Aluminosilicate Support Patents (Class 423/244.04)
  • Patent number: 11383223
    Abstract: The present invention relates to a method of making a support material composition comprising an Mg/AI oxide, a cerium oxide and at least another rare earth element oxide, to a support material composition and to the use of the support material composition as a nitrogen oxide storage component within a catalyst for treating exhaust gases to reduce NOx content.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: July 12, 2022
    Assignee: Sasol Germany GmbH
    Inventors: Marcos Schoneborn, Dirk Niemeyer, Thomas Harmening, Sandra Fibikar
  • Patent number: 11376572
    Abstract: The present invention relates to the catalytic processes for rendering harmless the flue gases of the power stations or more precisely to the catalysts for sulfur oxides reduction to elemental sulfur. The novel catalyst presents the binary polycations of copper and zinc or copper and manganese incorporated into the low silica faujasite X (LSX) having transition metals ratio Cu:Zn or Cu:Mn in the range of 2:1 to 4:1.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: July 5, 2022
    Assignees: M Chemical Company, Inc., N.D. Zelinsky Institute of Organic Chemistry RAS (lOKh)
    Inventors: Albert Tsybulevski, Eduardo Bolivar, Alexander Avraamovich Greish, Leonid Modestovich Kustov
  • Patent number: 9878310
    Abstract: Provided are a catalyst for hydrolysis and use of a titanium dioxide-based composition which are capable of removing COS and HCN simultaneously at high degradation percentages. The catalyst for hydrolysis is a catalyst for hydrolysis of carbonyl sulfide and hydrogen cyanide, having at least: an active component containing, as a main component, at least one metal selected from the group consisting of barium, nickel, ruthenium, cobalt, and molybdenum; and a titanium dioxide-based support supporting the active component.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: January 30, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Masanao Yonemura, Toshinobu Yasutake, Shuji Fujii, Koji Higashino, Makoto Susaki, Kaori Yoshida
  • Patent number: 9663419
    Abstract: The invention relates to processes for converting a mixture of hydrocarbon and sulfur-containing molecules such as mercaptans into products comprising acetylene, ethylene, and hydrogen sulfide, to processes utilizing the acetylene and ethylene resulting from the conversion, and to equipment useful for such processes.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: May 30, 2017
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Paul F. Keusenkothen, Frank Hershkowitz, Robert D. Denton, Gary D. Mohr
  • Patent number: 8501128
    Abstract: Sorbent components containing halogen, calcium, alumina, and silica are used in combination during coal combustion to produce environmental benefits. Sorbents such as calcium bromide are added to the coal ahead of combustion and other components are added into the flame or downstream of the flame, preferably at minimum temperatures to assure complete formation of the refractory structures that result in various advantages of the methods. When used together, the components reduce emissions of elemental and oxidized mercury; increase the level of Hg, As, Pb, and/or Cl in the coal ash; decrease the levels of leachable heavy metals (such as Hg) in the ash, preferably to levels below the detectable limits; and make a highly cementitious ash product.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: August 6, 2013
    Inventor: Douglas C. Comrie
  • Patent number: 8323603
    Abstract: A method for producing a substantially desulfurized a hydrocarbon fuel stream at temperatures less than 100° C. The method includes providing a nondesulfurized fuel cell hydrocarbon fuel stream that may include water and passing the fuel stream sequentially through a zeolite Y adsorbent and a selective sulfur adsorbent. The zeolite Y adsorbent may be exchanged with copper ions. The method produces a substantially desulfurized hydrocarbon fuel stream containing less than 50 ppb sulfur.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: December 4, 2012
    Assignee: Sud-Chemie Inc.
    Inventors: Chandra C Ratnasamy, Jon P. Wagner, R. Steve Spivey, Hans-Georg Anfang
  • Patent number: 8226913
    Abstract: Sorbent components containing halogen, calcium, alumina, and silica are used in combination during coal combustion to produce environmental benefits. Sorbents such as calcium bromide are added to the coal ahead of combustion and other components are added into the flame or downstream of the flame, preferably at minimum temperatures to assure complete formation of the refractory structures that result in various advantages of the methods. When used together, the components reduce emissions of elemental and oxidized mercury; increase the level of Hg, As, Pb, and/or Cl in the coal ash; decrease the levels of leachable heavy metals (such as Hg) in the ash, preferably to levels below the detectable limits; and make a highly cementitious ash product.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: July 24, 2012
    Assignee: NOx II, Ltd.
    Inventor: Douglas C. Comrie
  • Patent number: 8043989
    Abstract: A system is provided for desulfurizing a hydrocarbon fuel containing a light amount of methanol and a slight amount of water. The desulfurization system uses a Y-type zeolite-based desulfurizing agent containing at least copper arranged upstream of the system and an X-type zeolite-based desulfurizing agent containing at least silver arranged downstream of the system and thus can maintain desulfurization effect for a long period of time.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: October 25, 2011
    Assignee: Nippon Oil Corporation
    Inventors: Yoshiyuki Nagayasu, Atsushi Segawa, Kazunori Miyazawa, Yoshihiro Kobori
  • Publication number: 20110243824
    Abstract: This invention relates to a catalyst material, and its method of making and manufacture, useful for a diversity of chemical production processes as well as various emission control processes. More specifically, it relates to a catalyst composition, preferably comprising a metal oxide felt substrate, with one or more functional surface active constituents integrated on and/or in the substrate surface, which can be used in the removal of sulfur and sulfur compounds from hot gases as well as acting to trap solid particulates and trace metals within these hot gases.
    Type: Application
    Filed: June 14, 2011
    Publication date: October 6, 2011
    Applicant: UOP LLC
    Inventors: Manuela Serban, Lisa M. King, Alakananda Bhattacharyya, Tom N. Kalnes, Kurt M. Vanden Bussche
  • Patent number: 7955577
    Abstract: Sorbent components containing calcium, alumina, and silica are used in combination during coal combustion to produce environmental benefits. Sorbents are added to the coal ahead of combustion and/or are added into the flame or downstream of the flame, preferably at minimum temperatures to assure complete formation of the refractory structures that result in various advantages of the methods. When used together, the components reduce emissions of elemental and oxidized mercury; increase the level of Hg, As, Pb, and/or Cl in the coal ash; decrease the levels of leachable heavy metals (such as Hg) in the ash, preferably to levels below the detectable limits; and make a highly cementitious ash product.
    Type: Grant
    Filed: June 10, 2010
    Date of Patent: June 7, 2011
    Assignee: NOx II, Ltd
    Inventor: Douglas C. Comrie
  • Patent number: 7931882
    Abstract: Compositions and associated methods directed to the removal of sulfurous compounds from air are presented herein. The compositions and methods may be able to treat air with H2S concentrations of at least 1000 ppm. The compositions and associated methods are used to remove sulfurous compounds from air associated with wastewater systems in various aspects.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: April 26, 2011
    Assignee: Syneco Systems Inc
    Inventors: Leigh Falkman, Dennis W. Van Dover
  • Patent number: 7906088
    Abstract: Mixing small amounts of an inorganic halide, such as NaCl, to basic copper carbonate followed by calcination at a temperature sufficient to decompose the carbonate results in a significant improvement in resistance to reduction of the resulting copper oxide. The introduction of the halide can be also achieved during the precipitation of the carbonate precursor. These reduction resistant copper oxides can be in the form of composites with alumina and are especially useful for purification of gas or liquid streams containing hydrogen or other reducing agents. These reduction resistant copper oxides can function at near ambient temperatures.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: March 15, 2011
    Assignee: UOP LLC
    Inventors: Vladislav I. Kanazirev, Peter Rumfola, III
  • Patent number: 7758827
    Abstract: Sorbent components containing calcium, alumina, silica, and halogen are used in combination during coal combustion to produce environmental benefits. Sorbents are added to the coal ahead of combustion and/or are added into the flame or downstream of the flame, preferably at minimum temperatures to assure complete formation of the refractory structures that result in various advantages of the methods. When used together, the components ? reduce emissions of mercury and sulfur; ? reduce emissions of elemental and oxidized mercury; ? increase the efficiency of the coal burning process through de-slagging of boiler tubes; ? increase the level of Hg, As, Pb, and/or Cl in the coal ash; ? decrease the levels of leachable heavy metals (such as Hg) in the ash, preferably to levels below the detectable limits; and ? make a highly cementitious ash product.
    Type: Grant
    Filed: March 16, 2006
    Date of Patent: July 20, 2010
    Assignee: NOx II, Ltd.
    Inventor: Douglas C. Comrie
  • Publication number: 20100135883
    Abstract: This invention relates to a catalyst material, and its method of making and manufacture, useful for a diversity of chemical production processes as well as various emission control processes. More specifically, it relates to a catalyst composition, preferably comprising a metal oxide felt substrate, with one or more functional surface active constituents integrated on and/or in the substrate surface, which can be used in the removal of sulfur and sulfur compounds from hot gases as well as acting to trap solid particulates and trace metals within these hot gases.
    Type: Application
    Filed: September 8, 2009
    Publication date: June 3, 2010
    Applicant: UOP LLC
    Inventors: Manuela Serban, Lisa M. King, Alakananda Bhattacharyya, Tom N. Kalnes, Kurt M. Vanden Bussche
  • Publication number: 20090226354
    Abstract: This disclosure relates generally to processes for efficient incineration and conversion of the tail gas streams from sulfur recovery units containing sulfur compounds such as H2S, CO2, COS, CS2, and other sulfur species and sulfur vapors from S1 to S8 to SO2. The present disclosure describes the use of a combination of catalysts to achieve efficient oxidation of all reduced sulfur compounds as well as oxidation of CO and H2 to meet the industry emission requirements. The catalytic tail gas incineration process described herein can advantageously operate at lower temperatures, which in turn can represent a savings in reduced fuel gas costs.
    Type: Application
    Filed: March 4, 2009
    Publication date: September 10, 2009
    Applicant: WorleyParsons Group, Inc.
    Inventors: Mahin Rameshni, Stephen Santo
  • Publication number: 20090118528
    Abstract: A method for desulfurizing natural gas includes contacting the natural gas with an adsorbent which preferentially adsorbs at least one of hydrogen sulfide, COS, sulfur odorants, or combinations thereof, at a selected temperature and pressure, thereby producing desulfurized natural gas and an at least one of hydrogen sulfide/COS/sulfur odorant/combinations thereof-rich adsorbed component. The adsorbent includes a copper species adapted to form ?-complexation bonds and direct metal-sulfur bonds with the at least one of hydrogen sulfide, COS, sulfur odorants, or combinations thereof, and wherein the preferential adsorption occurs by ?-complexation and direct metal-sulfur bonding.
    Type: Application
    Filed: November 3, 2008
    Publication date: May 7, 2009
    Inventors: Ralph T. YANG, Yuhe WANG, Luis AMESTICA
  • Patent number: 7311891
    Abstract: Recovering sulfur from a gas stream containing hydrogen sulfide by oxidizing the gas stream to convert the hydrogen sulfide in the gas stream to sulfur oxide, and thus form a sulfur oxide enriched gas stream. The sulfur oxide enriched gas stream is contacted with a solid, sulfation resistant adsorbent bed at relatively low temperatures to extract the sulfur oxides and retain them as sulfur compounds, thus forming a sulfur oxide depleted gas stream. The adsorbent bed is then contacted with an inert or reducing gas stream to reduce the retained sulfur compounds to sulfur and/or sulfur dioxide and thereby form an enriched sulfur and/or sulfur dioxide bearing stream. The elemental sulfur is recovered and/or the sulfur dioxide bearing stream may be recycled to the Claus unit for further conversion.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: December 25, 2007
    Assignee: BASF Catalysts LLC
    Inventors: William Bachop Dolan, John Warren Byrne, Michael John Mitariten, Kenneth Butwell, Alfonse Maglio
  • Patent number: 6998100
    Abstract: Chlorite-like phyllosilicate materials are found useful as SOx sorbents. A novel process of sulfur oxide sorption is provided utilizing these layered materials as contact solids. Typical industrial applications include sulfur removal from fluid catalyst cracking process, cold-side combustion gas sulfur abatement and cleaner coal gasification.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: February 14, 2006
    Assignee: Toll Processing and Consulting, LLC
    Inventors: Edwin W. Albers, Harry W. Burkhead, Jr.
  • Patent number: 6875410
    Abstract: An adsorbent for removing sulfur compounds from sulfur compounds-containing fuel gas contains a zeolite ion-exchanged with Ag and has an excellent performance when used to remove sulfur compounds from the fuel gas, irrespective of the moisture concentration in the fuel gas, and a method for removing sulfur compounds from sulfur compounds-containing fuel gas by use of an adsorbent of the above-mentioned type. The zeolite is a Na—+Y type zeolite.
    Type: Grant
    Filed: May 5, 2003
    Date of Patent: April 5, 2005
    Assignee: Tokyo Gas Co., Ltd.
    Inventors: Shigeo Satokawa, Yuji Kobayashi
  • Publication number: 20040057890
    Abstract: An adsorbent for removing sulfur compounds from sulfur compounds-containing fuel gas contains a zeolite ion-exchanged with Ag and has an excellent performance when used to remove sulfur compounds from the fuel gas, irrespective of the moisture concentration in the fuel gas, and a method for removing sulfur compounds from sulfur compounds-containing fuel gas by use of an adsorbent of the above-mentioned type. The zeolite is a Na—Y type zeolite.
    Type: Application
    Filed: May 5, 2003
    Publication date: March 25, 2004
    Inventors: Shigeo Satokawa, Yuji Kobayashi
  • Patent number: 6699448
    Abstract: The present invention relates to sulfur tolerant catalyst composites useful for reducing contaminants in exhaust gas streams, especially gaseous streams containing sulfur oxide contaminants. More specifically, the present invention is concerned with improved NOx trap catalysts for use in diesel engines as well as lean burn gasoline engines. The sulfur tolerant NOx trap catalyst composites comprise a platinum component, a support, and a NOx sorbent component prepared by hydrothermal synthesis. The NOx sorbent component comprises a first metal oxide and a second metal oxide. The metal in the first metal oxide is selected from the group consisting of aluminum, titanium, zirconium, silicon, and composites thereof, and the metal in the second metal oxide is selected from the group consisting of Group IIA metals, Group II metals, Group IV metals, rare earth metals, and transition metals. The metal in the first metal oxide is different from the metal in the second metal oxide.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: March 2, 2004
    Assignee: Engelhard Corporation
    Inventors: Joseph H-Z. Wu, Joseph C. Dettling
  • Patent number: 6585945
    Abstract: The present invention relates to sulfur tolerant catalyst composites useful for reducing contaminants in exhaust gas streams, especially gaseous streams containing sulfur oxide contaminants. More specifically, the present invention is concerned with improved NOx trap catalysts for use in diesel engines as well as lean burn gasoline engines. The sulfur tolerant NOx trap catalyst composites comprise a platinum component, a support, and a NOx sorbent component prepared by hydrothermal synthesis. The NOx sorbent component comprises a first metal oxide and a second metal oxide. The metal in the first metal oxide is selected from the group consisting of aluminum, titanium, zirconium, silicon, and composites thereof, and the metal in the second metal oxide is selected from the group consisting of Group IIA metals, Group III metals, Group IV metals, rare earth metals, and transition metals. The metal in the first metal oxide is different from the metal in the second metal oxide.
    Type: Grant
    Filed: January 26, 2001
    Date of Patent: July 1, 2003
    Assignee: Engelhard Corporation
    Inventors: Joseph H-Z. Wu, Joseph C. Dettling
  • Patent number: 6555079
    Abstract: Method for cleaning the atmosphere by adsorbing pollutants, e.g., hydrocarbons, ozone, carbon monoxide, nitrogen oxides, sulfur oxides, etc., contained in the atmosphere. The pollutant-containing atmosphere is contacted with an outer surface of a substrate, e.g., radiators, condensers, charge air coolers, transmission coolers, etc., which has been coated with an adsorptive material such as zeolites, molecular sieves, carbon, etc. The coated substrate is protected with an overcoat of at least one porous protective material such as alumina, silica and the like, such that the pollutants will come into contact with the adsorptive material, but harmful contaminants will be prevented from contacting the adsorptive material.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: April 29, 2003
    Assignee: Engelhard Corporation
    Inventors: Jeffrey B. Hoke, Ronald M. Heck, Fred M. Allen
  • Publication number: 20020009404
    Abstract: An adsorbent-catalyst for removal of sulphur compounds from sulfur compound contaminated gas and liquid feed streams, wherein the adsorbent-catalyst is a synthetic X or Y faujasite with a silica to alumina ratio from 1.8:1 to about 5:1 and wherein 40 to 90% of the cations of the faujasite include transition metals of Groups IB, IIB and VIIB with the balance of the cations being alkali or alkaline earth metals.
    Type: Application
    Filed: July 18, 2001
    Publication date: January 24, 2002
    Applicant: Zeochem LLC
    Inventors: Albert M. Tsybulevskiy, Edward J. Rode
  • Publication number: 20010048890
    Abstract: A removal method of malodorous substance and deodorization device thereof enables un-treated gas containing soluble or insoluble malodorous substance contained complexly to be removed by only one treatment process as far as the degree of sensing nothing by organoleptic test. The un-treated gas containing soluble or insoluble malodorous substance contained complexly is flushed in compliance with necessity to remove insoluble malodorous substance, before converting insoluble malodorous substance into soluble substance by virtue of conversion catalyst to flush to be removed.
    Type: Application
    Filed: November 6, 1998
    Publication date: December 6, 2001
    Inventor: NAOAKI SATA
  • Patent number: 6281164
    Abstract: The useful life of SOx additives having a SO2→SO3 oxidation catalyst component and a SO3 absorption component can be extended by employing each of these components as separate and distinct physical particles, pellets, etc.
    Type: Grant
    Filed: February 2, 2000
    Date of Patent: August 28, 2001
    Assignee: Intercat-Savannah, Inc.
    Inventors: Edward J. Demmel, Albert A. Vierheilig, Regis B. Lippert