Utilizing Reactant Containing Arsenic, Phosphorus, Or Boron Patents (Class 423/223)
  • Patent number: 10500542
    Abstract: The invention relates to a method and system for treating flue gases comprising generating a superimposed DC time-varying pulsed wave by superimposing a direct current on a low frequency time-varying pulsating electromagnetic wave signal, providing a treatment medium comprising water, using the superimposed DC pulsed wave to treat the treatment water medium, negatively charging the treated treatment water medium, and passing the negatively charged treated treatment water medium into a chamber containing flue gas such that the negatively charged treated treatment water affects the gas components of the flue gas and converts the gas components respectively to one or more of sulphates, nitrogen, oxygen, bicarbonates, carbonates and carbon, which can then be removed with used treatment water or exhaust gases.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: December 10, 2019
    Assignee: Semb-Eco R&D PTE LTD
    Inventors: Hwee Hong Chew, Poh Kwee Ong
  • Patent number: 10378401
    Abstract: A method for dual water scrubbing and an in-line dual water scrubber for gas cleaning onboard a vessel are disclosed. The in-line dual water scrubber includes a vertical extended body, a gas inlet, and a gas outlet. The gas inlet is underlying in the lower section of the extended body and the gas outlet is overlying in the upper section of the extended body. A first underlying scrubbing section, and a second scrubbing section in an upper section of the extended body are provided. One or more liquid collectors are arranged above one or more first scrubbing liquid sprayers. The liquid collector is arranged for collecting one or more second scrubbing liquid and for flow through of a vertical upwards flowing gas-flow from the inlet to the outlet.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: August 13, 2019
    Assignee: WÄRTSILÄ MOSS AS
    Inventors: Jan Gunnar Gannefors, Per Clausen
  • Patent number: 10335735
    Abstract: A method of capturing carbon dioxide from a source thereof includes contacting a carbon dioxide-containing source with a reactive solution that includes an absorption agent so that carbon dioxide in the carbon dioxide-containing source is absorbed by the absorption agent. The absorption agent may be potassium phosphate, potassium ethylenediamine-tetraacetate (potassium EDTA), a potassium monocarboxylate having a total of 12 or less carbon atoms, or combinations thereof.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: July 2, 2019
    Assignee: National Cheng Kung University
    Inventors: Chih-Yung Chen, Chen-Chien Wang, Jian-Sheng Shen
  • Patent number: 9840675
    Abstract: The system is provided with: a first heat exchanger which is interposed at an intersection between a rich solution supply line and a lean solution supply line, which has absorbed CO2 and H2S extracted from a bottom portion of an absorber, and a regenerated absorbent; a second heat exchanger which is interposed at an intersection between a semi-rich solution supply line and a branch line branched at the branch portion C from the lean solution supply line, and the lean solution; a merging portion which merges a branch line configured to supply the lean solution after heat exchange with the lean solution supply line; and a flow rate adjusting valve which is interposed in the lean solution supply line to adjust the distribution amount of the lean solution.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: December 12, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kouji Horizoe, Yuudai Katou, Moritoshi Murakami, Masaki Yushima, Kazuo Ishida
  • Patent number: 9777232
    Abstract: The system includes: an absorber which brings an introduction gas into contact with an absorbent that absorbs CO2 and H2S; an absorbent regenerator which releases CO2 or the like to regenerate the absorbent; a second supply line which returns a regenerated absorbent to the absorber from the regenerator; a third supply line which extracts a semi-rich solution from the vicinity of a middle stage of the absorber, and introduces the semi-rich solution to the vicinity of the middle stage of the regenerator; and a semi-rich solution heat exchanger which is interposed at an intersection between the third supply line and the second supply line to perform the heat exchange between the semi-rich solution and the lean solution.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: October 3, 2017
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kouji Horizoe, Yuudai Katou, Moritoshi Murakami, Masaki Yushima, Kazuo Ishida
  • Patent number: 9431146
    Abstract: This disclosure relates to compositions and methods of manufacture of electrodes for batteries, including rechargeable lithium batteries, wherein at least one electrode comprises an electroactive material and a malleable metal. The electrode may be substantially free of other conductive additives and organic binders. Manufacture of the electrode may be performed without solvent or sintering.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: August 30, 2016
    Assignee: A123 Systems LLC
    Inventors: Yet-Ming Chiang, Shen J. Dillon, Richard K. Holman
  • Patent number: 9399190
    Abstract: An absorber that uses a gasified gas containing CO2 and H2S formed by gasifying coal, for example, as an introduced gas, and that makes the CO2 and H2S absorbed from the introduced gas by bringing the introduced gas into contact with an absorbent for absorbing C02 and H2S; an absorbent regenerator-that extracts absorbent that has absorbed CO2 and H2S from the bottom of the absorber and introduces the absorbent from the top of the absorber, and that regenerates the absorbent by releasing the CO2 and H2S; a second supply line that returns the regenerated absorbent from the regenerator to the absorber; and a third supply line that extracts the absorbent (semi-rich solution) that has absorbed a part of the CO2 and H2S from the vicinity of the middle of the absorber, and that introduces the semi-rich solution in the vicinity of the middle of the regenerator.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 26, 2016
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Kouji Horizoe, Shinya Tachibana, Moritoshi Murakami, Masaki Yushima, Kazuo Ishida
  • Patent number: 9381464
    Abstract: Provided is a facilitated CO2 transport membrane having an improved CO2 permeance and an improved CO2/H2 selectivity. The facilitated CO2 transport membrane includes a separation-functional membrane that includes a hydrophilic polymer gel membrane containing a CO2 carrier and a CO2 hydration catalyst. Further preferably, the CO2 hydration catalyst at least has catalytic activity at a temperature of 100° C. or higher, has a melting point of 200° C. or higher, or is soluble in water.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: July 5, 2016
    Assignee: RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Osamu Okada, Nobuaki Hanai, Peng Yan, Junya Miyata, Yasato Kiyohara, Sayaka Ishii, Megumi Nagano
  • Patent number: 9314732
    Abstract: Systems and methods for reducing the energy requirements for carbon dioxide capture are described. Heat from system processes, such as steam condensation and hot flue gas, is utilized to heat reflux liquid utilized in release of carbon dioxide from absorbent solvent.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: April 19, 2016
    Assignee: Fluor Technologies Corporation
    Inventors: Satish Reddy, Joe Yonkoski
  • Patent number: 9205370
    Abstract: A process for recovering a processing liquid used in gas purification systems, e.g., to remove greenhouse gases, and containing water, the processing liquid, components having higher and lower boiling points than water and a component less volatile than the processing liquid, wherein the feed mixture is heated and introduced into a first separation zone, a portion of the water and the processing liquid being volatilized to produce a hot vapor stream comprising volatilized water and processing liquid. There is also produced a first residuum stream which contains some of the less volatile components and the unvolatilized portion of the water in the processing liquid. The hot vapor stream is introduced into the separation system forming part of a gas purification system. The majority of the energy in the hot vapor stream is recovered for use in the separation system forming part of the gas purification system.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: December 8, 2015
    Assignee: CCR Technologies, Ltd.
    Inventors: Terrance Trofimuk, Steven Ayres, Shaun M. Hill, Raymond G.F. Abry
  • Patent number: 9101868
    Abstract: This disclosure teaches a composition and process which makes it possible to remove floating particulates or prevent the dissemination or particulates, by the misting of a solution that readily captures any particulate material in the air. More specifically, the present disclosure teaches the composition and use of aromatic compounds that are semi-volatile organic compounds (SVOCs) or slow evaporators in water-based carriers with surfactants as the misting/fogging agent for dust suppression. The particulate material is lowered to surfaces and removed by vacuuming, damp-wiping or using a dry cloth with a cationic charge (static cloth). This method can be achieved with neutral air pressure differentials in the work areas.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: August 11, 2015
    Inventors: Greg Weatherman, Marcia Cash
  • Publication number: 20140166282
    Abstract: Functionalized alpha-hydroxy alkyl ethers have been found to perform as non (or anti-) scaling hydrogen sulfide scavengers. A method of scavenging hydrogen sulfide includes contacting a fluid containing hydrogen sulfide with a treatment fluid including a functionalized alpha-hydroxy alkyl ether. Accordingly, the alpha-hydroxy alkyl ether reacts with the hydrogen sulfide to reduce the amount of hydrogen sulfide in the fluid. The functionalized alpha-hydroxy alkyl ether is functionalized with a phosphate group, phosphonate group, sulfate group, or sulfonate group. A broad range of alpha-hydroxy alkyl ethers are disclosed.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 19, 2014
    Applicant: Champion Technologies, Inc.
    Inventors: Aaron D. Martinez, Erick J. Acosta Otero, Maximilian A. Silvestri, Joseph P. Bailey, Jose M. Macias
  • Publication number: 20140166289
    Abstract: Alpha-hydroxy alkyl esters have been found to perform as hydrogen sulfide scavengers. A method of scavenging hydrogen sulfide includes contacting a fluid containing hydrogen sulfide with a treatment fluid including an alpha-hydroxy alkyl ester. Accordingly, the alpha-hydroxy alkyl ester reacts with the hydrogen sulfide to reduce the amount of hydrogen sulfide in the fluid. A broad range of alpha-hydroxy alkyl esters are disclosed.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 19, 2014
    Applicant: Champion Technologies, Inc.
    Inventors: Aaron D. Martinez, Ravindranath Mukkamala, Erick J. Acosta Otero, Joseph P. Bailey
  • Patent number: 8734744
    Abstract: Aspects of the disclosure relate to the separation of gases and to a process for the removal of carbon dioxide gas using liquid absorbents. A process is disclosed for removing carbon dioxide from a gaseous stream comprising contacting the gaseous stream with a carbon dioxide absorbent comprising a mixture of an ionic liquid and water in a molar ratio of from 10:1 to 1:10, wherein the ionic liquid has the formula: [Cat+][X?].
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 27, 2014
    Assignee: Petroliam Nasional Berhad
    Inventors: David F. Wassell, Kenneth R. Seddon, Martin P. Atkins
  • Patent number: 8703082
    Abstract: The present invention relates to a method for capturing CO2 from exhaust gas in an absorber (A1), wherein the CO2 containing gas is passed through an aqueous absorbent slurry wherein said aqueous absorbent slurry comprises an inorganic alkali carbonate, bicarbonate and at least one of an absorption promoter and a catalyst, and wherein the CO2 is converted to solids by precipitation in the absorber, said slurry having the precipitated solids is conveyed to a separating device (F1), in which the solids are separated off, essentially all of at least one of the absorption promoter and catalyst is recycled together with the remaining aqueous phase to the absorber.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: April 22, 2014
    Assignee: Sinvent AS
    Inventors: Hallvard F. Svendsen, Finn Andrew Tobiesen, Thor Mejdell, Karl Anders Hoff
  • Publication number: 20130078171
    Abstract: The carbon dioxide contained in combustion fumes is absorbed by an aqueous amine solution in section B1. The decarbonated fumes are then washed with water in wash section B3. In order to prevent the discharge of amine degradation products with the decarbonated fumes, operation of the method is monitored and a fumes acid wash section U is used when required by the operating conditions of the carbon dioxide capture method.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 28, 2013
    Inventor: Eric LEMARIE
  • Publication number: 20130078170
    Abstract: An ionic liquid composition having the following chemical structural formula: wherein R1, R2, R3, and R4 are independently selected from hydrocarbon groups containing at least 1 and up to 20 carbon atoms, and X? is a cyclic anion that possesses a negatively-charged group reactive with a gaseous electrophilic species, particularly carbon dioxide or sulfur dioxide. Methods for capturing a gaseous electrophilic species, such as CO2 or SO2, by contacting the gaseous electrophilic species with an ionic liquid according to Formula (1) are also described.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 28, 2013
    Applicant: UT BATTELLE
    Inventors: Sheng Dai, Congmin Wang, Huimin Luo, De-en Jiang
  • Publication number: 20130058852
    Abstract: The present invention relates to the separation of gases, and more specifically to an inventive process for the removal of carbon dioxide gas using carefully selected ionic liquid absorbents together with water in a carefully selected ratio.
    Type: Application
    Filed: March 18, 2011
    Publication date: March 7, 2013
    Inventors: Martin Atkins, Yong Cheun Kuah, Julien Estager, Shieling Ng, Alex Oliferenko, Natalia Plechkova, Alberto Puga, Kenneth Seddon, David Wassell
  • Publication number: 20130052110
    Abstract: A process for removing CO2 from a CO2 containing gas stream in which the CO2 containing gas stream is contacted with an aqueous ammonium solution. The aqueous ammonia solution comprises 0.1-40% w/v, v/v/ w/w ammonia, and a soluble salt at a concentration range of 0.01%-10% wt or v/v or w/v, the soluble salt having cations selected from the group of group IA, IIA, IIIA and IVA metals with counter anions selected from the group of anion of group VIIA elements, NO3?, SO42?, OH43?, PO43? and HCO3?. The invention also extends to a CO2 capture solvent comprising an aqueous ammonia solution and the above soluble salt.
    Type: Application
    Filed: February 21, 2011
    Publication date: February 28, 2013
    Inventors: Phil Jackson, Moetaz Ibrahim Attalla, Benjamin Jack Ballinger
  • Publication number: 20130052111
    Abstract: The invention relates to a method for removing gas components SOX, NOx, and CO2 from a flue gas, comprising the steps of: a) contacting the flue gas with a first liquid medium which provides a first plasma containing reactive electrons or ions in an amount such that the gas molecules SOX are subject to impingement of the electrons or ions in the first plasma to enable the dissociation of the gas molecules SOX so as to remove SOx from the flue gas; b) contacting the flue gas obtained from step a) with a second liquid medium which provides a second plasma containing reactive electrons or ions in an amount such that the gas molecules CO2 are subject to impingement of the electrons or ions in the second plasma to enable the dissociation of the gas molecules CO2 so as to remove CO2 from the flue gas; and c) contacting the flue gas obtained from step b) with a third liquid medium which provides a third plasma containing reactive electrons or ions in an amount such that the gas molecules NOx are subject to impingeme
    Type: Application
    Filed: May 26, 2010
    Publication date: February 28, 2013
    Applicant: ECOSPEC GLOBAL TECHNOLOGY PTE LTD.
    Inventor: Hwee Hong Chew
  • Patent number: 8361424
    Abstract: The gaseous effluent to be treated is contacted in C1 with an absorbent solution selected for its property of forming two separable phases when it has absorbed an amount of acid compounds and when it is heated. The absorbent solution laden with acid compounds is then heated in E1 and E3 so as to separate two fractions in BS1: a first absorbent solution fraction depleted in acid compounds and a second absorbent solution fraction enriched in acid compounds. The second fraction is regenerated in C2 so as to release part of the acid compounds, and the first absorbent solution fraction and the regenerated absorbent solution are recycled as absorbent solution. According to the invention, an absorbent solution portion circulating in C1 is cooled in E2 in order to prevent demixing of the solution in column C1.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: January 29, 2013
    Assignee: IFP
    Inventors: Pierre-Antoine Bouillon, Marc Jacquin, Ludovic Raynal
  • Patent number: 8269037
    Abstract: An absorption medium for removing acid gases from a fluid stream comprises an aqueous solution of a) of at least one metal salt of an aminocarboxylic acid, and b) of at least one acid promoter, wherein the molar ratio of b) to a) is in the range from 0.0005 to 1.0. The acid promoter is selected from mineral acids, carboxylic acids, sulfonic acids, organic phosphonic acids and partial esters thereof. The absorption medium, compared with absorption media based on amino acid salts, has a reduced regeneration energy requirement without significantly reducing the absorption capacity of the solution for acid gases. In a process for removing acid gases from the fluid stream, the fluid stream is brought into contact with the absorption medium.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: September 18, 2012
    Assignee: BASF SE
    Inventors: Gerald Vorberg, Torsten Katz, Georg Sieder, Christian Riemann, Rupert Wagner, Ute Lichtfers, Erika Dengler
  • Patent number: 8221712
    Abstract: An absorption medium for the removal of acid gases from a fluid stream comprises an aqueous solution a) of at least one amine and b) at least one phosphonic acid, wherein the molar ratio of b) to a) is in the range from 0.0005 to 1.0. The phosphonic acid is, e.g., 1-hydroxyethane-1,1-diphosphonic acid. The absorption medium exhibits a reduced regeneration energy requirement compared with absorption media based on amines or amine/promoter combinations, without significantly decreasing the absorption capacity of the solution for acid gases.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: July 17, 2012
    Assignee: BASF SE
    Inventors: Gerald Vorberg, Torsten Katz, Georg Sieder, Christian Riemann, Erika Dengler
  • Publication number: 20120121490
    Abstract: According to an exemplary aspect of the invention a method of sorption of CO2 out of flue gas is provided, wherein the method comprises contacting the flue gas and an ionic liquid comprising an anion and a non-aromatic cation.
    Type: Application
    Filed: June 22, 2010
    Publication date: May 17, 2012
    Applicant: AE&E AUSTRIA GMBH & CO KG
    Inventors: Roland Kalb, David Wappel, Stefan Pecharda, Günter Gronald
  • Publication number: 20120020859
    Abstract: The present invention relates to a method for capturing carbon oxides, in particular for recovering carbon oxides from an industrial facility, and specifically to a method for capturing CO2 contained in a gas flow with a view to storing said CO2, said method including placing said gas flow in contact with a solvent including an organometallic compound, such that said solvent captures said carbon oxides to form an enriched solvent. The present invention relates in particular to the use of said capture method in post-combustion or pre-combustion processes.
    Type: Application
    Filed: February 16, 2010
    Publication date: January 26, 2012
    Inventors: Georges Fremy, Dominique Plee
  • Publication number: 20110223084
    Abstract: This invention relates to sulfur functionalized ionic liquid compounds that are useful in methods of carbon dioxide or sulfur dioxide removal to which they may be applied.
    Type: Application
    Filed: March 10, 2011
    Publication date: September 15, 2011
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventor: MARK A. SCIALDONE
  • Publication number: 20110081287
    Abstract: The gaseous effluent to be treated is contacted in column C1 with an absorbent solution selected for its property of forming two separable phases when it is heated. The regenerated absorbent solution is separated into two phases in drum B1; a fraction rich in water and a fraction rich in reactive compounds. Separation allows to optimize the operations performed on the regenerated absorbent solution. On the one hand, separation allows to carry out vaporization, through reboiler R1, of a fraction of the absorbent solution, preferably containing a limited reactive compound concentration in relation to the absorbent solution, thus limiting their degradation. On the other hand, separation of the phases allows to reduce the amount of solution to be treated in order to remove the non-regeneratable salts and thus to reduce the costs linked with their elimination. Finally, separation allows to eliminate the degradation products by carrying out a specific and suitable purification for each phase.
    Type: Application
    Filed: March 10, 2010
    Publication date: April 7, 2011
    Inventors: Pierre-Antoine BOUILLON, Marc Jacquin
  • Publication number: 20100104490
    Abstract: The gaseous effluent to be treated is contacted in C1 with an absorbent solution selected for its property of forming two separable phases when it has absorbed an amount of acid compounds and when it is heated. The absorbent solution laden with acid compounds is then heated in E1 and E3 so as to separate two fractions in BS1: a first absorbent solution fraction depleted in acid compounds and a second absorbent solution fraction enriched in acid compounds. The second fraction is regenerated in C2 so as to release part of the acid compounds, and the first absorbent solution fraction and the regenerated absorbent solution are recycled as absorbent solution. According to the invention, an absorbent solution portion circulating in C1 is cooled in E2 in order to prevent demixing of the solution in column C1.
    Type: Application
    Filed: September 23, 2009
    Publication date: April 29, 2010
    Inventors: Pierre-Antoine BOUILLON, Marc Jacquin, Ludovic Raynal
  • Publication number: 20090220399
    Abstract: Tetraorganoammonium and tetraorganophosphonium salts are useful as absorbents for the selective removal of acidic components from mixtures of said acidic components and CO2.
    Type: Application
    Filed: July 21, 2006
    Publication date: September 3, 2009
    Inventors: Frank Cheng-Yu Wang, Michael Siskin
  • Patent number: 7252858
    Abstract: A system and method for abating a simultaneous flow of silane and arsine contained in an exhaust gas of DRAM processing chamber (12). The system includes a CVD abatement apparatus (20) and a resin-type absorber (22). The CVD abatement apparatus comprises an enclosure (24) that defines a chamber (26) for receiving the exhaust gas. The enclosure contains a plurality of removable substrates (32) arranged as a series of baffles inside the enclosure. As the exhaust gas flows through the CVD abatement apparatus, the silicon within the silane is deposited as a film upon the substrates by chemical vapor deposition. The arsine continues to flow through the CVD apparatus to the absorber where it is adsorbed by the resin contained therein. After the film has reached a particular thickness, the substrates can be removed from the enclosure, cleaned of the film and returned to the enclosure for further use.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: August 7, 2007
    Assignee: International Business Machines Corporation
    Inventor: Kurt A. Carlsen
  • Patent number: 6187282
    Abstract: A method of manufacturing a lithium complex oxide involves the steps of 1) atomizing and pyrolyzing an aqueous or alcohol solution of metallic salt compounds constituting a lithium cobalt complex oxide or a lithium nickel complex oxide, and 2) annealing said lithium cobalt complex oxide or said lithium nickel complex oxide to increase the average particle diameter thereof to between about 1 and 5 micrometers and adjust the specific surface area thereof to between about 2 and 10 m2/g. The lithium complex oxide provided by this method is homogeneous and enables a long cycle life to withstand repeated charging and discharging and a high level of storage stability to be realized when used as an cathode active material of a secondary lithium battery.
    Type: Grant
    Filed: August 13, 1997
    Date of Patent: February 13, 2001
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Koji Hattori, Yasuhisa Yamashita, Yukio Sakabe
  • Patent number: 5435977
    Abstract: An acid gas removal process employing a regenerator with an internal flash section is described. The regenerator uses gravitational flow to feed the flash section, eliminating the need for an external flash tank, and charge pump even without vacuum. The internal flash section has a first pressure side, a second pressure side having a lower pressure than the first pressure side during gas flow and a pressure reduction zone disposed therebetween. The pressure drop in the pressure reduction zone is due to liquid flow pressure losses occurring as liquid flows from said first pressure side to said second pressure side. A liquid seal between the first pressure and second pressure sides eliminates the need for a pressure let down valve. Vacuum control is provided by the first pressure side liquid level.
    Type: Grant
    Filed: December 15, 1993
    Date of Patent: July 25, 1995
    Assignee: Eickmeyer & Associates, Inc.
    Inventor: I-Meen Chao
  • Patent number: 5340552
    Abstract: A macroreticulate polymer is provided for removing water vapor and oxidants from a gas having the formula: ##STR1## wherein Ar is a heteroaromatic moiety, M is bonded to the heteroaromatic moiety and is selected from the group consisting of lithium, sodium, potassium, alkyl magnesium, alkyl zinc, and dialkylaluminum, R is an organic moiety and R.sub.1 is a polymerized moiety forming the molecular backbone of said polymer.
    Type: Grant
    Filed: September 10, 1992
    Date of Patent: August 23, 1994
    Assignee: Millipore Corporation
    Inventor: James T. Snow
  • Patent number: 5223173
    Abstract: A method of removing hydrogen sulfide from a sour gaseous stream in a contact zone by contacting the sour gaseous stream with a H.sub.2 S selective absorbent in an aqueous alkaline solution containing a polyvalent metal chelate at a pH of about 7 to about 10 wherein the polyvalent metal chelate is in one embodiment of the invention in the reduced or lower valence state in a contact zone and is oxidized to the oxidized or higher valence state in an oxidation zone so as to convert absorbed hydrogen sulfide, hydrosulfide and/or sulfide salts present in the contact zone to sulfur. In a second embodiment, the aqueous alkaline solution and H.sub.2 S selective absorbent in contact with the gaseous stream is a mixture containing a higher valence polyvalent metal chelate together with a lower valence polyvalent metal chelate.
    Type: Grant
    Filed: September 25, 1992
    Date of Patent: June 29, 1993
    Assignee: The Dow Chemical Company
    Inventor: Gaines C. Jeffrey
  • Patent number: 5053371
    Abstract: A semi-continuous process for combusting coke from catalyst particles in a fixed bed is improved by injecting combustion air for the regeneration section to the three places, upper air to the burn zone, middle air to the chlorination zone and lower air to the burn zone. By this method combustion gas is added the halogenation gas loop which circulates chlorination gas around the chlorination zone in substantially closed system. Any gas that leaves the chlorination zone flows into the burn zone from the chlorination zone. Thus, passing additional air to the chlorination zone increases the oxygen concentration of the chloriation gas to that additional oxygen-containing chlorination gas and chlorination gas with a higher oxygen concentration passes into the burn zone from the chlorination zone. This method adds air for coke combustion and improves platinum dispersion in the halogenation zone.
    Type: Grant
    Filed: November 2, 1990
    Date of Patent: October 1, 1991
    Assignee: UOP
    Inventor: Robert R. Williamson
  • Patent number: 4944917
    Abstract: Disclosed is a method for inhibiting corrosion of metal surfaces in contact with H.sub.2 S-containing acid gases streams and aqueous amine scrubbing solutions, which method comprises: contacting the H.sub.2 S-containing stream with amine scrubbing solution in the presence of an effective amount of an ammonium or alkali-metal thiosulfate salt and an effective amount of sulfide and/or hydrosulfide ions.
    Type: Grant
    Filed: December 28, 1987
    Date of Patent: July 31, 1990
    Assignee: Exxon Research and Engineering Company
    Inventors: Patrick C. Madden, II, Z. Andrew Foroulis
  • Patent number: 4925644
    Abstract: A process for the simultaneous partial oxidation and desulfurization of sulfur and silicate-containing solid carbonaceous fuel for the production of a gas stream comprising gaseous mixtures of H.sub.2 and CO and containing less than about 0.05 volume % of H.sub.2 S and COS, and entrained fly-ash, calcium sulfide, and particulate carbon. In the process, the solid carbonaceous fuel and a calcium-containing compound are entrained in a gaseous medium and are reacted by partial oxidation in the reaction zone of a free-flow unobstructed gas generator with a controlled amount of free-oxygen containing gas and with or without a temperature moderator so that an equilibrium oxygen concentration is provided in the gas phase in the reaction zone having a partial pressure which is less than about 10.sup.-12 atmosphere. The total moles of calcium in the reaction zone is at least equal to about 1.0 times the moles of sulfur in the solid carbonaceous fuel.
    Type: Grant
    Filed: November 28, 1988
    Date of Patent: May 15, 1990
    Assignee: Texaco Inc.
    Inventors: Mitri S. Najjar, Roger J. Corbeels
  • Patent number: 4889700
    Abstract: Method and devices for the selective removal of H.sub.2 S from an H.sub.2 S-containing gas by contacting the gas in an absorption column with an H.sub.2 S-selective absorbent liquid and transferring the H.sub.2 S-charged absorbent liquid to the upper part of a second column. The charged absorbent liquid then travels to a regeneration zone at the bottom of the column, where it is heated to a temperature at which the absorbent liquid is vaporized and the H.sub.2 S is released.The regeneration zone temperature causes the absorbent liquid vapor to strip the H.sub.2 S back to the upper part of the column where it forms an equilibrium with the H.sub.2 S-charged absorbent liquid at a temperature not more than 30.degree. C. higher than the injection temperature of the absorbent liquid in the absorption column, which equilibrium temperature is maintained by the temperature in the regeneration zone. The H.sub.2 S-enriched vapor formed at the equilibrium point is then tapped.
    Type: Grant
    Filed: June 3, 1987
    Date of Patent: December 26, 1989
    Assignee: Societe Nationale Elf Aquitaine (Production)
    Inventors: Jean Elgue, Olivier Oliveau, Jean-Louis Peytavy
  • Patent number: 4844876
    Abstract: Method for the selective removal of H.sub.2 S from a H.sub.2 S-containing gas by operating in a single column (1) comprising an upper absorption zone (11) and a lower regeneration zone (12) separated by a medial enrichment zone (17). A selective absorbing and regeneratable liquid capable of absorbing H.sub.2 S is introduced at the upper portion of the column and flows successively into the zones (11) and (17) and finally into (12). The absorbing liquid meets the gas to be treated, which is injected through a conduit (9), in the zone (11) while the regenerated absorbing liquid is tapped at the bottom (4) of the column and brought back through a conduit (5) into said zone (11). At the head (2) of the column, a gas having a reduced content of H.sub.2 S is discharged and by means of a system (18) provided in the zone (17) an acid gas fraction rich in H.sub.2 S is tapped. Application to the production of a highly H.sub.2 S enriched gas effluent from a gas containing H.sub.2 S and an appreciable quantity of CO.sub.
    Type: Grant
    Filed: June 3, 1987
    Date of Patent: July 4, 1989
    Assignee: Societe Nationale Elf Aquitaine
    Inventors: Olivier Oliveau, Jean-Louis Peytavy
  • Patent number: 4840782
    Abstract: A process for the removal of H.sub.2 S from sour gaseous streams is disclosed, the process being characterized by the use of solutions containing vanadium V-containing ions and phosphate ions in sufficient amount to convert the H.sub.2 S to elemental sulfur. The process may be cyclic, allowing for continuous operation. A composition suitable for use in the process is also disclosed.
    Type: Grant
    Filed: December 21, 1987
    Date of Patent: June 20, 1989
    Assignee: Shell Oil Company
    Inventor: Dallas L. Byers
  • Patent number: 4824443
    Abstract: There is disclosed a composite immobulized liquid membrane of a solvent-swollen polymer and a microporous organic or inorganic support, the solvent being at least one highly polar solvent containing at least one nitrogen, oxygen, phosphorous or sulfur atom, and having a boiling point of at least 100.degree. C. and a specified solubility parameter. The solvent or solvent mixture is homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. The membrane is suitable for acid gas scrubbing and oxygen/nitrogen separation.
    Type: Grant
    Filed: April 7, 1988
    Date of Patent: April 25, 1989
    Assignee: Bend Research, Inc.
    Inventors: Stephen L. Matson, Eric K. L. Lee, Dwayne T. Friesen, Donald J. Kelly
  • Patent number: 4801440
    Abstract: A process for the simultaneous partial oxidation and desulfurization of sulfur and silicate-containing solid carbonaceous fuel for the production of gaseous mixtures comprising H.sub.2 and CO and containing less than about 0.05 volume % of H.sub.2 S and COS. In the process, the solid carbonaceous fuel and a calcium-containing compound are reacted by partial oxidation in the reaction zone of a free-flow unobstructed gas generator with a controlled amount of free-oxygen containing gas and a temperature moderator so that an equilibrium oxygen concentration is provided in the gas phase in the reaction zone having a partial pressure which is less than about 10.sup.-12 atmospheres. The total moles of calcium in the reaction zone is at least equal to about 1.0 times the moles of sulfur in the solid carbonaceous fuel. The partial oxidation and desulfurization reactions take place simultaneously at a temperature which is about 10.degree. to 200.degree. F.
    Type: Grant
    Filed: March 2, 1987
    Date of Patent: January 31, 1989
    Assignee: Texaco, Inc.
    Inventors: Mitri S. Najjar, Roger J. Corbeels
  • Patent number: 4737166
    Abstract: A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorous and sulfur, and having a boiling point of at least 100.degree. C. and a solubility parameter of from about 7.5 to about 13.5 (cal/cm.sup.3 -atm).sup.1/2. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes.
    Type: Grant
    Filed: December 30, 1986
    Date of Patent: April 12, 1988
    Assignee: Bend Research, Inc.
    Inventors: Stephen L. Matson, Eric K. L. Lee, Dwayne T. Friesen, Donald J. Kelly
  • Patent number: 4659552
    Abstract: Disclosed are macroreticulate polymer scavengers functionalized with arsenic or phosphorus compounds. These scavengers are used for removing oxidants, protic acids and compounds that can be metallated, from arsine and phosphine.
    Type: Grant
    Filed: July 21, 1986
    Date of Patent: April 21, 1987
    Assignee: Hercules Incorporated
    Inventor: Glenn M. Tom
  • Patent number: 4581209
    Abstract: The present invention relates to an alkaline salt promoter system which includes an N-aminoalkyl alkylpiperazine, preferably the compound 1-(3-aminopropyl)-2,5-dimethylpiperazine (APDP), an alkali metal salt or hydroxide (e.g., K.sub.2 CO.sub.3) and water. These scrubbing compositions may be used for removing CO.sub.2 from gaseous streams containing CO.sub.2.
    Type: Grant
    Filed: October 3, 1983
    Date of Patent: April 8, 1986
    Assignee: Exxon Research and Engineering Co.
    Inventors: Alexis A. Oswald, Guido Sartori, David W. Savage, Warren A. Thaler
  • Patent number: 4525294
    Abstract: The present invention relates to the preparation of mixtures of sterically hindered substituted N-secondary amino acids or their alkali metal salts by a one-step reductive condensation of an amino acid or its alkali metal salt containing a primary amino group and a ketone to thereby form a mono-substituted amino acid or alkali metal salt thereof, followed by preparing the corresponding sterically hindered tertiary amino acids or alkali metal salt thereof by reacting the mono-substituted amino acids or alkali metal salt thereof with an unhindered aldehyde under reducing conditions in the presence of a hydrogenating catalyst. The novel mixtures of the sterically hindered mono-substituted amino acids and the tertiary amino acids and their alkali metal salts are useful promoters for alkaline salts in "hot pot" acid gas scrubbing processes.
    Type: Grant
    Filed: April 14, 1983
    Date of Patent: June 25, 1985
    Assignee: Exxon Research and Engineering Co.
    Inventors: Guido Sartori, Warren A. Thaler
  • Patent number: 4518576
    Abstract: A cyclic process and composition for the removal of hydrogen sulfide from a variety of gas streams is disclosed. The gas stream containing the sour gases is contacted with a specified reactant solution and a combination crystal modifier of phosphate and thiosulfate ions. The hydrogen sulfide is converted to sulfur, and the reactant is reduced. The process includes sulfur removal and regeneration of the reactant.
    Type: Grant
    Filed: December 20, 1983
    Date of Patent: May 21, 1985
    Assignee: Shell Oil Company
    Inventor: Zaida Diaz
  • Patent number: 4515759
    Abstract: Process for the removal of hydrogen sulfide from gas mixtures, particular gas mixtures containing hydrocarbons, wherein the gas mixture is treated with an aqueous solution of a water soluble nitrite such as sodium nitrite, the pH of the aqueous solution being at least 5.5 or greater.
    Type: Grant
    Filed: November 3, 1983
    Date of Patent: May 7, 1985
    Assignee: NL Industries, Inc.
    Inventors: Edward E. Burnes, Kishan Bhatia
  • Patent number: 4515764
    Abstract: A cyclic process and composition for the removal of hydrogen sulfide from a variety of gas streams is disclosed. The gas stream containing the sour gases is contacted with a specified reactant solution and a combination crystal modifier of phosphate and thiosulfate ions. The hydrogen sulfide is converted to sulfur, and the reactant is reduced. The process includes sulfur removal and regeneration of the reactant.
    Type: Grant
    Filed: December 20, 1983
    Date of Patent: May 7, 1985
    Assignee: Shell Oil Company
    Inventor: Zaida Diaz
  • Patent number: 4479929
    Abstract: A process for reacting the H.sub.2 S in H.sub.2 S-bearing gas streams with SO.sub.2 in a solvent to produce elemental sulfur, including the steps of oxidizing approximately 1/3 of the H.sub.2 S in the stream to SO.sub.2, absorbing that SO.sub.2 with a dialkyl alkyl phosphonate absorbent and reacting that SO.sub.2 with the remaining H.sub.2 S from the stream in the presence of the phosphonate solvent, thereby forming elemental sulfur and water.
    Type: Grant
    Filed: December 9, 1982
    Date of Patent: October 30, 1984
    Assignee: Mineral & Chemical Resource Co.
    Inventor: F. Hilton Lacy, Jr.