Chemiluminescent Patents (Class 422/52)
  • Patent number: 10281405
    Abstract: Described is an elemental analysis system and methods for use thereof that can be utilized in examination of samples in their native state. The systems utilize a liquid sampling—atmospheric pressure glow discharge (LS-APGD) device for ambient desorption sampling and excitation of a solid sample in combination with optical emission detection. This approach can find application across a broad spectrum of analytical challenges including metals, soils, and volume-limited samples.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: May 7, 2019
    Assignee: Clemson University Research Foundation
    Inventors: Richard Kenneth Marcus, Htoo Wai Paing, Xinyan Zhang
  • Patent number: 10203286
    Abstract: We describe a method for conducting an assay in a multi-well assay plate using an apparatus comprising a light detection subsystem, a liquid handling subsystem, and a plate handling subsystem. This is particularly well suited for conducting automated sampling, sample preparation, and analysis in a multi-well plate assay format. For example, it may be used for automated analysis of particulates in air and/or liquid samples derived therefrom in environmental monitoring.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: February 12, 2019
    Assignee: Meso Scale Diagnostics, LLC
    Inventors: Charles M. Clinton, Eli N. Glezer, Sharon West, George Sigal, Carl Stevens, Michael L. Vock
  • Patent number: 10183295
    Abstract: A convective polymerase chain reaction apparatus includes a tube, a temperature control unit, at least one light source and a sensor. The tube includes a cavity used to contain a reaction solution. The reaction solution has a liquid level measured from a bottom of the cavity to a top surface of the reaction solution. The temperature control unit is disposed adjacent to the tube for controlling the temperature of the reaction solution. The at least one light source provides a light beam passing through an incident portion of the tube to excite the reaction solution emitting a fluorescent light. The incident portion is located at a height greater than ½ of a liquid level. The sensor is adjacent to the tube for detecting the excited fluorescence. The light beam has an incident direction forming a non-straight angle with a long axis of the tube.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: January 22, 2019
    Assignee: Industrial Technology Research Institute
    Inventors: Tseng-Huang Liu, Kuo-Hsing Wen, Pei-Shin Jiang, Jie-Len Huang, Ting-Hsuan Chen
  • Patent number: 10087412
    Abstract: A method for continuous in vitro propagation of Babesia microti and microti-like species is disclosed. The method comprises incubating B. microti in culture medium comprising host erythrocytes in the presence of a source of complement and a source of anti-B. microti IgM antibody. In one embodiment, the source of anti-B. microti IgM antibody is substantially free of IgG antibody. In one embodiment, the source of complement is a cell or cell line that secretes complement.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: October 2, 2018
    Assignee: FULLER LABORATORIES
    Inventor: Lee Fuller
  • Patent number: 10036739
    Abstract: A nanopore sequencing device is disclosed. The nanopore sequencing device includes a working electrode. It further includes a dielectric layer, wherein a portion of the dielectric layer is disposed horizontally adjacent to the working electrode and a portion of the dielectric layer is disposed above and covering a portion of the working electrode, and wherein the dielectric layer forms a well having an opening above an uncovered portion of the working electrode. A base surface area of the working electrode is greater than a base surface area of the opening above the uncovered portion of the working electrode.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: July 31, 2018
    Assignee: Genia Technologies, Inc.
    Inventors: Jennifer Hovis, Hui Tian, Roger J. A. Chen
  • Patent number: 9945807
    Abstract: A sensing apparatus for sensing target materials including biological or chemical molecules in a fluid. One such apparatus includes a semiconductor-on-insulator (SOI) structure having an electrically-insulating layer, a fluidic channel supported by the SOI structure and configured and arranged to receive and pass a fluid including the target materials, and a semiconductor device including at least three electrically-contiguous semiconductor regions doped to exhibit a common polarity. The semiconductor regions include a sandwiched region sandwiched between two of the other semiconductor regions, and configured and arranged adjacent to the fluidic channel with a surface directed toward the fluidic channel for coupling to the target materials in the fluidic channel, and further arranged for responding to a bias voltage. The sensing apparatus also includes an amplification circuit in or on the SOI and that is arranged to facilitate sensing of the target material near the fluidic channel.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: April 17, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Kosar Baghbani-Parizi, Yoshio Nishi, Hesaam Esfandyarpour
  • Patent number: 9909962
    Abstract: A temperature control device and method are provided for an analytical system for performing laboratory protocols. The device includes a well within a housing configured to receive a biological specimen according to a predetermined sample process. The specimen is suspended by a holding device in the well. A thermal element is provided in heat exchange communication with fluid in the well. A temperature sensor is located in the well at a location to be covered and uncovered by rocking motion of fluid in the well. A controller, in communication with the thermal element, the temperature sensor, and an agitation system, is operative to control the thermal element in correlation with temperature data, for example, peak temperature data, from the temperature sensor.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: March 6, 2018
    Assignee: LEICA BIOSYSTEMS RICHMOND, INC.
    Inventors: Kevin J. Sullivan, James Kelland, Nhat Khai L. Nguyen
  • Patent number: 9891221
    Abstract: The invention relates to improved electrochemiluminescence assay methods for phosphorylated peptides or proteins employing phospho-specific antibodies and buffer compositions that are substantially free of inorganic phosphate.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: February 13, 2018
    Assignee: Meso Scale Technologies, LLC.
    Inventors: Michael Tsionsky, Eli N. Glezer, Selen Stromgren, George Sigal, Jonathan K. Leland, Mark A. Billadeau, Svetlana Leytner, Mark Martin, Larry Helms
  • Patent number: 9776187
    Abstract: An instrument for performing highly accurate PCR employing an assembly, a heated cover, and an internal computer, is provided. The assembly is made up of a sample block, a number of Peltier thermal electric devices, and a heat sink, clamped together. A control algorithm manipulates the current supplied to thermoelectric coolers such that the dynamic thermal performance of a block can be controlled so that pre-defined thermal profiles of sample temperature can be executed. The sample temperature is calculated instead of measured using a design specific model and equations. The control software includes calibration diagnostics which permit variation in the performance of thermoelectric coolers from instrument to instrument to be compensated for such that all instruments perform identically. The block/heat sink assembly can be changed to another of the same or different design.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: October 3, 2017
    Assignee: APPLIED BIOSYSTEMS, LLC
    Inventors: John G. Atwood, Adrian Fawcett, Keith S. Ferrara, Paul M. Hetherington, Richard W. Noreiks, Douglas E. Olsen, John R. Widomski, Charles M. Wittmer
  • Patent number: 9758754
    Abstract: A cell separation and culture device having a porous substrate; and a patterned carbon powder layer having a plurality of hollow regions, formed on an upper surface of the porous substrate by a forming manner; wherein the thickness of the patterned carbon powder layer is 0.04-0.08 mm. The cell separation and culture device is able to separate, detect or culture cells with various size and shape. The cell separation and culture device of present invention also simplifies the process of cell separation, detection and culture; therefore, it is accomplished within a very short time.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: September 12, 2017
    Assignee: National Tsing Hua University
    Inventors: Da-Jeng Yao, Chih-Chung Chen
  • Patent number: 9588104
    Abstract: The present invention relates to a device, a system and a method for performing monitoring and/or cultivation of microscopic objects. Microscopic objects are in particular microscopic organisms like bacteria and cell cultures, such as cultivation objects like tissue samples and embryos, providing optimal and safe cultivation conditions for incubation during embryo development and for facilitating the selection of optimal embryos to be used in vitro fertilization (IVF) by facilitating embryo handling for automated digital imaging and time-lapse microscopy.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: March 7, 2017
    Assignee: Unisense FertiliTech A/S
    Inventors: Niels B. Ramsing, Jorgen Berntsen, Jens K. Gundersen, Holger Soe Plougsgaard
  • Patent number: 9562253
    Abstract: A method includes obtaining a sample from a patient; applying, to the sample, a reagent to cause bacterial cells to release adenosine triphosphate (ATP) when the sample includes the bacterial cells; applying another reagent that reacts with the ATP to form a colorimetric agent; detecting whether the sample changes in appearance as observed by an unaided eye of a practitioner when a concentration of the agent is greater than a threshold; identifying a time period from when the other reagent is applied to when the change in appearance is detected; and determines a severity, of a bacterial infection, based on the time period. The severity corresponds to a severity level when the time period is less than a duration of a point of care visit by a first amount, or a higher severity level when the time period is less than the duration by more than the first amount.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: February 7, 2017
    Assignee: POINT OF CARE DIAGNOSTICS, LLC
    Inventor: Ronald Turner
  • Patent number: 9512248
    Abstract: A chain transfer agent composition comprises at least one branched C10 mercaptan selected from 5-methyl-1-mercapto-nonane, 3-propyl-1-mercapto-heptane, 4-ethyl-1-mercapto-octane, 2-butyl-1-mercapto-hexane, 5-methyl-2-mercapto-nonane, 3-propyl-2-mercapto-heptane, 4-ethyl-2-mercapto-octane, 5-methyl-5-mercapto-nonane, or combinations thereof. The chain transfer agent composition can be a component of an emulsion polymerization mixture and can be used in a process for emulsion polymerization for the production of polymers, for example, via free-radical polymerization.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: December 6, 2016
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jason L. Kreider, Michael S. Matson
  • Patent number: 9469834
    Abstract: A pair or receptacles capable of housing an emitter probe and a detector probe installed inside a bioreactor to monitor the properties of the nutrient media without contacting the nutrient media.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: October 18, 2016
    Assignee: Therapeutic Proteins International, LLC
    Inventor: Sarfaraz K. Niazi
  • Patent number: 9463491
    Abstract: A contactor is positioned coaxially with and substantially within at least one separator, and otherwise is configured to receive aerosolized target particles of interest as a sample. The use of a plurality of separators that are coaxial with each other and the contactor increases the number of separations involving target particles and other constituents of air at a sampling point, whereby in some embodiments the separators are rotatably configurable relative to each other and to the contactor.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: October 11, 2016
    Assignee: Hollison, LLC
    Inventors: Kevin E. Humphrey, Anthony D. Bashall
  • Patent number: 9382570
    Abstract: The present invention provides methods to concentrate cells onto microparticles, to concentrate the microparticles, and to detect the cells. The present invention also includes unitary sample preparation and detection devices to be used in accordance with the methods.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: July 5, 2016
    Assignee: 3M Innovative Properties Company
    Inventors: Raj Rajagopal, Kurt J. Halverson, Manjiri T. Kshirsagar, James E. Aysta
  • Patent number: 9383323
    Abstract: A workpiece characterization system for obtaining simultaneous measurement of layer and photoluminescence properties of a workpiece. The workpiece characterization system includes an excitation light and an illumination light each impinging upon a surface of a workpiece whereby the workpiece emits photoluminescent light and encodes light from said illumination source with layer information. The excitation light and the illumination light are generated from a single light source. The light from the single light source is filtered to remove wavelengths of light that correlate to light wavelengths emitted from the workpiece as a result of excitation. Wavelengths that correlate to light reflected from the workpiece that may contain encoded information are not filtered.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: July 5, 2016
    Assignee: Verity Instruments, Inc.
    Inventors: Mark Anthony Meloni, John Douglas Corless, Andrew Weeks Kueny, Mike Whelan
  • Patent number: 9329161
    Abstract: A device for the gas analysis of a gas mixture includes a converter configured to convert a first gas component into a target gas component, a sensor system configured to detect the target gas component or another component of the gas mixture after the conversion by the converter, and an evaluating apparatus. The converter is further configured to change the concentration of a second gas component or to cause a conversion to a second target gas component. The sensor system is configured to determine the concentration of the second gas component or of the second target gas component. The evaluating apparatus is configured to determine a value for the aging of the converter on the basis of the concentration of the second gas component or of the second target gas component.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: May 3, 2016
    Assignee: Robert Bosch GmbH
    Inventors: Maximilian Fleischer, Erhard Magori, Roland Pohle, Florian Reuter
  • Patent number: 9273587
    Abstract: According to one embodiment, an apparatus is disclosed for diagnosing a condition of a component of an exhaust aftertreatment system in exhaust receiving communication with an internal combustion engine where the exhaust aftertreatment system includes a selective catalytic reduction (SCR) catalyst. The diagnostic module is configured to determine a normalized tailpipe nitrogen-oxide NOx value based on a tailpipe NOx sensor signal and a ratio of an SCR inlet ammonia (NH3) flow rate to an SCR inlet NOx flow rate. The apparatus also includes a component condition module configured to determine a condition of the component based on the normalized tailpipe NOx value.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: March 1, 2016
    Assignee: Cummins IP, Inc.
    Inventors: Nassim Khaled, Richard Booth
  • Patent number: 9267944
    Abstract: Systems and methods for detecting the presence of biomolecules in a sample using biosensors that incorporate resonators which have functionalized surfaces for reacting with target biomolecules. In one embodiment, a device includes a piezoelectric resonator having a functionalized surface configured to react with target molecules, thereby changing the mass and/or charge of the resonator which consequently changes the frequency response of the resonator. The resonator's frequency response after exposure to a sample is compared to a reference, such as the frequency response before exposure to the sample, a stored baseline frequency response or a control resonator's frequency response.
    Type: Grant
    Filed: January 12, 2015
    Date of Patent: February 23, 2016
    Assignee: INTEL CORPORATION
    Inventors: Yuegang Zhang, Andrew Berlin, Qing Ma, Li-Peng Wang, Valluri Rao, Mineo Yamakawa
  • Patent number: 9250189
    Abstract: A detection kit is used for detecting compounds and includes a magnifying lens in a cap that magnifies a surface of a color-changing detection swab when placed on the body of the detection kit. For example, the cap includes a plurality of lenses that are integrally formed in a plastic cap, and each lens magnifies the surface of a different swab.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: February 2, 2016
    Assignee: Field Forensics, Inc.
    Inventor: Craig R Johnson
  • Patent number: 9222849
    Abstract: A method for detecting whether an injector with a valve controlled by a PWM signal of an SCR system is clogged, the SCR system including a rotary positive-displacement pump driven by a motor and pressure of which is controlled by a controller that continuously measures rotational speed of the motor and pressure at an outlet of the pump. During operation of the SCR system at a given pressure: the associated average rotational speed is measured; the speed is held at the measured value; a curve of a change in pressure is compared to reference curves stored in a memory and a condition of the injector, for example whether the injector is clogged or not, is deduced therefrom.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: December 29, 2015
    Assignee: INERGY AUTOMOTIVE SYSTEMS RESEARCH (Société Anonyme)
    Inventors: Frederic Peucat, Jean-Claude Habumuremyi, Joel Op de Beeck
  • Patent number: 9213043
    Abstract: In embodiments disclosed herein, a diagnostic system is provided having a cartridge comprising at least one needle; at least one reservoir; at least one fluidic seal; and at least one fluidic channel of a fluidic pathway, wherein the cartridge is configured to store at least one reagent and at least one waste material on the cartridge. The diagnostic system is provided also having a diagnostic instrument comprising the fluidic pathway; an electrochemiluminescence (ECL) detection system; and a pump, wherein the fluidic pathway begins and ends in the cartridge and has a substantially single direction of flow in a pathway fluidically connecting the diagnostic instrument and the cartridge.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: December 15, 2015
    Assignee: WELLSTAT DIAGNOSTICS, LLC
    Inventors: Richard Alan Cook, Sang Cho, Charles Quentin Davis, Kevin E Dorsey, Jason Charles Harley, Jonathan Leland, Rober Krikor Matikyan, Sjef Otten, Jeffrey Howard Peterman, Brian B Thomas
  • Patent number: 9207165
    Abstract: The present invention relates to a sample chamber for laser ablation analysis of fluid inclusions, comprising a sample cell having a sample cell through-hole extending along the vertical direction and a sample channel extending through the sample cell in a direction transverse to the vertical direction and communicating with the sample cell through-hole. A transparent element is arranged on each of the top and bottom sides of the sample cell through-hole, and is fixed to the sample cell through a fixing ring. The sample chamber further comprises a base comprising a viewing hole and a receiving portion for receiving the sample cell, wherein the viewing hole is coaxially aligned with the sample cell through-hole when the sample cell is placed within the receiving portion. According to the sample chamber of the present invention, it is only necessary to change the sample cell during replacement of the sample chamber, which leads to a convenient operation.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: December 8, 2015
    Assignees: CHINA PETROLEUM & CHEMICAL CORPORATION, SINOPEC EXPLORATION & PRODUCTION RESEARCH INSTITUTE
    Inventors: Zhirong Zhang, Tenger, Dan Rao, Weijun Shi, Qigui Jiang, Jianzhong Qin, Qu Zhang, Binbin Xi
  • Patent number: 9151671
    Abstract: The present invention is thus directed to an automated system of varying the optical path length in a sample that a light from a spectrophotometer must travel through. Such arrangements allow a user to easily vary the optical path length while also providing the user with an easy way to clean and prepare a transmission cell for optical interrogation. Such path length control can be automatically controlled by a programmable control system to quickly collect and stores data from different path lengths as needed for different spectrographic analysis. Moreover, the system utilizes configured wedge shaped windows to best minimize the reflections of light which cause periodic variation in transmission at different wave lengths (commonly described as “channel spectra”). Such a system, as presented herein, is able to return best-match spectra with far fewer computational steps and greater speed than if all possible combinations of reference spectra are considered.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: October 6, 2015
    Assignee: THERMO ELECTRON SCIENTIFIC INSTRUMENTS LLC
    Inventor: John Magie Coffin
  • Patent number: 9089828
    Abstract: An apparatus for detecting light emanating from chemical or biochemical reactions occurring in at least one reaction vessel of a plurality of reaction vessels is disclosed. Each reaction vessel has a receptacle portion having an emitting area from which light can emanate. A plurality of light waveguides are arranged to guide light from apertures in a masking element to a light dispersing device for dispersing the light from each waveguide into a dispersed spectrum. A light detecting device detects specific spectra in the dispersed spectra of light substantially simultaneously In one embodiment, the light waveguides have a diameter that tapers from a first end substantially similar in diameter to the area of the top of the reaction vessel to a second end that is substantially smaller in diameter.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: July 28, 2015
    Assignee: IT-IS International Limited
    Inventors: James Richard Howell, Benjamin Masterman Webster, Mark Quentin Clark, Richard Alfred Howell
  • Patent number: 9081001
    Abstract: Provided is a clinical diagnostic system that comprises a diagnostic instrument and a disposable cartridge. The diagnostic system can be used to measure assays in point of care clinical settings.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 14, 2015
    Assignee: Wellstat Diagnostics, LLC
    Inventors: Richard Alan Cook, Sang Cho, Charles Quentin Davis, Kevin E Dorsey, Jason Charles Harley, Jonathan Leland, Rober Krikor Matikyan, Sjef Otten, Jeffrey Howard Peterman, Brian B Thomas
  • Patent number: 9057693
    Abstract: A nanopore device includes a multi-layer structure comprising a surface defining an aperture extending through the multi-layer structure, wherein at least the surface comprising a minimal diameter comprises a monosilane functionalized silicon dioxide having a silicon-oxygen-silicon bond, the monosilane functionalized silicon dioxide having the following structure: wherein n is an integer from 1 to 12; R2 and R3 are each independently a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, or a tert-butyl group; and R4 is a chloride, a carboxylic acid group, an amine group, an amide group, a thiol group, an alcohol group, an acyl chloride group, an acyl bromide group, an acyl iodide group, an alkene group, an alkyne group, or a polyether group. Also disclosed are methods for making, wetting, and operating the nanopore device.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: June 16, 2015
    Assignees: International Business Machines Corporation, 454 Life Sciences Corporation
    Inventors: Yann Astier, Venkat K. Balagurusamy, Steven Lefkowitz
  • Patent number: 9044441
    Abstract: The invention regards the use of triiodothyronine sulfate, commonly named T3S, as a medicament having thyromimetic activity for the treatment of pathologies due to organic deficiency of triiodothyronine (T3), as such or in association with thyroxine (T4), and pharmaceutical formulations for oral administration thereof.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: June 2, 2015
    Assignee: Bracco S.P.A.
    Inventor: Federico Maisano
  • Publication number: 20150132861
    Abstract: A diagnostic system is provided herein that includes an instrument comprising an electrochemiluminescence (ECL) detector, and a cartridge configured to fit within a portion of the instrument, wherein the cartridge includes at least one reagent including an ECL label and a blood collection holder. Also provided herein is a system that includes a diagnostic instrument, which includes a pump, an ECL detector, an incubator, a magnet, and an output device, and a cartridge configured to fit within a portion of the diagnostic instrument, a sample holder configured to fit within the cartridge, and a closed fluidic loop between the diagnostic instrument and the cartridge when the cartridge is fit within a portion of the diagnostic instrument, wherein the cartridge is configured to accept a sample from the sample holder and place the sample in fluidic communication with the diagnostic instrument via the closed fluidic loop.
    Type: Application
    Filed: May 15, 2013
    Publication date: May 14, 2015
    Applicant: Wellstat Diagnostics, LLC
    Inventors: Richard Alan Cook, Sang Cho, Charles Quentin Davis, Kevin E Dorsey, Jason Charles Harley, Jonathan Leland, Rober Krikor Matikyan, Sjef Otten, Jeffrey Howard Peterman, Brian B Thomas
  • Patent number: 9028772
    Abstract: A method may involve forming one or more photoresist layers over a sensor located on a structure, such that the sensor is covered by the one or more photoresist layers. The sensor is configured to detect an analyte. The method may involve forming a first polymer layer. Further, the method may involve positioning the structure on the first polymer layer. Still further, the method may involve forming a second polymer layer over the first polymer layer and the structure, such that the structure is fully enclosed by the first polymer layer, the second polymer layer, and the one or more photoresist layers. The method may also involve removing the one or more photoresist layers to form a channel through the second polymer layer, wherein the sensor is configured to receive the analyte via the channel.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: May 12, 2015
    Assignee: Google Inc.
    Inventors: Huanfen Yao, Jeffrey George Linhardt, Babak Parviz
  • Publication number: 20150125345
    Abstract: A device for determining a concentration of at least one gas in a sample gas stream includes an analysis chamber, a detector, and a connecting channel. The analysis chamber is configured to have the sample gas stream and a reaction gas stream be introduced therein. The sample gas stream and the reaction gas stream are mixed to a gas mixture which reacts so as to emit an optical radiation. The detector is configured to measure the optical radiation. The connecting channel is configured to connect the analysis chamber to the detector. The connecting channel is configured as a light conductor extending from the analysis chamber to the detector.
    Type: Application
    Filed: March 12, 2013
    Publication date: May 7, 2015
    Inventor: Norbert Kreft
  • Patent number: 9023281
    Abstract: Chemical indicator apparatuses containing one or more chemical indicators for use in monitoring the quality of water in an aquatic environment. The apparatuses are designed and configured to be submersible in the water that is being monitored. In some embodiments, each apparatus includes a plurality of immobilized-dye-based chemical indicators that undergo a physical change as levels of one or more constituents of the water change. Such indicators can be read by one or more suitable optical readers. These and other embodiments are designed and configured to be movable by a corresponding monitoring/measuring apparatus, for example, via a magnetically coupled drive. Also disclosed are a variety of features that can be used to provide a chemical indicator apparatus with additional functionalities.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: May 5, 2015
    Assignee: Step Ahead Innovations, Inc.
    Inventor: James E. Clark
  • Publication number: 20150118690
    Abstract: A sample analyzer has an illuminator for illuminating an assay sample to cause luminescence, and a support for a sample vessel containing the assay sample. The support is adapted to position the assay sample proximate the illuminator. A detector is positioned along an optical axis extending from the illuminator, through the positioned assay sample, to the detector, so as to detect the luminescence from the assay sample. A reflector is removably disposed between the illuminator and the assay sample so as to reflect a portion of the luminescence back through the positioned assay sample toward the detector.
    Type: Application
    Filed: April 23, 2013
    Publication date: April 30, 2015
    Applicant: Siemens Healthcare Diagnostic Inc.
    Inventors: Jeffrey R. Jasperse, Normand P. Desmarais
  • Patent number: 9005524
    Abstract: The present invention provides a series of systems, devices, and methods relating to the determination of explosives, such as peroxides or peroxide precursors, and other species. Embodiments of the invention may allow a sample suspected of containing an explosive (e.g., a peroxide) or other species to interact with a reactant, wherein the sample may react and cause light emission from the reactant. Advantages of the present invention may include the simplification of devices for determination of peroxide-based explosives, wherein the devices are portable and, in some cases, disposable. Other advantages may include relative ease of fabrication and operation.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: April 14, 2015
    Assignee: Nomadics, Inc.
    Inventors: Robert Deans, Aimee Rose, Kevin M. Bardon, Lawrence F. Hancock, Timothy M. Swager
  • Patent number: 8999264
    Abstract: A coating formula and method for surface coating non-porous surfaces. Microfluidic devices including said coating achieve desired properties including increased hydrophilicity, improved adhesion, stability and optical clarity.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: April 7, 2015
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventor: Michael J. Pugia
  • Patent number: 8999239
    Abstract: Devices, systems, and methods for conducting chemiluminescent immunoassay testing and, more particularly, to initiating and monitoring a chemiluminescent reaction in a plurality of such assays, of different types, on a single immunoassay instrument, in a single procedure, using a plurality of labels and a triggering reagent combination are disclosed. Moreover, by including a base reagent injector assembly having an “e-channel” to provide a swirling turbulence to the base reagent immediately before it is introduced into the well of a cuvette containing a sample and an acid reagent. The added turbulence addresses the phenomenon referred to as “RLU shift,” in which the luminescence output can increase or decrease between assays.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: April 7, 2015
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: William Carpenter, Martin Fletcher
  • Publication number: 20150090115
    Abstract: The invention relates to an on-site medical gas production plant (100) comprising a unit (50) for purifying gas, such as air, a first compartment (A) for storing purified gas, and a main gas line (10) fluidically connecting the gas purification unit (50) to the said first storage compartment (A). It furthermore comprises a three-way actuated valve (VA) arranged on the main gas line (10) upstream of the first storage compartment (A), and furthermore connected to the atmosphere (at 12) via a vent line (11), as well as an operating device (4) which controls at least the three-way actuated valve (VA), and at least a first gas analysis device (D1) of which a first measurement line (29) is fluidically connected (at 28) to the main line (10), upstream of the three-way actuated valve (VA), and which is electrically connected to the said operating device (4).
    Type: Application
    Filed: September 18, 2014
    Publication date: April 2, 2015
    Inventor: Paul EDWARDS
  • Patent number: 8992832
    Abstract: The present disclosure relates to a luminescence method of detecting an analyte in a liquid sample comprising marking the analyte with a marker capable of effecting luminescence upon application of excitation energy, wherein reference data descriptive of the luminescence decay is stored in an electronic memory; applying the excitation energy for causing the luminescence; time-resolved measuring of the luminescence over a period of time for acquisition of a measurement signal; reading the reference data from the electronic memory; comparing the measurement signal with the luminescence decay described by the reference data; generating an output signal indicative of the presence of the analyte in the liquid sample using the measurement signal; in case of a mismatch of the measurement signal and the luminescence decay described by the reference data, generating an error signal.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: March 31, 2015
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Erna Donnerbauer, Ursula Giesen
  • Patent number: 8992860
    Abstract: The present invention relates to systems and methods for minimizing or eliminating diffusion effects. Diffused regions of a segmented flow of multiple, miscible fluid species may be vented off to a waste channel, and non-diffused regions of fluid may be preferentially pulled off the channel that contains the segmented flow. Multiple fluid samples that are not contaminated via diffusion may be collected for analysis and measurement in a single channel. The systems and methods for minimizing or eliminating diffusion effects may be used to minimize or eliminate diffusion effects in a microfluidic system for monitoring the amplification of DNA molecules and the dissociation behavior of the DNA molecules.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: March 31, 2015
    Assignee: Canon U.S. Life Sciences, Inc.
    Inventors: Brian Murphy, Scott Corey, Alex Flamm, Ben Lane, Conrad Laskowski, Chad Schneider
  • Publication number: 20150080256
    Abstract: A luminescence detecting apparatus and method for analyzing luminescent samples is disclosed. Luminescent samples are placed in a plurality of sample wells in a tray, and the tray is placed in a visible-light impervious chamber containing a charge coupled device camera. The samples may be injected in the wells, and the samples may be injected with buffers and reagents, by an injector. In the chamber, light from the luminescent samples pass through a collimator, a Fresnel field lens, a filter, and a camera lens, whereupon a focused image is created by the optics on the charge-coupled device (CCD) camera. The use of a Fresnel field lens, in combination with a collimator and filter, reduces crosstalk between samples below the level attainable by the prior art. Preferred embodiments of the luminescence detecting apparatus and method disclosed include central processing control of all operations, multiple wavelength filter wheel, and robot handling of samples and reagents.
    Type: Application
    Filed: October 15, 2014
    Publication date: March 19, 2015
    Inventors: Michael R. GAMBINI, Jeff A. Levi, John C. Voyta, John G. Atwood, Bruce E. DeSimas, II, Edward J. Lakatos, Israel Metal, George Sabak, Yongdong Wang
  • Patent number: 8974751
    Abstract: Sample liquid is collected in a chamber downstream of a separating device. Adjoining the chamber are a plurality of channels which guide the sample liquid to one or more investigating regions.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: March 10, 2015
    Assignee: Boehringer Ingelheim Microparts GmbH
    Inventors: Tobias Rodenfels, Gert Blankenstein
  • Patent number: 8968677
    Abstract: An improved apparatus and method for dispersion of a labeling conjugate in a diagnostic assay, the result being a one-step assay. By eliminating a conjugate pad as in conventional lateral diagnostic devices, and forming a frazil ice pellicle (FIP), rehydration and flow are improved resulting in better reproducibility, improved sensitivity, and reduced costs of individual assay devices. The formation of a frazil ice film formed on a super cooled surface of a sample receiving means simplifies assay assembly. Lyophilization of the FIP improves the release of a sample/analyte/label matrix into a macro channel as in a direct flow assay, while at the same time allowing reagents to mix and flow, thereby optimizing the assay performance. The reagents of the conjugate and the formation of the FIP stabilize the conjugate proteins and provide extended shelf life to the diagnostic assay device.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: March 3, 2015
    Assignee: Quantum Design International, Inc.
    Inventors: Ronald T. LaBorde, Nicholas J. Neild
  • Patent number: 8961898
    Abstract: The present invention provides a bilayer membrane produced using a microchannel capable of easily forming bilayer membranes such as planar lipid bilayer membranes in large quantities, and a production method thereof. A process for producing a bilayer membrane of the present invention comprises forming a state where two liquid phases or liquid and gaseous phases each containing amphipathic molecules are alternately arranged in a microchannel, discharging one of the two liquid phases or the gaseous phase of the liquid and gaseous phases through branch minichannels formed in the wall on one side or in the walls on both sides to contact the remaining liquid phases adjacent to each other, and thereby forming a side-by-side arrangement of bilayer membranes comprising the amphipathic molecules.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: February 24, 2015
    Assignee: Tokyo Institute of Technology
    Inventors: Takasi Nisisako, Takahiro Baba
  • Patent number: 8945472
    Abstract: The present invention provides a biosensor system comprising a light source, a cartridge adapted to be illuminated by said light source, a light detector adapted for detecting a signal originating from the cartridge, an illumination control means adapted to vary the illumination of the cartridge between at least two different states, a means for generating a first oscillation with a first frequency, and a means for generating a second oscillation with a second frequency, wherein the frame rate of the light detector is triggered by the first oscillation and the illumination control means is triggered by the second oscillation.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: February 3, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Josephus Arnoldus Henricus Maria Kahlman, Bart Michiels
  • Publication number: 20150031571
    Abstract: Gold nanoparticles having luminol covalently linked thereto and optionally functionalized with an oligonucleotide and bacterial or viral detection assays. In one aspect, the detection system for detecting an analyte in a sample comprises a light-shielding container having a fiberoptic cable for transmitting light generated within the light-shielding container to a photodetector; a plurality of functionalized nanoparticles deposited in solid form on or within a support, such that the support is located within the light-shielding container; wherein the functionalized nanoparticles comprise nanoparticles covalently attached to one or more chemiluminescent moieties; and a reagent system which causes the chemiluminescent moieties to produce light in the presence of the reagent system and the analyte in the sample.
    Type: Application
    Filed: February 7, 2013
    Publication date: January 29, 2015
    Applicants: UNIVERSITY OF KANSAS, KANSAS STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Judy Wu, Mark Richter, Lateef U. Syed, Jun Li, Scott Hefty
  • Patent number: 8940230
    Abstract: A cell for conducting electrochemiluminescence measurements is disclosed. The cell in one embodiment provides a measurement cell housing having a cavity, a fluid inlet channel for inducing fluid into the cavity and a fluid outlet channel for discharging fluid from the cavity at axial ends. The cell also provides at least one working electrode and a counter electrode on or in the cavity, and an optical viewing element for observing electrochemiluminescence effects in the cavity, wherein the fluid inlet channel has an at least approximately continuous curved course in a transition area to the cavity so that the fluid inlet channel at its end which is joined to the cavity is shaped in such a manner as to constitute a continuous course of the transition between the fluid inlet channel and the cavity to generate a largely steady flow profile when inducing fluid into the measurement cell cavity.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: January 27, 2015
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Michael Kühnl, Herbert Buschek, Reinhold Krämer, Petra Ickler
  • Patent number: 8940234
    Abstract: Systems and methods for detecting the presence of biomolecules in a sample using biosensors that incorporate resonators which have functionalized surfaces for reacting with target biomolecules. In one embodiment, a device includes a piezoelectric resonator having a functionalized surface configured to react with target molecules, thereby changing the mass and/or charge of the resonator which consequently changes the frequency response of the resonator. The resonator's frequency response after exposure to a sample is compared to a reference, such as the frequency response before exposure to the sample, a stored baseline frequency response or a control resonator's frequency response.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: January 27, 2015
    Assignee: Intel Corporation
    Inventors: Yuegang Zhang, Andrew A. Berlin, Qing Ma, Li-Peng Wang, Valluri Rao, Mineo Yamakawa
  • Patent number: 8920749
    Abstract: A microchip capable of sending liquid in a micro flow channel to a predetermined place irrespective of the pressure difference and sending a mixture of two or more liquid masses to a predetermined place even if the channel structure is simple. The microchip comprises an intermediate reservoir portion provided in a micro flow channel and adapted for temporarily holding liquid sent through the micro flow channel. The microchip is characterized in that the intermediate reservoir portion has a side channel, the volume of the intermediate reservoir portion is smaller than the total volume of the liquid sent into the intermediate reservoir portion, the side channel is provided for communication of a micro flow channel on the upstream side of the intermediate reservoir portion with a micro flow channel on the downstream side thereof, and the cross-section area of the side channel is smaller than that of the micro flow channel.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: December 30, 2014
    Assignee: Konica Minolta Medical & Graphic, Inc.
    Inventors: Youichi Aoki, Akihisa Nakajima, Kusunoki Higashino, Yasuhiro Sando, Yoshikazu Kurihara
  • Patent number: 8920718
    Abstract: The invention describes novel chemiluminescence electrode devices and their novel properties to enable achieving luminescence signal by electrical excitation by cathodic or bipolar pulses in aqueous electrolyte solutions. These devices form a significant improvement in construction of cheap and reliable means for especially diagnosis of health conditions in point-of-need purposes.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: December 30, 2014
    Assignee: Labmaster Oy
    Inventors: Sakari Kulmala, Timo Kalevi Korpela, Jarkko Uolevi Eskola, Teppo Tapani Laaksonen