With The Provision Of Heating Or Cooling Means Patents (Class 422/649)
-
Patent number: 12031095Abstract: Embodiments disclosed herein relate to systems and processes for producing olefins and/or dienes. The systems and processes may include thermally cracking a C1-C4 hydrocarbon containing feed to produce a cracked hydrocarbon effluent containing a mixture of olefins and paraffins. The systems and processes may also include dehydrogenating the cracked hydrocarbon effluent to produce a dehydrogenated hydrocarbon effluent containing additional olefins and/or dienes.Type: GrantFiled: October 15, 2021Date of Patent: July 9, 2024Assignee: LUMMUS TECHNOLOGY LLCInventors: Kandasamy Meenakshi Sundaram, Ronald M. Venner
-
Patent number: 9028766Abstract: A radial-flow plate heat exchanger (5) embedded in the catalytic bed of an isothermal chemical reactor (1) has heat exchange plates (10) comprising fluid passages (13) between a first metal sheet (20) and a second metal sheet (21) joined by perimeter weld seams (23) on a first surface (A) of the plate, a feeding channel (14) and a collecting channel (15) for the heat exchange fluid are formed with suitable metal sheets which are seam welded (25) directly to the opposite surface (B) of the plate, this structure allows the manufacturing of the plate (10) with an automated seam welding process, such as laser beam welding.Type: GrantFiled: July 7, 2010Date of Patent: May 12, 2015Assignee: Casale SAInventors: Enrico Rizzi, Ermanno Filippi, Mirco Tarozzo
-
Patent number: 9017428Abstract: A two-stage reactor is disclosed for the conversion of solid particulate biomass material. The reactor is designed to maximize conversion of the solid biomass material, while limiting excess cracking of primary reaction products. The two-stage reactor comprises a first stage reactor, in which solid biomass material is thermally pyrolyzed to primary reaction products. The primary reaction products are catalytically converted in a second stage reactor.Type: GrantFiled: November 16, 2010Date of Patent: April 28, 2015Assignee: KiOR, Inc.Inventors: Michael Brady, Ronald Lee Cordle, Peter Loezos, Dennis Stamires
-
Publication number: 20150099812Abstract: A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.Type: ApplicationFiled: October 8, 2014Publication date: April 9, 2015Inventor: Sean M. Kelly
-
Publication number: 20150099868Abstract: Provided are methods for aqueous isolation of depolymerized lignin in high yield from a lignin-containing biomass composition, comprising positioning a lignin-containing biomass composition into a flowthrough thermal reactor chamber to provide for passage of an aqueous fluid therethrough, contacting the lignin biomass composition with the aqueous fluid under elevated temperature conditions sufficient to provide for lignin release and depolymerization, flowing the aqueous fluid through the reactor chamber under the elevated temperature conditions, to provide an output aqueous fluid comprising released depolymerized lignin, and collecting the depolymerized lignin.Type: ApplicationFiled: April 30, 2013Publication date: April 9, 2015Applicant: Washington State UniversityInventors: Bin Yang, Dhrubojyoti Dey Laskar
-
Publication number: 20150083971Abstract: A method and assembly for producing substantially tar free product gas from gasification of carbonaceous material. The assembly preferably includes a first stage gasifier to produce char-ash and tar laden product gas and a second stage gasifier which has a char-ash heating zone, at least one cyclone, and at least one standpipe for the purpose of allowing selective delivery of char-ash to the char-ash heating zone. A char-ash heating zone that utilizes oxidation of char-ash is preferred and this results in the heat required to convert tar, additional yield of product gas, and an oxidized, activated carbon surface to facilitate tar conversion in the riser, thereby reducing the temperature required to achieve the desired tar conversion. Alternatively, external heat is supplied to the heating zone.Type: ApplicationFiled: April 3, 2012Publication date: March 26, 2015Inventors: Thomas J Paskach, Jerod Smeenk
-
Publication number: 20150044122Abstract: A device and a method are provided for reacting a starting material in at least two reactors connected to each other, including the reacting of the starting material in a first reactor to a first product, removing the first product from the first reactor using a jet pump, wherein a negative pressure zone of the jet pump is operationally connected to the first reactor, so that the first product of the first reactor moves through the negative pressure zone in a propulsion jet of a propulsion medium of the jet pump, conducting the propulsion medium having the first product into a second reactor, wherein the first product is allowed to react into a second product, separating the second product from the propulsion medium and discharging the separated second product.Type: ApplicationFiled: March 19, 2013Publication date: February 12, 2015Inventors: Stefan Zikeli, Friedrich Ecker
-
Publication number: 20150037229Abstract: A process and apparatus are provided for reducing content of tar in a tar containing syngas. The process includes contacting the tar containing syngas with a molecular oxygen containing gas in a first reaction zone to produce a gas mixture. The gas mixture is passed through a heat treatment zone maintained at a temperature between about 900° C. to about 2000° C. for a contact time of about 0.5 to about 5 seconds. In this aspect, at least a portion of the tar undergoes at least partial oxidation and/or cracking to produce a hot syngas.Type: ApplicationFiled: October 20, 2014Publication date: February 5, 2015Applicant: INEOS BIO SAInventors: Peter Simpson Bell, Ching-Whan Ko, Joseph Golab, Bernard Descales, Julien Eyraud
-
Patent number: 8936656Abstract: Disclosed herein is a hydrogen generator for producing hydrogen by the steam-reforming reaction of hydrocarbons, in which a pressure loss induction structure for artificially reducing the pressure of exhaust gas is provided between a combustion unit and an exhaust gas discharge pipe, thus improving the uneven distribution of exhaust gas.Type: GrantFiled: February 9, 2011Date of Patent: January 20, 2015Assignee: SK Innovation Co., Ltd.Inventors: Young Dae Kim, Jae Suk Choi, Jin Sik Yang, Myung Jun Kim
-
Publication number: 20140374312Abstract: Processes and apparatuses for producing aromatic compounds from a naphtha feed stream are provided herein. In an embodiment, a process for producing aromatic compounds includes heating the naphtha feed stream to produce a heated naphtha feed stream. The heated naphtha feed stream is reformed within a plurality of reforming stages that are arranged in series to produce a downstream product stream. The plurality of reforming stages is operated at ascending reaction temperatures. The naphtha feed stream is heated by transferring heat from the downstream product stream to the naphtha feed stream to produce the heated naphtha feed stream and a cooled downstream product stream.Type: ApplicationFiled: June 19, 2013Publication date: December 25, 2014Inventors: David A. Wegerer, Keyur Y. Pandya
-
Publication number: 20140356257Abstract: Provided is a gasoline production device capable of effectively using heat of reaction generated in the synthesis of gasoline and also capable of readily cooling heat generated by synthesizing gasoline. A device 30 for producing gasoline from methanol includes a plurality of reaction tubes 34 configured to synthesize gasoline from methanol and a duct 36 configured to allow air to flow outside the reaction tubes, and heat exchange is carried out between synthesis heat generated within the reaction tubes 34 and the air which flows through the duct 36.Type: ApplicationFiled: December 13, 2012Publication date: December 4, 2014Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.Inventor: Masaki Iijima
-
Patent number: 8882863Abstract: A fuel reformulation system for an engine comprising an annular body for a flow of fluids therethrough connected to the engine, a source of fuel for flowing through at least a portion of the annular body, and a catalytic member connected to the annular body for the flow of any fluids thereacross from the annular body.Type: GrantFiled: May 13, 2009Date of Patent: November 11, 2014Assignee: Alliant Techsystems Inc.Inventors: Dean Modroukas, Jason S. Tyll, John C. Leylegian, Florin Girlea, Richard Perlman
-
Publication number: 20140323781Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons are provided herein. In one example, a method comprises burning fuel gas to form a hot flue gas and heat a reforming-zone feedstock that contains (C5-C11) hydrocarbons to form a heated reforming-zone feed stream. The heated reforming-zone feed stream is partially reformed to form a partially reformed effluent. The partially reformed effluent is advanced through a process heat recovery coil arrangement that is recovering heat from the hot flue gas to form a heated partially reformed effluent. The heated partially reformed effluent is contacted with reforming catalyst at reforming conditions effective to form a reforming reaction-zone effluent. The reforming reaction-zone effluent comprises H2, C5+ hydrocarbons including aromatics, and C4? hydrocarbons.Type: ApplicationFiled: April 26, 2013Publication date: October 30, 2014Inventors: William M. Hartman, Xin X. Zhu, Lisa M. Lane, William Yanez
-
Publication number: 20140314643Abstract: The present invention may provide talc calciner systems and methods to produce better and more efficient products by engineering a* and b* values for calcinated products perhaps by processing low iron talc in an indirectly heated, multiple zoned calciner which may progressively heat the feed supply at perhaps specifics residence times to produce a desired product.Type: ApplicationFiled: April 22, 2014Publication date: October 23, 2014Applicant: American Talc CompanyInventor: James A. Herickhoff
-
Patent number: 8852539Abstract: A second stage Fischer-Tropsch reaction system to enhance a conversion ratio of a synthetic gas, includes, at least one first reactor that uses a Fe catalyst, receives a first synthetic gas extracted from a coal, biomass or natural gas, and reacts the first synthetic gas with the Fe catalyst to obtain a synthetic fuel, and a second reactor that uses a Fe.Co or Co catalyst, receives a second synthetic gas discharged from the first reactors after reaction, and reacts the second synthetic gas with the Fe.Co or Co catalyst to obtain a synthetic fuel.Type: GrantFiled: July 7, 2011Date of Patent: October 7, 2014Assignee: Korea Institute of Energy ResearchInventors: Ho Tae Lee, Heon Jung, Jung Il Yang, Hak Joo Kim, Dong Hyun Chun, Jung Hoon Yang, Ji Chan Park, Byung Kwon Kim
-
Publication number: 20140261930Abstract: A method of producing DEMN eutectic comprises reacting a reactant mixture comprising ethylenediamine and diethylenetriamine with aqueous nitric acid to form a reaction mixture comprising diethylentriamine trinitrate and ethylenediamine dinitrate. The reaction mixture is combined with methylnitroguanidine and nitroguanidine to form an aqueous slurry. Water is removed from the aqueous slurry. A method of producing an energetic composition, and a system for producing DEMN eutectic are also described.Type: ApplicationFiled: March 14, 2013Publication date: September 18, 2014Applicant: ALLIANT TECHSYSTEMS INC.Inventor: ALLIANT TECHSYSTEMS INC.
-
Publication number: 20140275668Abstract: The thermochemical conversion of biomass material to one or more reaction products includes generating thermal energy with at least one heat source, providing a volume of feedstock, providing a volume of supercritical fluid, transferring a portion of the generated thermal energy to the volume of supercritical fluid, transferring at least a portion of the generated thermal energy from the volume of supercritical fluid to the volume of feedstock, and performing a thermal decomposition process on the volume of feedstock with the thermal energy transferred from the volume of supercritical fluid to the volume of the feedstock in order to form at least one reaction product.Type: ApplicationFiled: March 13, 2014Publication date: September 18, 2014Applicant: Searete LLCInventors: Joshua C. Walter, Manuel Garcia-Perez
-
Patent number: 8802019Abstract: A reactor includes an essentially horizontal cylinder for carrying out an autothermal gas-phase dehydrogenation of a hydrocarbon-comprising gas stream using an oxygen-comprising gas stream to give a reaction gas mixture over a heterogeneous catalyst configured as monolith. The interior of the reactor is divided by a detachable, cylindrical or prismatic housing, which is arranged in the longitudinal direction of the reactor and is gastight in the circumferential direction, into an inner region having one or more catalytically active zones, each having a packing composed of monoliths stacked on top of one another, next to one another and behind one another and before each catalytically active zone in each case a mixing zone having solid internals are provided and into an outer region, which is supplied with an inert gas, arranged coaxially to the inner region. A heat exchanger is connected to the housing at one end of the reactor.Type: GrantFiled: December 20, 2011Date of Patent: August 12, 2014Assignee: BASF SEInventors: Gerhard Olbert, Ulrike Wegerle, Grigorios Kolios, Albena Kostova, Jasmina Kessel, Alexander Weck, Alireza Rezai
-
PROCESS TO INCREASE HYDROGEN PRODUCTION WITHOUT LOSS OF STEAM PRODUCTION IN A STEAM METHANE REFORMER
Publication number: 20140171714Abstract: A process for pre-reforming a hydrocarbon containing stream prior to admission into a steam methane reformer is provided. This process includes a system with two pre-reformer reactors in series, wherein an oxygen stream is combined with the partially reformed outlet stream of the first pre-reformer reactor, then the combined stream is introduced into the second pre-reformer reactor.Type: ApplicationFiled: December 18, 2012Publication date: June 19, 2014Applicant: L'Air Liquide Societe Anonyme Pour I'Etude et I'Exploitation des Procedes Georges ClaudeInventor: L'Air Liquide Societe Anonyme Pour I'Etude et I'Exploitation des Procedes Georges Claude -
Patent number: 8747783Abstract: One exemplary embodiment can be an acid alkylation system. The system can include a cooler-reactor and a settler. The settler can have a height and a width. Usually, the height exceeds the width. Generally, the cooler-reactor receives a feed of at least one of a stream including an olefin and a stream including an isobutane. Typically, at least a portion of one of the streams is bypassed around the cooler-reactor to the settler to control the temperature within the settler.Type: GrantFiled: June 24, 2009Date of Patent: June 10, 2014Assignee: UOP LLCInventors: Daryl Dunham, Dale James Shields
-
Patent number: 8741225Abstract: A system and method is provided for capturing a carbonous gas and using the captured carbonous gas for cooling purposes. For example, a system may include a carbon capture system configured to collect a carbonous gas from a syngas, and a cooling system having a gas expander and a coolant circuit that receive the carbonous gas. The gas expander is configured to expand the carbonous gas to reduce a temperature of the carbonous gas to produce a reduced temperature carbonous gas, and the coolant circuit is configured to utilize the reduced temperature carbonous gas to cool at least one solvent of at least one gas purifier.Type: GrantFiled: September 24, 2009Date of Patent: June 3, 2014Assignee: General Electric CompanyInventors: Judith Pauline Oppenheim, Anindra Mazumdar
-
Patent number: 8697016Abstract: A reactor in the form of an essentially horizontal cylinder for carrying out an autothermal gas-phase dehydrogenation of a hydrocarbon-comprising gas stream by means of an oxygen-comprising gas stream to give a reaction gas mixture over a heterogeneous catalyst configured as monolith is disclosed herein. The interior of the reactor is divided by a detachable, cylindrical or prismatic housing which is arranged in the longitudinal direction of the reactor, gastight in the circumferential direction and open at two end faces of the housing into an inner region, having one or more catalytically active zones. In each case, a packing composed of monoliths may be stacked on top of one another, next to one another, and above one another and before each catalytically active zone. Also in each case, a mixing zone having solid internals and an outer region arranged coaxially to the inner region are provided.Type: GrantFiled: December 1, 2010Date of Patent: April 15, 2014Assignee: BASF SEInventors: Grigorios Kolios, Wilhelm Ruppel, Ulrike Wegerle, Jasmina Kessel, Wolfgang Gerlinger, Godwind Tafara Peter Mabande, Goetz-Peter Schindler, Albena Kostova, Gerhard Olbert, Peter Pfab
-
Publication number: 20140093433Abstract: A hydroprocessing system involves introducing heavy oil and in situ formed metal sulfide catalyst particles, or a catalyst precursor capable of forming metal sulfide catalyst particles in situ within the heavy oil, into a hydroprocessing reactor. The metal sulfide catalyst particles are formed in situ by 1) premixing a catalyst precursor with a hydrocarbon diluent to form a precursor mixture, 2) mixing the precursor mixture with heavy oil to form a conditioned feedstock, and 3) heating the conditioned feedstock to decompose the catalyst precursor and cause or allow metal from the precursor to react with sulfur in the heavy oil to form the metal sulfide catalyst particles in situ in the heavy oil. The in situ formed metal sulfide catalyst particles catalyze beneficial upgrading reactions between the heavy oil and hydrogen and eliminates or reduces formation of coke precursors and sediment.Type: ApplicationFiled: December 3, 2013Publication date: April 3, 2014Applicant: HEADWATERS HEAVY OIL, LLCInventors: Roger K. Lott, Lap Keung Lee
-
Patent number: 8658563Abstract: The object of the invention is method and apparatus for sorbent production.Type: GrantFiled: April 14, 2009Date of Patent: February 25, 2014Assignee: HM Elektronikai, Logisztikai es Vagyonkezelo Zartkoruen Mukodo ReszvenytarsasagInventors: Istvan Schremmer, Jozsef Kis-Benedek, Laszlo Ebert
-
Patent number: 8609913Abstract: An axial flow staged zone oligomerization reaction process includes the steps of passing a hydrocarbon feedstock into the lower portion of the axial flow staged zone reactor which includes axial circulation of the hydrocarbon reaction fluid serially in each of the reaction zones, passing catalyst through a constriction zone located between successive upper and lower catalytic reaction zones which includes heat exchanging of the fluids being the constriction zone within the reactor and further includes withdrawing the oligomerized product from the top of the reactor.Type: GrantFiled: October 2, 2009Date of Patent: December 17, 2013Assignee: IFP Energies NouvellesInventors: Sylvain Louret, Patrice Font, Sylvie Lacombe, Eric Sanchez, Laurent Simon
-
Publication number: 20130331623Abstract: A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.Type: ApplicationFiled: May 13, 2013Publication date: December 12, 2013Applicant: BATTELLE MEMORIAL INSTITUTEInventors: Douglas C. Elliott, Gary G. Neuenschwander, Todd R. Hart
-
Patent number: 8586779Abstract: The present invention relates in general terms to a process for preparing alkyl methacrylates, comprising as steps: providing an acetone cyanohydrin by a process according to one of the preceding claims; contacting the acetone cyanohydrin with an inorganic acid to obtain a methacrylamide; contacting the methacrylamide with an alcohol in the presence of an inorganic acid in a reactor to obtain an alkyl methacrylate; continuously discharging at least a portion of the alkyl methacrylate from the reactor into a distillation column as a vapor stream; the discharge being effected by feeding a discharge stream comprising steam into the reactor, to an apparatus for preparing alkyl methacrylates, to a process for preparing polymers based at least partly on alkyl methacrylates, to the use of the alkyl methacrylates obtainable by the process according to the invention in chemical products, and to chemical products based on alkyl methacrylates obtainable by the process according to the invention.Type: GrantFiled: August 31, 2007Date of Patent: November 19, 2013Assignee: Evonik Röhm GmbHInventors: Udo Gropp, Robert Weber, Thomas Schaefer, Andreas Perl, Rudolf Sing, Thomas Mertz
-
Patent number: 8551416Abstract: A method and system for recovering CO2 from gasification gas, prevents the recovered CO2 from being contaminated with COS, without repeating cooling and heating operations and without increasing the steam consumption. Gasification gas being produced in a gasifier 10 and containing CO, CO2, COS and H2S is subjected to dust removal in a scrubber 20. Then, a part of the gas is subjected to a CO shift reaction, in which CO is converted into CO2, in a CO shift reactor 30. In one embodiment, part of the gasification gas is not subjected to the CO shift reaction by means of a bypass 34, and is mixed with the gas after the CO shift reaction. Thereby, the temperature of the mixture gas is set at 180° C. to 300° C., and COS in the mixture gas is converted into H2S in a COS converter 40.Type: GrantFiled: October 22, 2009Date of Patent: October 8, 2013Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Fumiaki Sato, Shinji Ogino, Motonari Aihara, Yudai Kato, Kazuo Ishida, Seiji Kakesako
-
Patent number: 8540939Abstract: A continuous flow system for the synthesis of nanoparticles includes a feeding unit connected to the first reactor a flow path, at least one first reactor unit possessing a heatable reactor-zone, a second reactor unit which follows the first reactor in the same cascade; a mixing unit and a second feeding unit between the reactor units, and feeding pumps connected to a raw material source and/or a control unit which is capable of controlling at least one pressure controller and/or controlling the temperature of at least one heatable reactor-zone; each heatable reactor-zone is followed by a cooling unit in the cascade. In addition, a process for the synthesis of nanoparticles, preferably metal-containing nanoparticles, and nanoparticles of biologically active organic molecules wherein the process is accomplished using the system.Type: GrantFiled: April 28, 2009Date of Patent: September 24, 2013Assignee: Darholding Vagyonkezelo Korlatolt Felelossegu TarsasagInventors: Krisztián Niesz, Atilla Wootsch, Maxime Groualle, Zsolt Ötvös, Ferenc Darvas
-
Publication number: 20130230439Abstract: A method is disclosed for treating residues from biodiesel production for the isolation of highly pure potassium sulphate from potassium sulphate-containing sludge. First, potassium sulphate-containing sludge from biodiesel production is heated in the first stage under non-oxidizing conditions to a material temperature between 400 and 700° C.; in a second stage the product from the first stage is heated under oxidizing conditions to material temperatures between 700 and 900° C.Type: ApplicationFiled: November 16, 2011Publication date: September 5, 2013Applicant: REMONDIS PRODUCTION GMBHInventors: Andreas Huebner, Alfred Schiffer
-
Publication number: 20130209339Abstract: Methods and systems for producing hydrogen and capturing carbon dioxide are disclosed. In some embodiments, the methods include the following: mixing magnesium bearing minerals with one or more acids and/or chelating agents to form a magnesium-rich solvent including magnesium hydroxide; mixing a gas including carbon dioxide with the magnesium-rich solvent in a reactor possibly in the presence of one or more water-gas shift catalysts; increasing a temperature and a steam pressure inside the reactor until a substantial portion of the magnesium hydroxide in the solvent and the carbon dioxide and water in the gas react to form magnesium carbonate and hydrogen; and increasing pH in the reactor thereby increasing a rate that the solvent and the carbon dioxide react.Type: ApplicationFiled: August 7, 2012Publication date: August 15, 2013Inventors: Ah-Hyung Alissa Park, Kyle J. Fricker, Luis Velazquez-Vargas
-
Publication number: 20130178675Abstract: A method is provided for vaporizing a liquid elemental halogen. A heating gas is preheated in the absence of halogen to a preheat temperature which results in a preheated heating gas. The preheated heating gas is directly contacted with a feed of a liquid elemental halogen and heats the feed to a vaporizing temperature sufficient to vaporize at least a portion of the feed to a quantity of an elemental halogen vapor. A gas mixture results which includes the heating gas and the quantity of the elemental halogen vapor.Type: ApplicationFiled: January 3, 2013Publication date: July 11, 2013Applicant: MARATHON GTF TECHNOLOGY, LTD.Inventor: MARATHON GTF TECHNOLOGY, LTD.
-
Publication number: 20130165535Abstract: Systems and methods for producing a synthetic natural gas are provided. A syngas can be separated into a first syngas, a second syngas, and a third syngas. The first syngas can be methanated to produce a first effluent. The first effluent can be mixed with the second syngas to produce a first mixed effluent. The first mixed effluent can be methanated to produce a second effluent. The second mixed effluent can be methanated to produce a third effluent. The third effluent can be cooled to produce a first cooled effluent. The first cooled effluent can be cooled to produce a synthetic natural gas.Type: ApplicationFiled: December 22, 2011Publication date: June 27, 2013Applicant: Kellogg Brown & Root LLCInventor: Siva Ariyapadi
-
Publication number: 20130142699Abstract: A method for preparing contaminated plastics ground into flakes, such as RPET or such polymers, having at least decontamination and SSP treatment steps, with at least one reactor, with heating to the process temperature taking place essentially outside the reactor. Also, a device for carrying out the method, and having at least one decontamination reactor and at least one SSP reactor, a device for heating plastic flakes to the process temperature being arranged upstream of the decontamination reactor. Also an SSP reactor having at least two individual reactors, and preferably between 3 and 7 individual reactors.Type: ApplicationFiled: January 31, 2013Publication date: June 6, 2013Applicant: KRONES AGInventor: KRONES AG
-
Publication number: 20130079563Abstract: The present invention is directed to a combination reactor system for exothermic reactions comprising a trickle-bed reactor and a shell-and-tube reactor. This combination allows the system to efficiently remove heat while also providing the ability to control both the temperature and/or reaction progression. The trickle-bed reactor removes heat efficiently from the system by utilizing latent heat and does not require the use of a cooling or heating medium. The shell-and-tube reactor is used to further progress the reaction and provides a heat exchanger in order to introduce fluid at the desired temperature in the shell-and-tube reactor. Also, additional reactant or reactants and/or other fluids may be introduced to the shell-and-tube section of the reactor under controlled temperature conditions.Type: ApplicationFiled: September 26, 2011Publication date: March 28, 2013Inventors: Yuon Chiu, Haluk Kopkalli, Richard Durick Horwath
-
Publication number: 20130045151Abstract: A method for providing 11C-labeled cyanides from 11C labeled oxides in a target gas stream retrieved from an irradiated high pressure gaseous target containing O2, wherein 11C labeled oxides are reduced with H2 in the presence of a nickel catalyst under a pressure and a temperature sufficient to form a product stream comprising at least about 95% 11CH4, the 11CH4 is then combined with an excess of NH3 in a carrier/reaction stream flowing at an accelerated velocity and the combined 11CH4 carrier/reaction stream is then contacted with a platinum (Pt) catalyst particulate supported on a substantially-chemically-nonreactive heat-stable support at a temperature of at least about 900° C., whereby a product stream comprising at least about 60% H11CN is provided in less than 10 minutes from retrieval of the 11C labeled oxide.Type: ApplicationFiled: August 13, 2012Publication date: February 21, 2013Applicant: Brookhaven Science Associates, LLCInventors: Dohyun Kim, David Alexoff, Sung Won Kim, Jacob Hooker, Richard A. Ferrieri
-
Patent number: 8377156Abstract: The present subject matter is directed to a method for operating a fuel reformer. The method may generally include directing a fluid stream around a reactor assembly of the fuel reformer to cool the reactor assembly, and mixing a heated reformate stream produced by the reactor assembly with the fluid stream to cool the heated reformate stream.Type: GrantFiled: August 3, 2012Date of Patent: February 19, 2013Assignee: General Electric CompanyInventors: Jonathan Dwight Berry, Hasan Karim, Abdul Rafey Khan
-
Patent number: 8372934Abstract: Organopolysiloxanes with consistent product properties are prepared while minimizing alcohol usage in the hydrolysis of chlorosilanes by use of a vertical continuous loop reactor having a heating unit on an ascending side of the loop which is regulated such that the temperature of the reactant mixture is within ±5° C. of a set value.Type: GrantFiled: October 8, 2010Date of Patent: February 12, 2013Assignee: Wacker Chemie AGInventor: Gerhard Staiger
-
Publication number: 20130025192Abstract: A solar thermochemical processing system is disclosed. The system includes a first unit operation for receiving concentrated solar energy. Heat from the solar energy is used to drive the first unit operation. The first unit operation also receives a first set of reactants and produces a first set of products. A second unit operation receives the first set of products from the first unit operation and produces a second set of products. A third unit operation receives heat from the second unit operation to produce a portion of the first set of reactants.Type: ApplicationFiled: July 26, 2012Publication date: January 31, 2013Applicant: BATTELLE MEMORIAL INSTITUTEInventors: Robert S. Wegeng, Paul H. Humble, Shankar Krishnan, Steven D. Leith, Daniel R. Palo
-
Patent number: 8361405Abstract: A reactor vessel for subjecting a first gas and a second gas to a chemical reaction to produce a third gas is provided. The reactor vessel includes a catalyst bed, an inlet for receiving the first gas and the second gas, and a first outlet for discharging the third gas. The first outlet includes a selective microporous conduit to separate the third gas from products of incomplete reaction or unreacted first gas and unreacted second gas. A second outlet for discharging one or more of the following: unseparated third gas is also included in this invention. The products of incomplete reaction, unreacted first gas, or unreacted second gas are removed from the system. At least one helical tube is disposed within the reactor vessel and in direct contact with the catalyst bed. The helical tube has an inlet end communicating with a hot gas source, and an outlet end exhausting cooled gas. Indirect heat exchange between the helical tube and the first and second gas, promoted by the catalyst, generates the third gas.Type: GrantFiled: August 5, 2010Date of Patent: January 29, 2013Assignee: Air Liquide Process & Construction, Inc.Inventor: Albertus J. Ekelmans
-
Publication number: 20130012745Abstract: The invention relates to method for producing hydrocarbon components comprising isoparaffins from feedstock of biological origin comprising linear unsaturated fatty acids to produce diesel fuel components comprising the steps of a) converting at least part of linear unsaturated fatty acids comprised in the feedstock to corresponding branched fatty acids, and b) hydrodeoxygenating the said branched fatty acids and remaining linear fatty acids to corresponding isoparaffins and n-paraffins. The invention further relates to an arrangement for implementing the method of the invention.Type: ApplicationFiled: July 5, 2012Publication date: January 10, 2013Applicant: UPM-Kymmene CorporationInventors: Pekka KNUUTTILA, Jaakko NOUSIAINEN
-
Patent number: 8318100Abstract: Reactor vessels with pressure and heat transfer features for producing hydrogen-based fuels and structural elements, and associated systems and methods. A representative reactor system in accordance with a particular embodiment includes a first reaction zone and a heat path positioned to direct heat into the first reaction zone, a reactant source coupled to the first reaction zone, and a first actuator coupled to cyclically pressurize the first reaction zone. The system can further include a second reaction zone in fluid communication with the first, a valve coupled between the first and second reaction zones to control a flow rate therebetween, and a second actuator coupled in fluid communication with the second reaction zone to cyclically pressurize the second reaction zone.Type: GrantFiled: February 14, 2011Date of Patent: November 27, 2012Assignee: McAlister Technologies, LLCInventor: Roy Edward McAlister
-
Publication number: 20120294784Abstract: Embodiments of methods and apparatuses for producing styrene are provided. The method comprises the steps of introducing ethylbenzene to a first dehydrogenation reactor containing a first high activity dehydrogenation catalyst at a first predetermined inlet temperature to form a first intermediate effluent stream that comprises styrene, ethylbenzene, and hydrogen. Oxygen is added to the first intermediate effluent stream to form a first oxygenated intermediate effluent stream. The first oxygenated intermediate effluent stream is introduced to a first oxidation-reheat dehydrogenation reactor at a second predetermined inlet temperature of about 530° C. or less to form styrene. The first oxidation-reheat dehydrogenation reactor contains a first oxidation catalyst and a second high activity dehydrogenation catalyst.Type: ApplicationFiled: April 4, 2012Publication date: November 22, 2012Applicant: UOP LLCInventors: Wugeng Liang, James A. Johnson
-
Publication number: 20120275975Abstract: A second stage Fischer-Tropsch reaction system to enhance a conversion ratio of a synthetic gas, includes, at least one first reactor that uses a Fe catalyst, receives a first synthetic gas extracted from a coal, biomass or natural gas, and reacts the first synthetic gas with the Fe catalyst to obtain a synthetic fuel, and a second reactor that uses a Fe.Co or Co catalyst, receives a second synthetic gas discharged from the first reactors after reaction, and reacts the second synthetic gas with the Fe.Co or Co catalyst to obtain a synthetic fuel.Type: ApplicationFiled: July 7, 2011Publication date: November 1, 2012Inventors: Ho Tae Lee, Heon Jung, Jung Il Yang, Hak Joo Kim, Dong Hyun Chun, Jung Hoon Yang, Ji Chan Park, Byung Kwon Kim
-
Publication number: 20120272567Abstract: A fuel processing system for converting a logistical fuel and air into a liquid product comprising methanol. One such system comprises a fuel injection system configured to combine a logistical fuel and ambient air to produce a logistical fuel and air mixture, a synthesis gas production system configured to convert the logistical fuel and air mixture to synthesis gas, and a methanol synthesis system configured to convert the synthesis gas to a crude methanol liquid. Related methods are additionally disclosed.Type: ApplicationFiled: April 26, 2011Publication date: November 1, 2012Applicant: ALLIANT TECHSYSTEMS INC.Inventors: Sabrina Hawkins, Jason S. Tyll, Florin Girlea
-
Patent number: 8298497Abstract: A delivery apparatus for selectively delivering one or more liquid reagents into a reaction or test chamber (2), especially of an assay apparatus, the apparatus comprising: one or more respective storage chambers (5,6) for containing the one or more liquid reagents and arranged generally above the reaction or test chamber (2); and a plunger element (4) arranged and operable for insertion into the mouth of a selected storage chamber so as to displace a selected reagent from therewithin into the reaction or test chamber (2) generally therebelow by gravitational liquid overflow from the mouth of the chamber. The apparatus may conveniently be provided as a discrete delivery unit, with the storage chambers (5,6) prefilled with the selected reagents.Type: GrantFiled: December 14, 2009Date of Patent: October 30, 2012Assignee: The Secretary of State for DefenceInventor: David James Squirrell
-
Patent number: 8273314Abstract: The invention concerns an exchanger-reactor (1) comprising: a vessel (2); means for distributing a feed through a fixed bed catalytic zone (10); means (6) for collecting effluent from the catalytic zone (10); means for heating the catalytic zone (10); in which said collection means (6) comprise conduits passing right through the catalytic zone (10), said conduits being distributed in the catalytic zone and interposed between the heating means, and in which the heating means of the catalytic zone are contained in sheaths (8) which are partially immersed in the catalytic zone (10), the sheaths (8) being open at one of their ends and closed at the other, the open end being fixed to an upper tube plate (21) defining the collection chamber (19) which is located above the catalytic zone (10), said heating means comprising at least one combustion zone (13) located close to the catalytic zone, means for supplying said combustion zone (13) with an oxidizing gas mixture (15) and with a gaseous fuel (17), and meansType: GrantFiled: March 16, 2007Date of Patent: September 25, 2012Assignee: IFP Energies NouvellesInventors: Beatrice Fischer, Stephane Bertholin, Fabrice Giroudiere, Jerome Colin
-
Patent number: 8268266Abstract: The present embodiments are directed towards heat integration in gas processing units. In one embodiment, a system is provided that includes a gas processing section. The gas processing section has a gas path, a first shift reactor disposed along the gas path, wherein the first shift reactor is configured to perform a first shift reaction to produce a first shifted gas. A second shift reactor is also disposed along the gas path downstream from the first shift reactor, wherein the second shift reactor is configured to perform a second shift reaction to produce a second shifted gas. A first steam generator is disposed along the gas path between the first and second shift reactors, wherein the first steam generator is configured to transfer heat away from the gas path to generate a first steam.Type: GrantFiled: August 10, 2010Date of Patent: September 18, 2012Assignee: General Electric CompanyInventor: Romit Ghosh
-
Publication number: 20120225002Abstract: A process for the preparation of 11C methyl iodide comprises coating the internal surface of a first reaction vessel with a solution of lithium aluminium hydride, wherein the first reaction vessel has an internal diameter not greater than about 1.5 mm; introducing 11C carbon dioxide into the first reaction vessel such that it is reduced by the lithium aluminium hydride to give a reduction product; and reacting the reduction product with hydriodic acid.Type: ApplicationFiled: May 14, 2012Publication date: September 6, 2012Applicant: HAMMERSMITH IMANET LIMITEDInventor: DAVID ROBERT TURTON
-
Patent number: 8252251Abstract: The present subject matter discloses a fluid cooled reformer for gas turbine systems and a method for cooling both a fuel reformer and a heated reformate stream produced by such fuel reformer. The fluid cooled reformer may include a pressure vessel and a reactor assembly disposed within the pressure vessel. The reactor assembly may include a reactor and may be configured to receive and reform an oxygen/fuel mixture to produce a heated reformate stream. Additionally, the fluid cooled reformer may include an inlet configured to direct a fluid stream into the pressure vessel. At least a portion of the fluid stream may be used to cool the reactor assembly. A reformate cooling section may be disposed downstream of the reactor of the reactor assembly and may be configured to cool the heated reformate stream.Type: GrantFiled: March 30, 2010Date of Patent: August 28, 2012Assignee: General Electric CompanyInventors: Jonathan Dwight Berry, Hasan Karim, Abdul Rafey Khan