Microscale Reactor Patents (Class 422/603)
  • Patent number: 8277743
    Abstract: Systems and methods for fabricating bodies (e.g., porous bodies) are described. Various aspects provide for reactors and the fabrication of reactors. Some reactors include surfaces that provide for heterogeneous reactions involving a fluid (and/or components thereof). A fluid may be a gas and/or a liquid. A contaminant in the fluid (e.g., a dissolved or suspended substance) may react in a reaction. Some reactors provide for independent control of heat transfer (between the fluid, the reactor, and the environment) with respect to mass transfer (e.g., fluid flow through the reactor).
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: October 2, 2012
    Assignee: Errcive, Inc.
    Inventors: Charles E. Ramberg, Stephen A. Dynan
  • Patent number: 8273300
    Abstract: Macro- and microfluidic devices and related technologies, and chemical processes using such devices. More specifically, the devices may be used for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in an efficient, compact and safe to the operator manner. In particular, embodiments of the present invention relate to an automated, multi-run, microfluidic instrument for the multi-step synthesis of radiopharmaceuticals, such as PET probes, comprising a remote shielded mini-cell containing radiation-handing components.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: September 25, 2012
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Arkadij M. Elizarov, Carroll Edward Ball, Jianzhong Zhang, Hartmuth C. Kolb, Reza Miraghaie, Todd Graves, Artem Lebedev
  • Patent number: 8252245
    Abstract: The invention provides methods, apparatus and systems in which there is partial boiling of a liquid in a mini-channel or microchannel. The partial boiling removes heat from an exothermic process.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: August 28, 2012
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, David J. Hesse, Sean P. Fitzgerald, Bin Yang, Ravi Arora, Laura J. Silva, G. Bradley Chadwell, Kai Jarosch, Dongming Qiu
  • Publication number: 20120201738
    Abstract: The present invention is directed to a method of producing nano-size graphene-based material and an equipment for producing the same. The present invention provides a method of producing graphitic oxide by forcing graphite sulfuric slurry and KMnO4 sulfuric solution into a lengthy micro-channel and by sustaining the mixture of the said graphite sulfuric slurry and the said KMnO4 sulfuric solution in the said micro-channel at predetermined temperatures, by putting the said aqua solution of hydrogen peroxide to the reaction mixture to terminate oxidation, and by washing and drying the reaction mixture. The present invention provides a method of producing nano-size graphene-based material by exfoliating graphitic oxide by thermal shock in a vertical fluidized furnace.
    Type: Application
    Filed: August 11, 2009
    Publication date: August 9, 2012
    Applicant: N-BARO TECH CO., LTD
    Inventors: Young Jin Kwon, Ja Woon Gu, Won Hyung Park, Cheol Min Shin, Byoung Kyu Ji, Doo Hyo Kwon
  • Publication number: 20120189511
    Abstract: A micro-reactor system assembly comprises a stack of at least n process modules (1-6), wherein n is an integer equal to or greater than 1, made from a rigid first material and comprising at least one reactive fluid passage (1A, 1B, 2A, 3A, 6A) for accommodating and guiding a reactive fluid, and at least n+1 heat exchange modules (7, 8) made from a ductile second material other than said first material and comprising at least one heat exchange fluid passage (7A, 8A) for accommodating and guiding a heat exchange fluid, wherein each process module (1-6) is sandwiched between two adjacent heat exchange modules (7, 8).
    Type: Application
    Filed: March 29, 2012
    Publication date: July 26, 2012
    Applicant: LONZA AG
    Inventors: Dominique Roberge, Nikolaus Bieler, Bertin Zimmermann, Rainald Forbert
  • Patent number: 8221686
    Abstract: A particle manufacturing device for manufacturing a particle by mixing a plural number of fluids, thereby manufacturing a particle, being uniform in the size or particle diameter thereof, with stability comprises a mixing channel portion, which is configured to mix the plural number of fluids therein, a residence channel portion, which is connected with the mixing channel portion in series, and in which the particles manufactured in the mixing channel portion reside, a sensor mechanism, which is configured to sense at least a condition of the residence channel portion, and an agitation giving mechanism, which is configured to give an agitation to the residence channel portion, upon basis of the condition, which is detected by the sensor mechanism.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: July 17, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Erika Katayama, Shigenori Togashi, Yukako Asano, Tetsuro Miyamoto
  • Patent number: 8221708
    Abstract: A tube bundle falling film microreactor for performing gas-liquid reactions, which has: a) at least one vertical tube with b) a device for distributing the liquid on the inside of the tube and c) a liquid collecting system, and d) a device for gas supply and removal, and use thereof.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: July 17, 2012
    Assignee: DSM Fine Chemicals Austria NFG GmbH & Co KG
    Inventors: Florian Seebauer, Peter Poechlauer, Sascha Braune, Stefan Steinhofer
  • Patent number: 8206666
    Abstract: The present invention provides methods of conducting chemical reactions in a reaction channel that has an varying cross-sectional area such that a chemical reactant or reactants experience varying local contact time as the reactant(s) flow through the channel. The invention also provides reactors having reaction channels with varying cross-sectional areas. In a particularly preferred embodiment, the reaction channel section has a trapezoidal shape that becomes broader from the inlet toward the outlet.
    Type: Grant
    Filed: May 21, 2002
    Date of Patent: June 26, 2012
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, Chunshe Cao, James B. Kimble, Laura J. Silva
  • Patent number: 8206597
    Abstract: The invention describes microchannel apparatus and catalysts that contain a layer of a metal aluminide or are made in a process in which a metal aluminide layer is formed as an intermediate. Certain processing conditions have surprisingly been found to result in superior coatings. The invention includes chemical processes conducted through apparatus described in the specification. Other catalysts and catalyst synthesis techniques are also described.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: June 26, 2012
    Assignee: Velocys, Inc.
    Inventors: Barry L. Yang, Anna Lee Tonkovich, Junko M. Watson, Francis P. Daly, Sean P. Fitzgerald, Chunshe Cao, Xiaohong Li, Terry Mazanec, Bradley R. Johnson, Ravi Arora, David J. Hesse, Dongming Qiu, Rachid Taha, Jeffrey J. Ramler, Yong Wang, Richard Long, Ya-Huei Chin
  • Patent number: 8197777
    Abstract: The invention describes combustors and steam reformers and methods of combustion and steam reforming. For example, integrated combustion reactors are described in which heat from combustion is transferred to an endothermic reaction. Thermally efficient reactors and methods of alcohol steam reforming are also described. Also described is an integrated combustor/reformer containing a methanation catalyst.
    Type: Grant
    Filed: August 9, 2009
    Date of Patent: June 12, 2012
    Assignee: Battelle Memorial Institute
    Inventors: Jamelyn D. Holladay, Yong Wang, Ya-Huei Chin, Max Phelps
  • Publication number: 20120141356
    Abstract: A process for converting gaseous alkanes to olefins, higher molecular weight hydrocarbons or mixtures thereof wherein a gaseous feed containing alkanes may be thermally or catalytically reacted with a dry bromine vapor to form alkyl bromides and hydrogen bromide. Poly-brominated alkanes present in the alkyl bromides may be further reacted with methane over a suitable catalyst to form mono-brominated species. The mixture of alkyl bromides and hydrogen bromide may then be reacted over a suitable catalyst at a temperature sufficient to form olefins, higher molecular weight hydrocarbons or mixtures thereof and hydrogen bromide. Various methods and reactions are disclosed to remove the hydrogen bromide from the higher molecular weight hydrocarbons, to generate bromine from the hydrogen bromide for use in the process, to store and subsequently release bromine for use in the process, and to selectively form mono-brominated alkanes in the bromination step.
    Type: Application
    Filed: May 27, 2011
    Publication date: June 7, 2012
    Applicant: MARATHON GTF TECHNOLOGY, LTD.
    Inventors: Raymond T. Brickey, Greg A. Lisewsky, John J. Waycuilis, Stephen D. York
  • Publication number: 20120142118
    Abstract: Microreactors, methods of fabricating, and using such microreactors comprises a substrate having an outer periphery and composing two monolithic sections, each of said monolithic sections comprising two opposed main surfaces and one or more edges extending between the main opposed surfaces. One of the main surfaces from each of the monolithic sections are joined together at a substantially planar junction. The microreactor further comprises at least one microcapillary flow passage defined by surfaces within said substrate and having first and second ends. One or more inlets connect the outer periphery of said substrate with the first end of said microcapillary flow passage. One or more outlets connect the outer periphery of said substrate with the second end of said microcapillary flow passage, which may narrowingly taper. The substrate can be made from high purity fused silica. A metallic reagent and/or catalyst can be incorporated in the micro capillary passage.
    Type: Application
    Filed: May 27, 2010
    Publication date: June 7, 2012
    Applicant: Cornell University
    Inventors: J. Thomas Brenna, Herbert J. Tobias
  • Patent number: 8192703
    Abstract: To improve reaction efficiency by increasing a contact area of first and second reactants per unit volume, without reducing dimensions of the inlet paths for the first and second reactants in a layer-thickness direction, a channel includes a first inlet path having the first reactant, a parallel second inlet path separated from the first inlet path and having the second reactant, a junction channel for causing the first and second reactants to join as separate laminar flows, and a parallel reaction channel connected with a downstream side of the junction channel for permitting the laminar flows of the first and second reactants to react at a contact interface thereof. A dimension of the reaction channel in the layer-thickness direction perpendicular to the contact interface is set to be smaller than the sum of the dimensions of the first inlet path and the second inlet path in the layer-thickness direction.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: June 5, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroyuki Ban, Koji Noishiki, Kazuto Okada, Seiichi Yamamoto
  • Patent number: 8187553
    Abstract: A microreactor may include a reaction channel having at least one curved microchannel, the at least one curved microchannel having an outer and inner curved surfaces and being configured to generate a centrifugal force, an inlet configured to supply at least one reactant into the reaction channel, and an outlet bifurcated into a first sub-outlet in communication with the inner curved surface of the at least one curved microchannel and a second sub-outlet in communication with the outer curved surface of the at least one curved microchannel.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: May 29, 2012
    Assignee: Empire Technology Development LLC
    Inventor: Seh Kwang Lee
  • Patent number: 8188153
    Abstract: The disclosed invention relates to a process for converting a reactant composition comprising H2 and CO to a product comprising at least one aliphatic hydrocarbon having at least about 5 carbon atoms, the process comprising: flowing the reactant composition through a microchannel reactor in contact with a Fischer-Tropsch catalyst to convert the reactant composition to the product, the microchannel reactor comprising a plurality of process microchannels containing the catalyst; transferring heat from the process microchannels to a heat exchanger; and removing the product from the microchannel reactor; the process producing at least about 0.5 gram of aliphatic hydrocarbon having at least about 5 carbon atoms per gram of catalyst per hour; the selectivity to methane in the product being less than about 25%. The disclosed invention also relates to a supported catalyst comprising Co, and a microchannel reactor comprising at least one process microchannel and at least one adjacent heat exchange zone.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: May 29, 2012
    Assignee: Velocys, Inc.
    Inventors: Yong Wang, Anna Lee Tonkovich, Terry Mazanec, Francis P. Daly, Dave VanderWiel, Jianli Hu, Chunshe Cao, Charles Kibby, Xiaohong Shari Li, Michael D. Briscoe, Nathan Gano, Ya-Huei Chin
  • Patent number: 8173073
    Abstract: Methods and devices for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in a fast, efficient and compact manner are disclosed. In particular, the various embodiments of the present invention provide an automated, stand-alone, hands-free operation of the entire radiosynthesis cycle on a microfluidic device with unrestricted gas flow through the reactor, starting with target water and yielding purified PET radiotracer within a period of time shorter than conventional chemistry systems. Accordingly, one aspect of the present invention is related to a microfluidic chip for radiosynthesis of a radiolabeled compound, comprising a reaction chamber, one or more flow channels connected to the reaction chamber, one or more vents connected to said reaction chamber, and one or more integrated valves to effect flow control in and out of said reaction chamber.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: May 8, 2012
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Arkadij M. Elizarov, Carroll Edward Ball, Jianzhong Zhang, Hartmuth C. Kolb, R. Michael Van Dam, Lawrence Diener, Sean Ford, Reza Miraghaie
  • Patent number: 8163245
    Abstract: A microfluidics system for mixing at least two starting materials having a prescribed number of parallel and identical mixing or reaction branches, in which a number of supply ducts corresponding to the number of starting materials open into a mixing or reaction channel. Each of the supply ducts includes an intake line for each starting material, an injection pump for each supply duct and a valve circuit between each intake line for a starting material, where the supply ducts for a respective starting material and a respective injection pump are provided to each respective supply duct. The valve circuit is configured to connect the injection pumps to the suction line in a first valve position, shut off the injection pumps in a second valve position, and to connect the injection pumps to the associated inlet channels in a third valve position. Each of the injection pumps, which are connected to each valve circuit, have a common drive.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: April 24, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventor: Astrid Lohf
  • Patent number: 8161997
    Abstract: The present invention relates to a multipurpose flow module comprising flow plates and/or heat exchanger plates stacked together, which flow plate having a flow channel and one or more connection ports. To each flow plate or heat exchanger plate one or more barrier plates may be attached. The present invention further relates to a method for extraction, for reaction, for mixing, or combinations thereof in the multipurpose flow module, and to uses of the multipurpose flow module.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: April 24, 2012
    Assignee: Alfa Laval Corporate AB
    Inventors: Kasper Höglund, Tommy Noren, Barry Johnson, Erik Cardelius
  • Patent number: 8158087
    Abstract: A microstructure for chemical processing and manufacture is disclosed. The microstructure includes a plurality of microchannel walls constructed of glass, ceramic, glass-ceramic or combinations of these materials, which define at least one microchannel for accommodating chemicals to be processed. At least one coating layer including a catalyst support and a catalyst is adhered to the plurality of microchannel walls. A method of manufacturing a microstructure for chemical processing and manufacture is also disclosed.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: April 17, 2012
    Assignee: Corning Incorporated
    Inventors: Philippe Caze, Christophe Remy, Pierre Woehl
  • Patent number: 8153071
    Abstract: A fluid porting assembly for a microreactor comprising a process fluid passageway, a pliable seal, and a cooling fluid passageway is provided. The pliable seal is positioned in the vicinity of the process fluid outlet and is configured to define a sealing interface between the process fluid outlet and a fluid port of a microreactor. The cooling fluid passageway terminates at a cooling fluid interface and defines a dispensing gap between the cooling fluid interface and the sealing interface. The cooling fluid outlet is configured to distribute cooling fluid about a periphery of the pliable seal and to direct cooling fluid away from the periphery of the pliable seal through the dispensing gap when the pliable seal of the fluid porting assembly engages a fluid port of a microreactor. The cooling fluid removes heat from areas of the microreactor in the vicinity of the fluid port and pliable seal.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: April 10, 2012
    Assignee: Corning Incorporated
    Inventor: Olivier Lobet
  • Patent number: 8153070
    Abstract: A microreactor capable of reducing a pressure drop in an entire system includes a mixer 103 having a mixing channel for mixing two kinds of raw materials 101 and 102, and a reactor 109 having a reaction channel connected to the downstream side of the mixing channel to receive the mixture flowing out from the mixing channel and cause chemical reactions of the mixture inside the reaction channel. The reactor 109 a first reactor unit 107 having a large surface-to-volume (S-V) ratio of the reaction channel at an upstream side, and a second reactor unit 108 having a small S-V ratio of the reaction channel at a downstream.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: April 10, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Yukako Asano, Tetsuro Miyamoto, Hajime Katou, Shigenori Togashi
  • Patent number: 8142741
    Abstract: A channel forming body of a reactor has a base plate, a first sealing member bonded to one surface of the base plate and a second sealing member bonded to the other surface of the base plate. A plurality of first inlet grooves forming first inlet paths and a plurality of reaction grooves forming reaction grooves are formed in parallel and side by side in one surface of the base plate. A plurality of second inlet grooves forming second inlet paths are formed in parallel and side by side in the other surface of the base plate. A plurality of junction holes forming junction channels penetrate the base plate from the one surface to the other surface between corresponding ones of the respective first and second inlet grooves and the reaction grooves corresponding to the inlet grooves to connect downstream ends of the inlet grooves and upstream ends of the reaction grooves.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: March 27, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Tatsuo Yoshida, Koji Noishiki
  • Patent number: 8133438
    Abstract: A microfluidic device that comprises a microchannel structure in which there are one, two or more flow paths (101;201a,b;301a,a?,b) all of which comprises a porous bed I (104,204,304) that is common for all of the flow paths and exposes an immobilized reactant R that is capable of interacting with a solute S that passes through the bed. The characteristics are that at least one of the flow paths comprises/comprise a second porous bed II (105,205,305) that is placed upstream of porous bed I (104,204,304) and is dummy with respect to interaction with solute S but capable of interacting with a substance DS that is present in a liquid aliquot together with solute S and is capable of disturbing the result of the interaction between solute S and said immobilized reactant R. There is also disclosed a method utilizing the device and variant of the device in which the immobilized R is replaced with a generic affinity ligand LI and/or porous bed II exposes a generic ligand LII that may be different from LI.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: March 13, 2012
    Assignee: Gyros Patent AB
    Inventors: Johan Engström, Mats Inganäs, Gunnar Thorsén
  • Patent number: 8128885
    Abstract: The invention relates to a microreactor having a substrate (10, 20, 80) with at least one catalytically active material arranged in and/or on a cavity structure (14, 24, 84). The substrate (10, 20, 80) has a first layer (11, 21, 80) and optionally at least one additional layer (12, 22) of a ceramic material, with the first layer (11, 21, 80) being formed from a first component of a crystalline ceramic material and/or a glass material as the matrix and a second component of an additional crystalline ceramic material. The surface areas of the crystals and/or crystal agglomerates of the second component in the first layer (11, 21, 80) are etched out in at least some areas to form the cavity structure (14, 24, 84).
    Type: Grant
    Filed: September 15, 2008
    Date of Patent: March 6, 2012
    Assignee: Micro Systems Engineering GmbH
    Inventors: Dieter Schwanke, Mirco Harnack, Achim Bittner, Ulrich Schmid
  • Publication number: 20120045370
    Abstract: In relation to a microreactor, and also a microreactor system applying the same therein, not producing any dead volume therein, and thereby achieving a high level of mixing properties even at a low solution flow rate and having a simple structure thereof, disclosed herein are a microreactor and microreactor system, comprising a channel for mixing up at least two (2) types of fluids, and thereby conducting mixing/reacting of fluids by conducting the mixing/reacting of the fluids at least one (1) time, i.e., being suitable for so-called a multi-step reaction.
    Type: Application
    Filed: May 14, 2009
    Publication date: February 23, 2012
    Inventors: Yukako Asano, Tetsuro Miyamoto, Shigenori Togashi, Yoshishige Endo, Hidekazu Tsudome, Hajime Kato
  • Publication number: 20120045377
    Abstract: In one aspect the invention relates to reactors and a reactor system that include multiple microstructures each having a first edge and a second edge and an entrance side (18) and including an entrance port (22) and one or more other ports through the entrance side with all of the ports through the entrance side (32a, 32b) arranged in a standard pattern and closer to the first edge than the second edge. Desirably, the entrance port (22) and an exit port (24) are concentric.
    Type: Application
    Filed: May 11, 2010
    Publication date: February 23, 2012
    Inventors: Sylvain Maxime F. Gremetz, Aurelie Guichard, Roland Guicdat, Olivier Lobet
  • Publication number: 20120040448
    Abstract: The present invention deals with microfluidic devices (200) including a microreactor (20) and at least one connector (101) sealed thereon. It also deals with a method for manufacturing such microfluidic devices and to blocks of material suitable as connector.
    Type: Application
    Filed: April 28, 2010
    Publication date: February 16, 2012
    Inventors: Sylvain Maxime F. Gremetz, Jean-Marc Martin Gerard Jouanno, Olivier Lobet, Stephane Poissy, Ronan Tanguy
  • Patent number: 8105557
    Abstract: A microreactor assembly [100] is provided comprising a fluidic interconnect backbone [10] and plurality of fluidic microstructures. Interconnect input/output ports [12] of the fluidic interconnect backbone [10] are interfaced with microchannel input/output ports [14] of the fluidic microstructures at a plurality of non-polymeric interconnect seals [50]. Interconnect microchannels [15] are defined entirely by the fluidic interconnect backbone [10] and extend between the non-polymeric interconnect seals [50] without interruption by additional sealed interfaces. At least one of the fluidic microstructures [20, 30, 40] may comprise a mixing microstructure formed by a molding process. Another of the fluidic microstructures [20, 30, 40] may comprise an extruded reactor body. Still another fluidic microstructure [20, 30, 40] may comprise a quench-flow or hydrolysis microreactor formed by a hot-pressing method.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: January 31, 2012
    Assignee: Corning Incorporated
    Inventors: Jean-Pierre Henri Rene Lereboullet, Olivier Lobet, Yann P M Nedelec, Ronan Tanguy
  • Patent number: 8106249
    Abstract: Methods of oxidative dehydrogenation (ODH) is provided wherein conducting ODH in microchannels has unexpectedly been found to yield superior performance when compared to the same reactions at the same conditions in larger reactors. ODH methods employing a Mo—V—Mg—O catalyst is also described. Microchannel apparatus for conducting ODH is also disclosed.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: January 31, 2012
    Assignee: Velocys
    Inventors: John H. Brophy, Kai Jarosch, Terry J. Mazanec, Matthew B. Schmidt, Laura J. Silva, Anna Lee Tonkovich, Fred Pesa, David J. Hesse
  • Patent number: 8101128
    Abstract: A microreactor assembly is provided comprising a fluidic microstructure and an injector assembly. The injector assembly comprises a liquid inlet, a gas inlet, a liquid outlet, a gas outlet, a liquid flow portion extending from the liquid inlet to the liquid outlet, and a gas flow portion extending from the gas inlet to the gas outlet. Further, the injector assembly defines an injection interface with a microchannel input port of the fluidic microstructure. The injector assembly is configured such that the gas outlet of the gas flow portion is positioned to inject gas into the liquid flow portion upstream of the liquid outlet, into the liquid flow portion at the liquid outlet, or into an extension of the liquid flow portion downstream of the liquid outlet and is configured such that gas is injected into the liquid flow portion or the extension thereof as a series of gas bubbles.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: January 24, 2012
    Assignee: Corning Incorporated
    Inventors: Olivier Lobet, Stephane Poissy, Pierre Woehl
  • Patent number: 8101140
    Abstract: The present invention is a structured monolith reactor and method that provides for controlled Fischer-Tropsch (FT) synthesis. The invention controls mass transport limitations leading to higher CO conversion and lower methane selectivity. Over 95 wt % of the total product liquid hydrocarbons obtained from the monolithic catalyst are in the carbon range of C5-C18. The reactor controls readsorption of olefins leading to desired products with a preselected chain length distribution and enhanced overall reaction rate. And, liquid product analysis shows readsorption of olefins is reduced, achieving a narrower FT product distribution.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: January 24, 2012
    Assignee: Battelle Memorial Institute
    Inventors: Yong Wang, Wei Liu
  • Patent number: 8097226
    Abstract: A catalytic reaction device for fluid-solid heterogeneous catalytic reactions including a distributor, flow controllers, parallel reactors, temperature controllers, coolers and product receivers with reactive fluids flowing into the flow controllers to control the total flow of a fluid is provided.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: January 17, 2012
    Assignee: Microvast Power Systems Co., Ltd.
    Inventors: Jiangping Yi, Li Huang, Wensheng Li, Xio Ping Zhou
  • Patent number: 8088215
    Abstract: A diffusion reaction method includes: joining a plurality of reaction liquids relating to a reaction to form a multilayer flow; sandwiching from both sides of the multilayer flow in the depthwise direction using sandwiching liquid so that the multilayer flow is contracted and thinned; and flowing the multilayer flow through a reaction channel to cause a diffusive mixing between laminar flows so as to cause the reaction. The method enables to allow reacting diffusive mixing a plurality of reaction liquids instantly in a reaction channel, is suitable for any kinds of reaction product. Further, for example, when forming fine particles in a diffusion reaction, the method can prevent logging of the reaction channel by the fine particles and an adhesion of the fine particles to the wall of the reaction channel.
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: January 3, 2012
    Assignee: Fujifilm Corporation
    Inventor: Kazunori Takahashi
  • Publication number: 20110300039
    Abstract: Integrated Combustion Reactors (ICRs) and methods of making ICRs are described in which combustion chambers (or channels) are in direct thermal contact to reaction chambers for an endothermic reaction. Particular reactor designs are also described. Processes of conducting reactions in integrated combustion reactors are described and results presented. Some of these processes are characterized by unexpected and superior results, and/or results that can not be achieved with any prior art devices.
    Type: Application
    Filed: April 25, 2011
    Publication date: December 8, 2011
    Inventors: Anna Lee Tonkovich, Gary Roberts, Sean P. Fitzgerald, Paul W. Neagle, Dongming Qiu, Matthew B. Schmidt, Steven T. Perry, David J. Hesse, Robert J. Luzenski, G. Bradley Chadwell, Ying Peng, James A. Mathias, Nathan P. Gano, Richard Q. Long, Wm. Allen Rogers, Ravi Arora, Wayne W. Simmons, Barry L. Yang, David J. Kuhlmann, Yong Wang, Thomas D. Yuschak, Thomas Forte, John Arthur Monahan, Robert Jetter
  • Patent number: 8071035
    Abstract: Methods and devices for a fully automated synthesis of radioactive compounds for imaging, such as by positron emission tomography (PET), in a fast, efficient and compact manner are disclosed. In particular, the various embodiments of the present invention provide an automated, stand-alone, hands-free operation of the entire radiosynthesis cycle on a microfluidic device with unrestricted gas flow through the reactor, starting with target water and yielding purified PET radiotracer within a period of time shorter than conventional chemistry systems. Accordingly, one aspect of the present invention is related to a microfluidic chip for radiosynthesis of a radiolabeled compound, comprising a reaction chamber, one or more flow channels connected to the reaction chamber, one or more vents connected to said reaction chamber, and one or more integrated valves to effect flow control in and out of said reaction chamber.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: December 6, 2011
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Arkadij M Elizarov, Carroll Edward Ball, Jianzhong Zhang, Hartmuth C. Kolb, R. Michael Van Dam, Lawrence Talcott Diener, Sean Ford, Reza Miraghaie
  • Patent number: 8066955
    Abstract: A processing apparatus that is formed from a plurality of metal layers that are stacked and aligned together and then connected together to form one or more portions of the processing apparatus.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: November 29, 2011
    Inventor: James M. Pinchot
  • Publication number: 20110287413
    Abstract: A microfluidic system comprising a 1st reaction zone, a 2nd reaction zone, a reagent delivery channel configured to deliver one or more reagents to the 1st reaction zone, a waste channel to remove waste from the 2nd reaction zone, a 1st sample delivery channel configured to deliver a sample to the 1st reaction zone and a 2nd sample delivery channel configured to deliver a sample to the 2nd reaction zone; wherein the microfluidic system comprises a means for retaining one or more reagents in each reaction zone; and wherein the 1st reaction zone and 2nd reaction zone are connected in series by a reaction zone channel.
    Type: Application
    Filed: August 12, 2009
    Publication date: November 24, 2011
    Applicant: ITI SCOTLAND LIMITED
    Inventors: Julien Chapron, Lidia Prieto-Lafuente
  • Patent number: 8057743
    Abstract: Means for overcoming the problems which the conventional glass microchannel chips have are disclosed. That is, a microchannel chip in which microchannels can be formed at a low cost, and which has a high chemical resistance is disclosed. The microchannel chip is constituted by a substrate made of carbon, which has a channel in its surface; and a cover composed of a glass plate bonded to the substrate. The cover is bonded to the substrate by heating at least a part of the contact surface at which the substrate is in contact with the cover.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: November 15, 2011
    Assignees: Hipep Laboratories, Nippon Light Metal Company, Ltd.
    Inventors: Kiyoshi Nokihara, Yasuo Oka
  • Patent number: 8052939
    Abstract: The present invention discloses to a channel reactor system having a first channel plate assembly in which an exothermic reaction is performed and a second channel plate assembly provided for heat-exchanging and constituted integrally with the first channel plate assembly so as to remove effectively heat, the channel reactor system comprising at least two channel units into which reaction gas and cooling fluid are separately introduced, each channel unit comprising a reaction channel plate assembly into which reaction gas is introduced and a heat-exchanging channel plate assembly into which cooling fluid is introduced; and at least one intermediate plate disposed between the upper and lower channel units, the intermediate plate supplying reaction gas and cooling fluid inflowed from the upper channel unit with new reactant and cooling fluid and supplying reaction gas and cooling fluid to the reaction channel plate assembly and the heat-exchanging channel plate assembly of the lower channel unit, respectively.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: November 8, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Jun Yeon Cho, Jung Uk Choi, Jae Hoon Choe, Kwang Cheon Park, Chang Houn Rhee, Sun Hyuk Bae, Kwang Ho Song
  • Patent number: 8043571
    Abstract: Embodiments of a microchannel reactor comprise a microchannel housing comprising a plurality of channels and an upper microstructure disposed above the microchannel housing. The upper microstructure comprising a gas feed circuit, a liquid feed circuit, and at least one mixing cavity. The mixing cavity is in fluid communication with at least one reactive passage of the microchannel housing. The gas feed circuit comprises at least one gas feed inlet, and the liquid feed circuit comprises at least one liquid feed inlet and at least one liquid reservoir adjacent to the mixing cavity, wherein the liquid reservoir is operable to deliver a liquid feed into the mixing cavity.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: October 25, 2011
    Assignee: Corning Incorporated
    Inventors: Thierry Luc Alain Dannoux, Pierre Woehl
  • Patent number: 8029748
    Abstract: The invention provides methods, apparatus and chemical systems for making vinyl acetate from ethylene, oxygen, and acetic acid.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: October 4, 2011
    Assignees: Velocys, Inc, Celanese International Corporation
    Inventors: Terry Mazanec, Victor J. Johnston, Michael Huckman, Sean P. Fitzgerald, James A. Foster, Daniel Lindley, Anna Lee Tonkovich, Francis P. Daly, Leslie Wade, Tony Hammock, Thomas Yuschak, Bin Yang, Kai Jarosch
  • Patent number: 8029738
    Abstract: Methods and devices for removing inflammable gases produced by radiolysis in a closed chamber containing radioactive matters comprising organic compounds and possibly water, or radioactive matters in the presence of organic compounds and possibly water. Inside the chamber there may be placed a catalyst of at least one reaction for oxidizing the inflammable gases by oxygen contained in the chamber atmosphere, supported by an inert solid support; a catalyst of at least the reaction for oxidizing CO to CO2; possibly an oxygen source; and possibly a hygroscopic microporous inert solid support. Also, chambers for radioactive matters containing such devices.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: October 4, 2011
    Assignee: TN International
    Inventors: Pascale Abadie, Herve Issard
  • Patent number: 8021633
    Abstract: Methane is reacted with steam, to generate carbon monoxide and hydrogen in a first catalytic reactor (14); the resulting gas mixture can then be used to perform Fisher-Tropsch synthesis in a second catalytic reactor (26). In performing the steam/methane reforming, the gas mixture is passed through a narrow channel in which the mean temperature and exit temperature are both in the range 750° C. to 900° C. the residence time being less than 0.5 second, and the channel containing a catalyst, so that only those reactions that have comparatively rapid kinetics will occur. The heat is provided by combustion of methane in adjacent channels (17). The ratio of steam to methane should preferably be 1.4 to 1.6, for example about 1.5. Almost all the methane will undergo the reforming reaction, almost entirely forming carbon monoxide. After performing Fischer-Tropsch synthesis, the remaining hydrogen is preferably fed back (34) to the combustion channels (17).
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: September 20, 2011
    Assignee: CompactGTL plc
    Inventors: Michael Joseph Bowe, Clive Derek Lee-Tuffnell, Jason Andrew Maude, John William Stairmand, Ian Frederick Zimmerman
  • Publication number: 20110224463
    Abstract: Modular microreactors are provided composed of microreactor parts including a plate body which has, on one plate side, a groove-shaped depression in which a reactor tube is accommodated, and the reaction tube has connection ends on the outer sides of the plate body. Also disclosed are reaction tubes for turbulent mixing, kits for producing the reactors and the use thereof for commencing chemical reactions.
    Type: Application
    Filed: November 10, 2009
    Publication date: September 15, 2011
    Inventors: Stefan Zikeli, Friedrich Ecker, Michael Longin, Klause Weidinger
  • Patent number: 7999144
    Abstract: Methods of oxidative dehydrogenation are described. Surprisingly, Pd and Au alloys of Pt have been discovered to be superior for oxidative dehydrogenation in microchannels. Methods of forming these catalysts via an electroless plating methodology are also described. An apparatus design that minimizes heat transfer to the apparatus' exterior is also described.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: August 16, 2011
    Assignee: Velocys
    Inventors: Anna Lee Tonkovich, Bin Yang, Steven T. Perry, Terry Mazanec, Ravi Arora, Francis P. Daly, Richard Long, Thomas D. Yuschak, Paul W. Neagle, Amanda Glass
  • Patent number: 7988936
    Abstract: The present invention discloses to a chemical reactor with high heat efficiency and small volume, the chemical reaction of the present invention comprises a first unit for performing heat exchange of exothermic reaction products with exothermic reaction raw material fed for exothermic reaction; a second unit including a plate assembly for exothermic reactions and a plate assembly for endothermic reactions; and a third unit for performing heat exchange of endothermic reaction products with endothermic reaction raw material fed for endothermic reactions.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: August 2, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Jun Yeon Cho, Jae Hoon Choe, Kwang Cheon Park, Gyea-Young Kwak, Chang Houn Rhee, Sun Hvuk Bae, Jung Uk Choi, Kwang Ho Song
  • Publication number: 20110150727
    Abstract: A micro-reactor system assembly comprises a stack of at least n process modules (1-6), wherein n is an integer equal to or greater than 1, made from a rigid first material and comprising at least one reactive fluid passage (1A, 1B, 2A, 3A, 6A) for accommodating and guiding a reactive fluid, and at least n+1 heat exchange modules (7, 8) made from a ductile second material other than said first material and comprising at least one heat exchange fluid passage (7A, 8A) for accommodating and guiding a heat exchange fluid, wherein each process module (1-6) is sandwiched between two adjacent heat exchange modules (7, 8).
    Type: Application
    Filed: March 1, 2011
    Publication date: June 23, 2011
    Applicant: LONZA AG
    Inventors: Dominique Roberge, Nikolaus Bieler, Bertin Zimmermann, Rainald Forbert
  • Patent number: 7946037
    Abstract: In a microchemical device including a plurality of flow channels which feed liquids from at least one fluid supply device into a plurality of reaction zones, each of the plurality of flow channels has a plurality of minute flow channel members each of which has a cross sectional area smaller than that of the reaction zone. Thereby, the fluids are evenly fed into each of the microreaction members. Thus, a microchemical device capable of homogenizing a substance generated on respective reactions can be realized.
    Type: Grant
    Filed: September 28, 2008
    Date of Patent: May 24, 2011
    Assignee: FUJIFILM Corporation
    Inventor: Yoshiyuki Miyoshi
  • Patent number: 7939033
    Abstract: A microfluidic device [10] includes at least one reactant passage [26] and one or more thermal control passages defined therein, the one or more thermal control passages being positioned and arranged within two volumes [12,14] each bordered by a wall [18,20], the walls being generally planar and parallel to one another, the reactant passage positioned between said generally planar walls and defined by said generally planar walls and walls [28] extending between said generally planar walls, wherein the reactant passage comprises multiple successive chambers [34], each such chamber including a split of the reactant passage into at least two sub-passages [36], and a joining [38] of the split passages, and a change of passage direction, of at least one of the sub-passages, of at least 90 degrees.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: May 10, 2011
    Assignee: Corning Incorporated
    Inventors: Elena Daniela Lavric, Pierre Woehl
  • Patent number: 7919056
    Abstract: A micro-reactor system assembly comprises a stack of at least n process modules (1-6), wherein n is an integer equal to or greater than 1, made from a rigid first material and comprising at least one reactive fluid passage (1A, 1B, 2A, 3A, 6A) for accommodating and guiding a reactive fluid, and at least n+1 heat exchange modules (7, 8) made from a ductile second material other than said first material and comprising at least one heat exchange fluid passage (7A, 8A) for accommodating and guiding a heat exchange fluid, wherein each process module (1-6) is sandwiched between two adjacent heat exchange modules (7, 8).
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: April 5, 2011
    Assignee: Lonza AG
    Inventors: Dominique Roberge, Nikolaus Bieler, Bertin Zimmermann, Rainald Forbert