Abstract: The steam methane reformer using a premixed metal fiber burner which has a short flame length as well as a high temperature to thereby provide a high efficiency and also reduce a size, and a hydrogen station having the same. The steam methane reformer using a high performing metal fiber burner comprises a reforming part (110a) in which a catalyst for steam-reforming hydrocarbon materials and producing hydrogen is disposed; a combustion part (120) which is provided with a premixed metal fiber burner (120a) for generating heat required for the steam reforming reaction of the reaction tubes (110a); a raw material supplying part (130) for supplying hydrocarbon materials to the reaction tube (110a); and a hydrogen discharging part (140) for discharging hydrogen produced through the steam reforming reaction by the catalyst of the reaction tube (110a).
Abstract: Apparatus, systems, and processes for reforming hydrocarbons are provided. The process can include reforming a first hydrocarbon in the presence of steam and one or more first catalysts in a first reformer to produce a first reformed hydrocarbon. The process can also include reforming the first reformed hydrocarbon in the presence of one or more second catalysts in a second reformer to produce a second reformed hydrocarbon. The process can also include reforming a second hydrocarbon in the presence of steam and one or more third catalysts in a third reformer to produce a third reformed hydrocarbon, where heat from the second reformed hydrocarbon is transferred to the second hydrocarbon to support reforming of the second hydrocarbon.
Type:
Application
Filed:
April 1, 2010
Publication date:
February 24, 2011
Applicant:
KELLOGG BROWN & ROOT LLC
Inventors:
Shashi Prakash Singh, Arthur Joseph Price
Abstract: In one aspect, the invention includes in a process for cracking a hydrocarbon feedstock comprising: a) feeding a hydrocarbon feedstock containing at least 1 wt % of resid components having boiling points of at least 500° C. to a furnace convection section to heat the feedstock; b) flashing the heated feedstock in a first flash separation vessel to create a first overhead stream and a first bottoms liquid stream; c) hydrogenating at least a portion of the first bottoms liquid stream to create a hydrogenated bottoms stream; d) flashing the hydrogenated bottoms stream in a second flash separation vessel to create a second overhead stream and a second bottoms liquid stream; e) cracking the first overhead stream and the second overhead stream in a cracking furnace to produce a pyrolysis effluent stream. In other embodiments, the process further comprises heating the hydrocarbon feedstock in step a) to a temperature within a range of from 315° C. to 705° C.
Type:
Application
Filed:
August 21, 2009
Publication date:
February 24, 2011
Inventors:
Keith H. Kuechler, Jennifer L. Bancroft, Paul F. Keusenkothen, Robert D. Strack
Abstract: The invention provides an apparatus and method for producing synthetic gas. The apparatus has a pyrolysis chamber (12) for generating synthetic gas, a reformer unit (14), conduit means (22, 24) forming a circulation loop for repeatedly circulating gases between said pyrolysis chamber and said water-gas shift reaction zone and means for adding hydrogen to said gas circulating in said loop by way of a water-gas shift reaction.
Abstract: A process is described for producing synthesis gas and hydrogen starting from liquid hydrocarbon feedstocks, possibly also mixed with gaseous hydrocarbon streams, comprising at least the following operations: 1) nebulizing/vaporizing a stream of a liquid hydrocarbon feedstock consisting of one or more of the following hydrocarbons: naphthas, various kinds of gas oils, such as LCO, HCO and VGO, other products of refining cycles and oil up-grading, such as DAO, other heavy residues, at a N temperature ranging from 50 to 500° C.
Type:
Application
Filed:
November 17, 2008
Publication date:
November 25, 2010
Applicant:
ENI S.p.A.
Inventors:
Luca Basini, Alessandra Guarinoni, Andrea Lainati