Abstract: Provided is a dispensing device that can dispense at a high speed and with high precision and that can be miniaturized. This dispensing device suctions a liquid sample into a disposable tip and discharges the suctioned liquid sample, the dispensing device being provided with: a piston receiving part into which a piston is inserted; a tip detachment part that detaches the disposable tip mounted on the front end of the piston receiving part by pressing down the disposable tip; and a force action part that works in tandem with the tip detachment part and moves in the direction opposite to the movement direction of the tip detachment part.
Abstract: A solid phase microextraction device is disclosed, including a substrate having at least one planar surface, a sorbent layer disposed on at least a portion of the at least one planar surface, a tapering tip extending from the substrate, a receptacle mount configured for removable attachment to an emplacement of a receiving device, and a clocking feature configured for fixing a radial orientation of the at least one planar surface with respect to the receiving device. A solid phase microextraction device repository is disclosed including a wall surrounding a chamber, a plurality of orifices disposed in the wall configured to receive and retain the device, and a plurality of clocking feature interfaces disposed in the wall. A solid phase microextraction device manipulator is disclosed, including a manipulator shaft, an emplacement configured to removably engage a receptacle mount, an electrically conductive contact disposed at the emplacement, an ejector, and a clocking feature interface.
Abstract: A dispenser for receiving and dispensing volumes of fluid, on which a piston/cylinder unit having a piston and a cylinder, can be fitted in a releasable manner by means of a movement running at least substantially in an axial direction of the dispenser. The dispenser has a piston actuator for moving the piston relative to the cylinder. The piston actuator is arranged in a movable manner in the dispenser and is driven by means of a drive. The dispenser has a locking element which is arranged in a movable manner in the dispenser and is driven by a further drive. Also disclosed is a system for receiving and dispensing volumes of fluid, to a method for fitting a piston/cylinder unit in a releasable manner on a dispenser, and to a method for releasing a piston/cylinder unit which has been fitted on a dispenser.
Type:
Grant
Filed:
February 20, 2018
Date of Patent:
January 10, 2023
Assignee:
BRAND GMBH + CO KG
Inventors:
Jürgen Schraut, Daniel Setzer, Renate Rempt
Abstract: Provided is a multichannel pipette whose number of channels can be arbitrarily set and managed to improve usability of the multichannel pipette and improve productivity, quality control, and maintainability in a research site. A multichannel pipette includes a pipette main body, a lower part attached to a lower end portion of the pipette main body, and a plurality of chip holder units housed inside the lower part, wherein each of the chip holder units has a connecting portion attachable to and removable from any of a plurality of to-be-connected portions provided in a unit case inside the lower part, and each of the chip holder units is attachable to and removable from the lower part.
Abstract: The present disclosure relates to a fixed quantity discharge device for a liquid container, more specifically a fixed quantity discharge device for a liquid container which includes a contents suction tube extended into the inside of the container body for enabling a pipette tube to be inserted and drawn so as to make the lower end of the pipette tube be exposed to the contents, thus preventing contamination of the pipette tube, and a piston provided in the container body so as to rise as the contents are consumed, thus minimizing the residual contents in the container body.
Abstract: A sealing pipette tip includes features to seal the tip directly against the piston in an air displacement pipette, avoiding the need for a piston seal within the pipette. This configuration reduces potential points of failure, allows the pipette-tip interface to be optimized, and improves liquid handling characteristics of the pipette.