation of a metallic structure, the coating material provides a visual indication of the presence of the corrosive compound.
    Type: Application
    Filed: April 6, 2011
    Publication date: October 11, 2012
    Applicant: THE BOEING COMPANY
    Inventors: Carl W. BECK, Rebecca L. STOREY
  • Patent number: 8282896
    Abstract: Carriers or holders for holding microfluidic devices are provided. Some of the carriers that are provided include a hydration control device and/or a source of controlled fluid pressure to facilitate use of the carrier in conducting various types of analyses.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: October 9, 2012
    Assignee: Fluidigm Corporation
    Inventors: Geoffrey Richard Facer, Hany Ramaz Nassef
  • Patent number: 8263020
    Abstract: An analytical test element is provided having a surface comprising a chemical detection layer on which a spreading net is disposed, the spreading net being configured to provide for the planar distribution of a liquid sample on the detection layer. The spreading net generally comprises a filament structure coated with a metallic layer that is oxidized at least on one or more surface portions thereof facing the detection layer.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: September 11, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Otto Fuerst, Hans-Peter Haar
  • Patent number: 8252248
    Abstract: The invention relates to an analytical test element for analysis of a liquid sample. The analytical test element may contain a channel which is suitable for capillary transport of the liquid sample and which is provided with an inlet opening for the liquid sample and with an air outlet opening. At least one test field may be arranged in the channel, spaced apart from the inlet opening. The test element comprises a sample application site which is closed with a seal and which is designed in such a way that, when the seal is opened, the sample application site and the inlet opening of the channel are simultaneously open to the outside environment of the test element. The test element can then receive the liquid sample inside the channel via the sample application site and inlet opening, for analysis in the test field. The invention also relates to a test element magazine and to a system for analysis of liquid samples with at least one test element.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: August 28, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Peter Krämer
  • Patent number: 8227258
    Abstract: A liquid delivery apparatus is provided for depositing liquid materials onto prescribed areas. The apparatus includes a sensing and delivery pin and a photo sensor. The apparatus is sized to deliver a droplet of liquid material to the surface of a target area without coming into contact with the target surface. The apparatus is also capable of drawing geometric features, such as lines and grids of liquid material. The photo sensor measures the intensity of light during a processing cycle. Measured reflected-light intensity can be compared in real-time to a reference curve which is based on test process cycles representing the light intensity expected when the process proceeds in the preferred fashion to produce a normal spot having an expected droplet size. The light intensity measurements can also be fitted with a mathematical function such as an asymmetric double sigmoidal curve.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: July 24, 2012
    Assignee: New Jersey Institute of Technology
    Inventors: Timothy N. Chang, Qiong Shen
  • Patent number: 8216524
    Abstract: A testing device for testing or analysing fluids comprises a separately produced holder (10) and a sheet-or plate-like test member (11) including analysis reagent. The holder defines an abutment surface (13) for engaging with a side surface of the test member. Projections (15) formed on the holder are positioned and shaped so as to allow insertion of the test member into the holder by moving the test member into engagement with said abutment surface while engaging with opposite edge portions thereof. The projections may, for example, be tooth-shaped and have pointed ends, and at least some of the projections may have a leading edge (16) forming a ramp sloping towards a plane defined by the abutment surface so as to facilitate insertion of the test member into the holder. A stack of such testing devices may be arranged within a cassette from which they may be fed successively into an automatic analyser. The holder of the testing device may be re-used.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 10, 2012
    Assignee: Lattec I/S
    Inventors: Hans Henrik Jochumsen, Niels Stubager Frederiksen, Janus Juul Rasmussen, Thomas Nikolai Carlsen
  • Patent number: 8198073
    Abstract: The present invention relates to a dry stick test device for the determination of an analyte in a sample by means of a chemical assay. The device comprises: (i) optionally a solid support, (ii) at least one reagent pad comprising a reagent capable of reacting with the analyte, a derivative of said analyte or an indicator compound for said analyte to provide a detectable signal when in moistened state, and (iii) a development pad which is located in contact with the at least one reagent pad, optionally between the solid support and the at least one reagent pad, said development pad comprises at least one controlling compound capable of providing a condition required for the reagent to react with the analyte to provide a detectable signal, wherein the at least one reagent pad and the development pad are arranged to avoid precipitation of sample component(s) on the top-face of the device.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: June 12, 2012
    Assignee: Lattec I/S
    Inventor: Lars Nygaard
  • Patent number: 8193002
    Abstract: Rapid lateral flow immunoassays have an extensive history of use in both the clinical and home settings. These devices are used to test for a variety of analytes, such as drugs of abuse, hormones, proteins, urine or plasma components and the like. The present invention provides an improved procedural control that indicates to the test user that at least a portion of the applied sample has passed through the test result zone of the test strip, and optionally that the test is complete and the test results may be read.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: June 5, 2012
    Assignee: Alere Switzerland GmbH
    Inventors: Huiyan Guo, Min Wang, Tao Shang, Hui-Kang Chen, Fei Gao
  • Patent number: 8129195
    Abstract: A method is provided for producing an analytical element comprising at least one test field for analyzing a liquid sample, wherein provision is made for a carrier on which a polymer fabric is arranged. At least one portion of the polymer fabric is irradiated with UV laser light and thereby hydrophobized.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: March 6, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Josef Roeper, Werner Finke, Beate Koschorreck
  • Patent number: 8124025
    Abstract: Articles for testing a coagulation process in whole blood.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: February 28, 2012
    Assignee: Medtronic, Inc.
    Inventors: Jyotsna Ghai, Charlene X. Yuan, Wei Qin, Mark A. Thompson
  • Patent number: 8119393
    Abstract: A membrane array used to detect one or more analytes from a small sample of fluid with high sensitivity is provided. The membrane array can be employed in various analytical devices and is especially useful for identifying analytes from whole blood with minimal or negligible background interference.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: February 21, 2012
    Assignee: ZBX Corporation
    Inventor: Shi Qinwei
  • Patent number: 8071048
    Abstract: The invention concerns test elements, in particular diagnostic test elements, for determining the presence or concentration of biological, medical or biologically or medically effective substances including nucleic acids, proteins, viruses, microorganisms and cells, characterized in that these test elements contain nanofibers.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: December 6, 2011
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Herbert Harttig
  • Patent number: 8003407
    Abstract: The present invention relates to a lateral flow assay and system, including a test strip, for detection and quantification of analytes in samples, such as samples containing cells and fluid. In general, according to the present invention, a test strip for a lateral flow assay for detection of at least one analyte in a sample comprises: (1) a chromatographic strip, a sample filter, a fluid-impermeable barrier, and means for providing a mobilizable detectable agent that is capable of binding to the at least one analyte or to the capture agent after capturing the analyte to the chromatographic strip such that the mobilizable detectable agent migrates through the chromatographic strip and contacts sample that has passed through the sample filter and also has migrated through the chromatographic strip. The test strip allows detection with or without quantitation of an analyte in a sample containing whole cells.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: August 23, 2011
    Assignee: Relia Diagnostic Systems, LLC
    Inventors: Siliang Zhou, William Rutter, Ning Liu
  • Publication number: 20110129394
    Abstract: An indicator is disclosed that detects the presence of a chemical residue. The indicator includes a substrate having an upper surface and a lower surface and a first portion and a second portion joined at a fold line. The first portion is smaller in area than the second portion. An adhesive coats the upper surface of at least the second portion of the substrate. A first reactant is adhered to the upper surface of the first portion of the substrate. When the second portion is contacted with a surface containing the chemical residue, the residue adheres to the adhesive and when the first portion is subsequently folded along the fold line so that the upper surfaces of the substrate contact each other, a portion of the adhesive on the second portion remains exposed and the first reactant and chemical residue react to provide the color indicia indicating the presence of the chemical residue.
    Type: Application
    Filed: January 25, 2011
    Publication date: June 2, 2011
    Inventors: Robert Holt, David J. Haas
  • Publication number: 20110014095
    Abstract: A reagent container set is disclosed which comprises: a first reagent container for accommodating a first reagent to be used in a sample analyzer, the top part of the first reagent container having a first aspiration opening for inserting a first reagent aspirating tube to aspirate the first reagent; a waste fluid container for accommodating the first reagent used in the sample analyzer as a waste fluid, the top of the waste fluid container having a discharge opening for inserting a waste fluid discharging tube to discharge the waste fluid into the waste fluid container; a box for accommodating the first reagent container and the waste fluid container; and a container holding member for holding the first reagent container and the waste fluid container so that the first aspiration opening and the discharge opening are disposed at predetermined positions, the container holding member being maintained at a predetermined position within the box.
    Type: Application
    Filed: July 16, 2010
    Publication date: January 20, 2011
    Inventors: Sachiko UEDA, Yusuke Mori, Hiroyuki Ohashi, Yuji Itose, Kinya Uchihashi, Yoichi Nakamura, Kohei Sugitani
  • Patent number: 5887015
    Abstract: A heater mechanism for a crystal pulling apparatus is disclosed. Electrodes made of copper or the like and disposed under a heater are connected to the heater via graphite members. A cover member is attached to each graphite member, so that the downwardly extending portion of the cover member surrounds the outer surface of the graphite member. Accordingly, a leak or splash of a melt is prevented from contacting the electrodes. The length of each graphite member is equal to or greater than the distance between the bottom surface of the heater and the top surface of a melt spill tray which distance is measured when the heater mechanism is raised The cover member is vertically slidable along the outer surface of each graphite member. Thus, even when a material melt leaks out from a crucible, the electrodes of the heater mechanism can be protected from a fusion damage or the like which would be otherwise caused by the leak of the melt.
    Type: Grant
    Filed: December 11, 1996
    Date of Patent: March 23, 1999
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Nobuaki Mitamura, Toshiharu Uesugi, Atsushi Iwasaki, Shinobu Takeyasu
  • Patent number: 5180562
    Abstract: Apparatus includes a crucible, a cover with an opening over the crucible, a pulling element for pulling monocrystal from melt in the crucible, and first and second heating elements. The first element is a substantially flat radiaent heat source below the crucible and the second element is a pot shaped, comprising a flat heat source above the melt and a cylindrical heat source about the crucible. A ring having holes therethrough is inserted in the crucible to quiet the melt, a filler funnel emptying material to be molten outside of the ring while the monocrystal is pulled from inside the ring.
    Type: Grant
    Filed: May 30, 1989
    Date of Patent: January 19, 1993
    Assignee: Leybold Aktiengesellschaft
    Inventors: Dieter Drechsel, Karl Jericho