Transition Metal Or Compound Thereof Reactant Patents (Class 423/243.07)
  • Patent number: 10421674
    Abstract: The invention relates to a process for separating off and/or recovering nitrogen compounds, in particular for separating off ammonia and/or recovering or producing nitrogen fertilizer, from a liquid or sludge substrate, in which a liquid or sludge substrate is introduced into a degassing vessel to which subatmospheric pressure is applied and ammonia gas formed is introduced by means of a vacuum pump into at least one scrubber which is located downstream of the degassing vessel and to which subatmospheric pressure is applied and into which acid is introduced, wherein the acid or an ammonium salt-containing liquid obtained in the at least one scrubber is taken off from the at least one scrubber, cooled and subsequently sprayed back into the at least one scrubber. The invention further relates to a plant for carrying out such a process.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: September 24, 2019
    Inventor: Andreas Dünnebeil
  • Publication number: 20150110698
    Abstract: Dry processes, apparatus, compositions and systems are provided for reducing emissions of sulfur oxides, and sulfur dioxide in particular, and/or HCl and/or Hg in a process employing a combination of a lime-based sorbent, in particular hydrated lime and/or dolomitic hydrated lime, and a sorbent doping agent administered to achieve coverage of a three-dimensional cross section of a passage carrying SOx and/or HCl and/or Hg-containing gases with a short but effective residence time at a temperature effective to provide significant sulfur dioxide and/or HCl and/or Hg reductions with high rates of reaction and sorbent utilization. The once-through, dry process can advantageously introduce the sorbent and sorbent doping agent dry or preferably as a slurry to enable uniform treatment. Preferred sorbent doping agents include water-soluble or water-dispersible copper and/or iron compositions which can be heated to an active form in situ by the flue gases being treated.
    Type: Application
    Filed: December 22, 2014
    Publication date: April 23, 2015
    Applicant: Fuel Tech, Inc.
    Inventors: Christopher R. Smyrniotis, Kent W. Schulz, Emelito P. Rivera, Ian Saratovsky, Vasudeo S. Gavaskar
  • Patent number: 8961916
    Abstract: This invention presents innovative methods for desulfurizing flue gas in conjunction with selective inorganics recovery using calcium chloroaluminate or calcium chloroferrate as a layered double hydroxide reagent. One of the aspects of such methods is based on scrubbing SO2 in a standalone closed loop. Further aspects of such methods are based on scrubbing SO2 by the natural alkalinity of a saline stream as a once-through sink along with controlled precipitation of magnesium hydroxide and a calcium-based mineral in a standalone basis; or in conjunction with desalination methods and/or enhanced hydrocarbons recovery.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: February 24, 2015
    Inventor: Mansour S. Bader
  • Patent number: 8877152
    Abstract: Methods and systems for the removal of SO2 from waste combustion flue gas are described herein. One such system for removing SO2 from waste combustion flue gas containing SO2 uses a semi-dry desulfurization system for contacting the flue gas with a solvent moistened absorption material. Thereafter, a recirculated water quench is used for contacting the flue gas with recirculated water at a relatively low pH, followed by a condenser used for contacting the flue gas with a water spray. Additionally, a NaOH supply for supplying NaOH to the condenser and an oxidizing catalyst supply for supplying an oxidizing catalyst to the condenser, are likewise used to produce cleaned flue gas for release to the atmosphere.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: November 4, 2014
    Assignee: ALSTOM Technology Ltd
    Inventors: Daniel Per Niklas Persson, Mati Maripuu, Marja Swahn
  • Patent number: 8815198
    Abstract: A method of purifying a gas stream formed from a process wherein a glyceride containing raw material is converted to hydrocarbon paraffins. The gas stream contains hydrogen or carbon dioxide as a major component and at least one sulphurous component selected from sulphide compounds as an impurity. The gas is contacted with an acidic aqueous wash solution of transition metal ions capable of binding to sulphide ions. A significant portion of the sulphide compounds contained in the gas are bound into practically insoluble transition metal sulphide compounds to remove sulphide compounds from the gas to produce a purified gas. The obtained purified gas is recovered. The method efficiently lowers sulphide concentrations to ppm or sub-ppm level and it can be implemented on an industrial scale with low investment costs. The metal can be recovered.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: August 26, 2014
    Assignee: Neste Oil OYJ
    Inventors: Juhani Aittamaa, Kari Keskinen, Jukka Keyriläinen
  • Patent number: 8383074
    Abstract: A process for simultaneously desulfurizing and denitrating the flue gas with seawater includes the following steps: 1) catalytically scrubbing the flue gas containing SO2 and NOx with the seawater to obtain purified flue gas and acidic seawater, optionally adding a certain quantity of iron ions into the seawater or applying magnetic field during scrubbing; 2) adding seawater into the acidic seawater while blowing air in so as to restore the quality of the acidic seawater up to the environmental standards. Also a device used in the process is provided.
    Type: Grant
    Filed: October 17, 2008
    Date of Patent: February 26, 2013
    Inventor: Sigan Peng
  • Publication number: 20120131853
    Abstract: Disclosed herein are systems and methods for treating carbon dioxide in an environmentally effective manner. Systems and methods include providing a carbon dioxide enriched stream having CO2 and at least one oxidizable sulfur compound and passing at least some of the carbon dioxide enriched stream to carbon dioxide storage, wherein the method further comprises passing at least some of the carbon dioxide enriched stream to selective sulfur removal during a period of system upset. Selective sulfur removal may comprise treatment with an solid or liquid capable of oxidizing the oxidizable sulfur compound.
    Type: Application
    Filed: November 30, 2010
    Publication date: May 31, 2012
    Inventors: Pradeep S. THACKER, Anindra Mazumdar
  • Patent number: 7931815
    Abstract: A method of using a sulfided iron reagent to remove oxygen from gaseous and liquid fluid streams such as natural gas, light hydrocarbon streams, crude oil, acid gas mixtures, carbon dioxide gas and liquid streams, anaerobic gas, landfill gas, geothermal gases and liquids, and the like is disclosed. In a preferred embodiment, the reagent is made by mixing, agglomerating and shaping finely powdered ferrous carbonate, preferably siderite which are used to remove oxygen from a hydrocarbon or carbon dioxide stream that also contains sulfur compounds such as hydrogen sulfide.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: April 26, 2011
    Assignee: New Technology Ventures, INc.
    Inventors: Floyd E. Farha, James A. Kane
  • Patent number: 7498008
    Abstract: A process for the removal of a pollutant from a gas is provided that includes contacting a gas comprising a pollutant with a cataloreactant wherein the cataloreactant reacts with the pollutant and wherein an oxidation state of the cataloreactant is reduced. The cataloreactant may be regenerated with an oxidizing agent.
    Type: Grant
    Filed: February 23, 2006
    Date of Patent: March 3, 2009
    Assignee: GRT, Inc.
    Inventors: Jeffrey H. Sherman, Sagar B. Gadewar, Peter K. Stoimenov
  • Patent number: 6863875
    Abstract: In a flue gas treating system, an absorption tower (21), a reheating section (22) and a fan (23) are arranged in line on a vertical axis so as to function as at least a part of a stack for emitting the treated flue gas into the atmosphere. Moreover, in a flue gas treating process, the amount of ammonia injected in the denitration step (a denitrator (2)) and/or the amount of ammonia at a point downstream of the denitration step are determined so as to be on such an excessive level that ammonia or ammonium salt will remain in the flue gas introduced into the desulfurization step (absorption tower (21)). Thus, the size and cost of the equipment can be reduced.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: March 8, 2005
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shinichiro Kotake, Kazuaki Kimura, Kazumitsu Suzuki, Naohiko Ukawa, Toru Takashina
  • Patent number: 6684627
    Abstract: The present invention is a method of solidifying sulfur component being the cause of “SOx poisoning” by use of a sulfur solidifier. The solidifier includes a metal element having a function of oxidizing the sulfur component and a basic metal element. And the solidifier solidifies sulfur component before exhaust gas flows into an NOx-occluding reduction-type exhaust purifying catalyst located on an exhaust path. Since the foregoing sulfur solidifier includes the above metal element and the basic metal element, it can effectively solidify the sulfur component which are the cause of the SOx poisoning, and ensure improvement in purification performance.
    Type: Grant
    Filed: May 21, 2001
    Date of Patent: February 3, 2004
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tatsuji Mizuno, Shinji Tsuji, Masahiko Takeuchi, Kenji Kato, Takaaki Ito, Yoshitsugu Ogura, Tetsuo Kawamura, Mareo Kimura
  • Patent number: 6503471
    Abstract: Malodorous gases such as amines, organosulfur compounds, hydrogen sulfide, styrene and aldehydes are economically and efficiently treated at ambient temperature and pressure by a catalytic absorption and oxidation process comprising: (a) bringing the malodorous gases into contact with a scrubbing water containing a heterogeneous catalyst to absorb the malodorous components catalytically, and (b) subjecting the resulting solution containing the malodorous components to a catalytic oxidation by contacting it with an oxidizing agent such as hydrogen peroxide, ozone, oxygen, air, nitrogen oxides, and NaOCl in the presence of the catalyst at a temperature ranging from 0 to 100 □ under an ambient pressure, the heterogeneous catalyst comprising an active metal element selected from alkali, alkaline earth and transition metals, and an oxide support material.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: January 7, 2003
    Assignee: Korea Institute of Science & Technology
    Inventors: Seong-Hwan Han, Kwang-Deog Jung, Oh-Shim Joo, Seong-Hoon Cho, Jun-Woo Oh
  • Patent number: 6221277
    Abstract: The present invention relates to an activated metal oxide and methods for removing sulfur compounds from fluids, whereby the activated metal oxide includes an amount of metal oxide and an amount of ethoxylated fatty amine, with the ethoxylated fatty amine increasing the rate of reactivity between the metal oxide and the sulfur compounds, which include hydrogen sulfide, carbonyl sulfide, mercaptans, and other organic sulfides. The ethoxylated tallow amines include ethoxylated tallow amine, ethoxylated cocoa amine, ethoxylated oleic amine, ethoxylated soya amine, ethoxylated palmatic amine, ethoxylated steric amine, and combinations thereof. The method involves activating the metal oxide, preferably iron oxide or zinc oxide, with an amount of ethoxylated fatty amine so that when fluids, such as water or liquid hydrocarbons, contact the metal oxide the sulfur compounds are removed.
    Type: Grant
    Filed: February 17, 1998
    Date of Patent: April 24, 2001
    Assignee: The SulfaTreat Company
    Inventor: Delbert C. Scranton, Jr.