Group Iva Metal (ge, Sn, Or Pb) Patents (Class 423/494)
  • Patent number: 8906340
    Abstract: The present disclosure relates to reacting tin metal with crude TiCl4 containing arsenic to produce pure TiCl4, SnCl4, and an arsenic solid co-product. In some embodiments, the contaminant vanadium is removed as well. The reaction is preferably done in a continuous fashion in two stages for maximum through-put and utility at an elevated temperature. Distillation can be used to purify the TiCl4 produced and simultaneously yield a purified SnCl4 product. The synthesis of SnCl4 in this method utilizes waste chloride to save virgin chlorine which would otherwise be used.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: December 9, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventor: Lisa Edith Helberg
  • Patent number: 8900330
    Abstract: An agent that is capable of improving dye fastness is provided. The agent includes a compound that includes at least one functional group capable of forming at least one interaction or at least one bond with a fiber or a dye molecule. Also, a method for using the agents to improve dye fastness and a dyed article including the agent are provided.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: December 2, 2014
    Assignee: Korea University Research and Business Foundation
    Inventor: Dong Hoon Choi
  • Patent number: 8889094
    Abstract: The present disclosure relates to reacting tin metal with crude TiCl4 containing arsenic to produce pure TiCl4, SnCl4, and an arsenic solid co-product. In some embodiments, the contaminant vanadium is removed as well. In another embodiment, the vanadium is removed separately through a commercial process and the resulting arsenic containing commercial grade of purified TiCl4 is reacted with elemental tin, sulfur and ferric chloride to substantially reduce the arsenic. The reaction is preferably done in a continuous fashion in two stages for maximum through-put and utility at an elevated temperature. Distillation can be used to purify the TiCl4 produced and simultaneously yield a purified SnCl4 product. The synthesis of SnCl4 in this method utilizes waste chloride to save virgin chlorine which would otherwise be used.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: November 18, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventor: Lisa Edith Helberg
  • Patent number: 8828101
    Abstract: An agent that is capable of improving dye fastness is provided. The agent includes a compound that includes at least one functional group capable of forming at least one interaction or at least one bond with a fiber or a dye molecule. Also, a method for using the agents to improve dye fastness and a dyed article including the agent are provided.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: September 9, 2014
    Assignee: Korea University Research and Business Foundation
    Inventor: Dong Hoon Choi
  • Publication number: 20140178284
    Abstract: The invention relates to a method for producing hexachlorodisilane or Ge2CI6, which is characterized in that, in a gas containing SiCI4 or GeCI4, a) a non-thermal plasma is generated by means of an alternating voltage of the frequency f, and wherein at least one electromagnetic pulse having the repetition rate g is coupled into the plasma, the voltage component of which pulse has an edge steepness in the rising edge of 10 V ns-1 to 1 kV ns-1 and a pulse width b of 500 ns to 100 ?s, wherein a liquid phase is obtained, and b) pure hexachlorodisilane or Ge2Cl6 is obtained from the liquid phase.
    Type: Application
    Filed: May 15, 2012
    Publication date: June 26, 2014
    Applicant: Evonik Degussa GmbH
    Inventors: Jürgen Erwin Lang, Hartwing Rauleder, Ekkehard Mueh
  • Patent number: 8486360
    Abstract: A method is provided for producing GeCl4 with or without SiCl4 from optical fibers, the method comprises the steps of: reacting comminuted optical fibers including germanium and optionally silicon oxides with a reagent including a solid carbonaceous reducing agent, chlorine and a boron compound to obtain a gaseous product including gaseous GeCl4, gaseous SiCl4, and gaseous BCl3 in accordance with the reactions: 2BCl3(g)+1.5GeO2=1.5GeCl4(g)+B2O3; 2BCl3(g)+1.5SiO2=1.5SiCl4(g)+B2O; B2O3+1.5C+3Cl2=2BCl3(g)+1.5CO2; and then condensing the gaseous GeCl4, BCl3 and optionally SiCl4 into liquid GeCl4, BCl3 and optionally SiCl4. The invention further provides a method for producing SiCl4 (and optionally GeCl4) from glassy residues obtained from optical fiber manufacturing and wasted optical cables.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: July 16, 2013
    Assignee: Institut National de la Recherche Scientifique
    Inventors: Mario Bergeron, Alain Langlais
  • Publication number: 20130043429
    Abstract: A chlorinated oligogermane as a pure compound or mixture of compounds which each have at least one direct Ge—Ge bond, substituents of which include chlorine or chlorine and hydrogen and atom ratio for substituent:germanium is at least 2:1 in the composition thereof, wherein a) the mixture has on average a Ge:Cl ratio of 1:1 to 1:3, or the pure compound has a Ge:Cl ratio of 1:2 to 1:2.67, and b) the mixture has an average number of germanium atoms of 2 to 8.
    Type: Application
    Filed: December 6, 2010
    Publication date: February 21, 2013
    Applicant: Spawnt Private S.à.r.l
    Inventors: Norbert Auner, Christian Bauch, Sven Holl, Rumen Deltschew, Javad Mohsseni, Gerd Lippold, Thoralf Gebel
  • Patent number: 8372370
    Abstract: A process for hydrogenating halogenated silanes or halogenated germanes. The process comprises hydrogenating a Lewis acid-base pair with addition of H2, hydrogenating halogenated silanes or halogenated germanes with an H?-containing Lewis acid-base pair, and regenerating the Lewis acid-base pair and releasing hydrogen halide.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: February 12, 2013
    Assignee: Spawnt Private S.A.R.L.
    Inventors: Sven Holl, Sayed-Javad Mohsseni-Ala, Christian Bauch
  • Publication number: 20120316340
    Abstract: The use of metal-accumulating plants for implementing chemical reactions.
    Type: Application
    Filed: November 18, 2010
    Publication date: December 13, 2012
    Applicants: UNIVERSITE MONTPELLIER 2 SCIENCES ET TECHNIQUES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventors: Claude Grison, Jose Escarre
  • Patent number: 8263029
    Abstract: The invention provides a simple and cost-effective method for preparing particles such as anisotropic semiconductor nanoparticles (e.g. CdS) and devices thereof. The method comprises (i) dispersing at least part of particle-forming reactants in a self-organized medium such as surfactant-aqueous solution system, and (ii) conducting a particle-forming reaction using the particle-forming reactants dispersed in the self-organized medium under shear condition to form the particles. The anisotropic property of the particles is controlled at least partially by the shear condition. The invention may be used to prepare quantum dots in a liquid crystal, and various devices such as nonlinear optics, optoelectronic devices, and solar cells, among others.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: September 11, 2012
    Assignee: Kent State University
    Inventors: Antal Jakli, Stefanie Taushanoff, Mátyás Molnár, Attila Bóta, Erika Kalman, Peter Palinkás, legal representative, Andrea Palinkás, legal representative, Zoltan Varga
  • Publication number: 20110209294
    Abstract: An agent that is capable of improving dye fastness is provided. The agent includes a compound that includes at least one functional group capable of forming at least one interaction or at least one bond with a fiber or a dye molecule. Also, a method for using the agents to improve dye fastness and a dyed article including the agent are provided.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 1, 2011
    Applicant: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION
    Inventor: Dong Hoon CHOI
  • Publication number: 20110123424
    Abstract: Process for the phase transformation of substances and mixtures of substances, in which the substance or the mixture of substances is introduced into a plasma reactor, the substance or the mixture of substances is converted into the higher-energy phase and the product is removed in gaseous form from the plasma reactor. The process can be used for the sublimation of metal salts, metal nitrates and/or metal alkoxides and other vaporizable metal organic compounds.
    Type: Application
    Filed: May 7, 2009
    Publication date: May 26, 2011
    Applicant: EVONIK DEGUSSA GmbH
    Inventors: Aymee Lisette Michel De Arevalo, Patrik Stenner, Stefan Fiedler, Dieter Kerner, Manfred Nagel
  • Publication number: 20100270517
    Abstract: The present disclosure provides a solid dopant for doping a conductive polymer, which has a high dispersibility in a solvent by a plasma treatment, a method and an apparatus for preparing the solid dopants, a solid doping method of a conductive polymer using the solid dopants, and a solid doping method of a conductive polymer using plasma.
    Type: Application
    Filed: April 23, 2010
    Publication date: October 28, 2010
    Applicants: ELPANI CO., LTD., AJOU UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATION
    Inventors: Yong Cheol Hong, Suck Hyun Lee, O. Pil Kwon, Tae Ja Kim
  • Patent number: 7682593
    Abstract: The invention relates to the manufacture of high purity germanium for the manufacture of e.g. infra red optics, radiation detectors and electronic devices. GeCl4 is converted to Ge metal by contacting gaseous GeCl4 with a liquid metal M containing one of Zn, Na and Mg, thereby obtaining a Ge-bearing alloy and a metal M chloride, which is removed by evaporation or skimming. The Ge-bearing alloy is then purified at a temperature above the boiling point of metal M. This process does not require complicated technologies and preserves the high purity of the GeCl4 in the final Ge metal, as the only reactant is metal M, which can be obtained in very high purity grades and continuously recycled.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: March 23, 2010
    Assignee: Umicore
    Inventors: Eric Robert, Tjakko Zijlema
  • Patent number: 7592287
    Abstract: The present invention is related to a method for preparing an amorphous metal fluoride of the formula MX+FX?? comprising the steps of a) providing a precursor, whereby the precursor comprises a structure having a formula of Mx+F(x??)?yBy; and b) reacting the precursor with a fluorinating agent generating the amorphous metal flouride having a formula of Mx+Fx??, whereby M is selected from the group comprising metals of the second, third and fourth main group and any subgroup of the periodic table, B is a coordinately bound group; x is any integer of 2 or 3; y is any integer between 1 and 3; ? is 0 to 0.1; and x??>y.
    Type: Grant
    Filed: January 7, 2004
    Date of Patent: September 22, 2009
    Assignee: Humboldt-Universitaet Zu Berlin
    Inventors: Erhard Kemnitz, Udo Gross, Stephan Ruediger
  • Publication number: 20090074646
    Abstract: The efficiency of an etching process may be increased in various ways, and the cost of an etching process may be decreased. Unused etchant may be isolated and recirculated during the etching process. Etching byproducts may be collected and removed from the etching system during the etching process. Components of the etchant may be isolated and used to general additional etchant. Either or both of the etchant or the layers being etched may also be optimized for a particular etching process.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 19, 2009
    Applicant: QUALCOMM MEMS TECHNOLOGIES, INC.
    Inventors: Teruo Sasagawa, Xiaoming Yan
  • Publication number: 20080311027
    Abstract: The invention relates to the manufacture of high purity germanium for the manufacture of e.g. infra red optics, radiation detectors and electronic devices. GeCl4 is converted to Ge metal by contacting gaseous GeCl4 with a liquid metal M containing one of Zn, Na and Mg, thereby obtaining a Ge-bearing alloy and a metal M chloride, which is removed by evaporation or skimming. The Ge-bearing alloy is then purified at a temperature above the boiling point of metal M. This process does not require complicated technologies and preserves the high purity of the GeCl4 in the final Ge metal, as the only reactant is metal M, which can be obtained in very high purity grades and continuously recycled.
    Type: Application
    Filed: September 16, 2005
    Publication date: December 18, 2008
    Applicant: Umicore
    Inventors: Eric Robert, Tjakko Zijlema
  • Publication number: 20080113102
    Abstract: Agents for surface treatment which can impart excellent corrosion resistance to zinc or zinc alloy products at low cost. The agents for the surface treatment of zinc or zinc alloy products of this invention include at least one water-soluble compound which contains antimony, bismuth, tellurium or tin. Ideally, a nickel salt and/or a manganese salt is also included, and most desirably tannins and/or thioureas are also included. Ideally, the zinc or zinc alloy products which have been immersed and treated in an aqueous solution which contains these agents for surface treatment are immersed in an aqueous solution which includes a sealing treatment agent selected according to the colour of the zinc or zinc alloy product to seal pinholes.
    Type: Application
    Filed: November 13, 2006
    Publication date: May 15, 2008
    Inventors: Takashi Arai, Ro Bo Shin, Takahisa Yamamoto
  • Patent number: 7021487
    Abstract: A metal container to be filled with a halogen containing gas, with the inner surface processed with a polishing agent. The gas has a reduced purity decline by the increase of the water content or impurities from the inner surface of the container which is absorbed by the gas over the passage of time. The inner surface processing method is improved such that the value of dividing the area of the Si2s peak by the area of the Fe2p3/2 peak in the X-ray photoelectron spectrum of the gas container inner surface with the inner surface process with a polishing agent applied is 0.3 or less.
    Type: Grant
    Filed: August 5, 2003
    Date of Patent: April 4, 2006
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Akio Kikkawa, Shigeo Kanayama, Isao Harada
  • Patent number: 6780390
    Abstract: A method of producing high purity germanium tetrafluoride comprising the step of flowing a mixture of inert gas and fluorine gas through a reactor chamber preferably containing germanium powder. The reactor effluent stream is conducted through at least one product trap effective for condensing and retaining at least a portion of the germanium tetrafluoride product. The product is preferably then purified by repeatedly subliming the product as necessary to remove volatile impurities.
    Type: Grant
    Filed: August 14, 2002
    Date of Patent: August 24, 2004
    Assignee: Advance Research Chemicals, Inc.
    Inventors: Sudhir Solomon Bhagat, Dayal T. Meshri, Sanjay D. Meshri, Michale Shane Petty
  • Patent number: 6337057
    Abstract: The invention relates to a system and method for the recovery of germanium from the Modified Chemical Vapor Deposition (MCVD) processing wastes by chemical conversion and recovery of germanium from the solid cake product. In the present method, the direct reaction of gaseous hydrogen chloride with the recovered materials effects the rapid and complete chlorination of the germanates, yielding germanium tetrachloride. The germanium tetrachloride product is completely volatilized and removed from the mixture during the exothermic process.
    Type: Grant
    Filed: June 23, 1999
    Date of Patent: January 8, 2002
    Assignee: Lucent Technologies, Inc.
    Inventors: Michael Philip Bohrer, Po-Yen Lu, Lawrence Seibles
  • Patent number: 6001323
    Abstract: The preparation of tin tetrachloride from tin granules and chlorine can be conducted safely even at high temperatures if the chlorine, before coming into contact with the tin, is brought into a highly disperse distribution in the circulating tin tetrachloride and develops a uniform flow profile.
    Type: Grant
    Filed: August 24, 1998
    Date of Patent: December 14, 1999
    Assignee: Vinnolit Monomer GmbH & Co. KG
    Inventor: Siegfried Benninger
  • Patent number: 5961691
    Abstract: The present invention is concerned with a process for extracting and recovering lead or lead derivatives in high purity from various materials containing lead sulphate, and particularly copper smelter flue dusts. The present process also allows the substantially complete recovery or recycling of precious metals otherwise lost in flue dusts wastes.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: October 5, 1999
    Assignee: Noranda, Inc.
    Inventors: Denys Pinard, Jean Guimont
  • Patent number: 5683669
    Abstract: In the preparation of metal chlorides from their elements to be used as additives in processes of making titanium dioxide by the chloride process, a titanium tetrachloride stream is directed to sweep over the lined inner wall of a metal chloride generator to act as a protective film, which considerably increases the life of the generator. Furthermore, the titanium tetrachloride is further heated, which is highly desirable in the chloride process. When the titanium tetrachloride is optionally conducted in advance through ducts in the lining of the inner walls of the metal chloride generator, its temperature can be further raised.
    Type: Grant
    Filed: March 26, 1996
    Date of Patent: November 4, 1997
    Assignee: Kronos Inc.
    Inventors: Achim Hartmann, Herman Trub
  • Patent number: 5346650
    Abstract: Graphite intercalation compound interposing at least PbCl.sub.2 interlaminarly among graphite, synthesized by mixing a raw material graphite, PbCl.sub.2, and a metal halide other than PbCl.sub.2 and heating the mixture.
    Type: Grant
    Filed: August 16, 1993
    Date of Patent: September 13, 1994
    Assignee: Alps Electric Co., Ltd.
    Inventors: Osamu Toda, Michio Inagaki, Masahiko Ohhira
  • Patent number: 5279641
    Abstract: A novel method is proposed for concurrently producing a metallic copper powder and a valuable chloride of a metal other than copper, e.g., manganese, zinc, cobalt, nickel and tin, from a depleted aqueous etching solution containing copper (II) chloride as discharged from the etching process in the manufacture of copper-foiled printed circuit boards. The inventive method also contributes to solve the problem for the disposal of such a waste solution without causing the troubles in connection with environmental pollution. The inventive method comprises the steps of: treating the waste solution with an active carbon so as to remove organic impurities; admixing the solution with a powder, granules or flakes of the above mentioned metal so as to precipitate the copper value in the metallic form, instead, giving an aqueous solution of the chloride of the added metal; and separating the copper metal powder and the chloride solution.
    Type: Grant
    Filed: January 19, 1993
    Date of Patent: January 18, 1994
    Assignee: Nikko Fine Products Co., Ltd.
    Inventors: Toshio Narisawa, Ryohei Kato, Masanori Nakamura, Hitoyoshi Yamaguchi
  • Patent number: 5269970
    Abstract: Electrically conductive halide doped tin-IV-oxide is disclosed which contains divalent tin in an amount not exceeding 2% by weight and also contains 0.1 to 2.5% by weight, particularly 0.1 to 1.0% by weight, of halide.Methods for producing the tin-IV-oxide are also disclosed. The product is suitable for imparting electric conductivity in the form of a filler or pigment to a variety of products such as plastics, lacquer, varnish, paint, paper, textiles and toners, without discoloration of the products.
    Type: Grant
    Filed: March 17, 1992
    Date of Patent: December 14, 1993
    Assignee: Th. Goldschmidt AG
    Inventors: Erich Ruf, Joachim Giersberg, Gerd Dembinski, Hartmut Gomm, Hans-Gunter Krohm
  • Patent number: 5268337
    Abstract: Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions.
    Type: Grant
    Filed: November 18, 1991
    Date of Patent: December 7, 1993
    Assignee: The Johns Hopkins University
    Inventors: Joseph L. Katz, Cheng-Hung Hung
  • Patent number: 5120523
    Abstract: A metal is dissolved by a method which comprises establishing contact of the metal with a quaternary ammonium compound and a halogenated hydrocarbon or with a quaternary ammonium compound, a halogenated hydrocarbon, and a polar solvent.
    Type: Grant
    Filed: October 26, 1990
    Date of Patent: June 9, 1992
    Assignee: Agency of Industrial Science & Technology, Ministry of International Trade & Industry
    Inventors: Yukimichi Nakao, Kyoji Kaeriyama, Aizo Yamauchi
  • Patent number: 5026672
    Abstract: A sintered body of tin oxide is made by forming a finely divided mixture containing at least about 0.2 weight percent ZnO, at least about 0.2 weight percent SiO.sub.2, up to about 0.5 weight percent Al.sub.2 O.sub.3, balance pure SnO.sub.2, with the sum of the proportions of ZnO and SiO.sub.2 being less than about 2 weight percent. The mixture is compacted and heated to a sintering temperature. The tin oxide may be doped with antimony.
    Type: Grant
    Filed: June 25, 1990
    Date of Patent: June 25, 1991
    Assignee: Tektronix, Inc.
    Inventor: Michel L. Bayard
  • Patent number: 4842839
    Abstract: By a chlorination process at a temperature exceeding 1000.degree. C. all hydrogenous compounds, including organic compounds, are converted into hydrogen-free compounds, e.g. CCl.sub.4, which do not interfere in the manufacture of optical fibres.
    Type: Grant
    Filed: June 21, 1988
    Date of Patent: June 27, 1989
    Assignee: U.S. Philips Corporation
    Inventor: Hans Rau
  • Patent number: 4822580
    Abstract: Stannous salts of a non-oxidizing anionic acid, e.g., stannous fluoborate or stannous sulfate, are prepared by reacting metallic tin with a preferably aqueous solution of such acid in the presence of a catalytically effective amount of finely divided catalyst particles, e.g., comprised of a precious metal, said catalyst particles providing hydrogen release at low overvoltages.
    Type: Grant
    Filed: April 5, 1988
    Date of Patent: April 18, 1989
    Assignee: Rhone-Poulenc Specialites Chimiques
    Inventors: Jean-Yves Chane-Ching, Jean-Yves Dumousseau
  • Patent number: 4770129
    Abstract: A sensor for mixing ratio of gasoline and alcohol comprising: a transparent column, both ends of which are supported by grips; the surface of the column is positioned in direct contact with a mixing liquid of gasoline and alcohol; a light emitting diode disposed so that light beams therefrom are incident on one end of said transparent column and the mixing liquid, said beams incident on said boundary at less than a critical angle being totally refracted, while said beams incident on said boundary at more than the critical angle being totally reflected to pass within said column so as to go out from the other end thereof, said critical angle depending upon a mixing degree of said liquid; a photo diode placed to receive the light beams reflected from the boundary so as to generate an output in accordance with the quantity of the light beams received; and the column being substantially determined its lengthwise and diametrical dimension such that the light beams incident upon the boundary at a critical angle, ar
    Type: Grant
    Filed: May 1, 1987
    Date of Patent: September 13, 1988
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Shigeru Miyata, Yoshihiro Matsubara
  • Patent number: 4652434
    Abstract: The invention pertains to an entrained-downflow chlorination process of fine metalliferous ores particularly containing alkali and/or alkaline earth metals greater than about 0.3% by weight as the oxide. The process includes a quenching step following the chlorination step where the chlorinated products are quenched by liquid cooling fluid spray patterns adapted to prevent solidification of the alkali and/or alkaline earth materials onto the reactor walls. The chlorinator unit of this invention prevents disruption of the chlorination process due to presence of liquids or sticky particles and it contains a quenching spray means disposed below the chlorination zone in the entrained-downflow chlorinator unit, whereby the quenching sprays prevent reactor wall buildup.
    Type: Grant
    Filed: August 5, 1985
    Date of Patent: March 24, 1987
    Assignee: SCM Corporation
    Inventors: James P. Bonsack, Michael Robinson
  • Patent number: 4587116
    Abstract: A process is described for reacting chlorinated, nitrogen-containing hydrocarbons with metal oxides so as to convert essentially all of the carbon atoms to oxides of carbon. This process provides an efficient and economically valuable use for chlorinated, nitrogen-containing hydrocarbons.
    Type: Grant
    Filed: February 6, 1984
    Date of Patent: May 6, 1986
    Assignee: The Dow Chemical Company
    Inventors: Dana A. Livingston, Joseph P. Surls, Jr.
  • Patent number: 4576812
    Abstract: This invention relates to a process for making the chloride of a metal from the sulfide of said metal in the absence of air and for a metal selected from copper, iron, lead, zinc, silver and gold. The process consists of three broad steps. First, forming an intimate mixture of finely divided sulfides of the metals with finely divided chlorides, the latter being in an anhydrous state. Second, heating the mixture to a temperature at which there is a rapid reaction converting the metal sulfides to chlorides and elemental sulfur in the state of a solid aggregate mixture. Third, recovering the formed metal chlorides from the aggregate mixture by conventional means.
    Type: Grant
    Filed: June 12, 1984
    Date of Patent: March 18, 1986
    Inventor: Hardwin E. A. von Hahn
  • Patent number: 4532262
    Abstract: This invention comprises a process of making a polyurethane foam from polyisocyanates and polyols in the presence of bivalent tin carboxylate catalyst. The procedure consists of a novel method of preparation and hydrolysis of the tin catalyst. Stannous chloride prepared in the presence of at least 10% and up to 50% excess tin is used to prepare a desirable low viscosity stannous carboxylate.
    Type: Grant
    Filed: March 21, 1984
    Date of Patent: July 30, 1985
    Inventor: Carl R. Gloskey
  • Patent number: 4511551
    Abstract: The invention is a method for detecting the presence of or a predisposition to cancer in mammalian individuals. A trace element, specifically tin, is administered to the individual in the form of a radioactive isotope or a compound containing a radioactive tracer. The tin-bearing compound thereafter accumulates in the various bodily organs and is excreted. Indicative of the presence of cancer or a predisposition is the lack of accumulation of the radioactive tin compound in the thymus and lymphatic system of the mammal. By comparison of the radioisotope concentration in the urine and blood, the early detection of a precancerous or leukemic condition can be made. The method is applicable to a wide variety of mammals, including human beings.
    Type: Grant
    Filed: November 18, 1982
    Date of Patent: April 16, 1985
    Assignee: Unique Technologies, Incorporated
    Inventors: Nathan Cardarelli, Bernadette Cardarelli
  • Patent number: 4457812
    Abstract: A process for separating inorganic substances involving their abstraction from a mixture with near-supercritical inorganic fluids. One or more inorganic substances are abstracted and then separatively recovered by retrograde condensations. The process particularly is applicable with mixtures obtained from the chlorination of metalliferous ores and may be conjoined to many ancillary metal abstraction processes such as volatilizations, distillations or electrolyses.
    Type: Grant
    Filed: July 18, 1983
    Date of Patent: July 3, 1984
    Assignee: Kerr-McGee Chemical Corporation
    Inventor: Theodore A. Rado
  • Patent number: 4402924
    Abstract: A method is described for the preparation of high surface area metal fluorides and metal oxyfluorides comprising reacting high surface area metal oxides with a fluorocarbon vapor wherein the fluorocarbon is selected from the group consisting of CH.sub.4-Q F.sub.Q wherein Q is 1 to 3 and totally or partially fluorinated C.sub.2 -C.sub.6 alkanes, alkenes and alkynes and C.sub.5 -C.sub.6 cyclic alkanes, preferably fluoroform (CHF.sub.3) wherein the metal oxides and the fluorocarbon vapors are contacted at a temperature of from about 300.degree. to about 800.degree. C., for a time sufficient to effect the essentially complete conversion of the metal oxides into metal fluorides or the partial conversion of the metal oxides into metal oxyfluorides.
    Type: Grant
    Filed: November 3, 1980
    Date of Patent: September 6, 1983
    Assignee: Exxon Research and Engineering Co.
    Inventors: Gary B. McVicker, Joseph J. Eggert
  • Patent number: 4396593
    Abstract: Chlorine is reacted with excess tin in liquid tin(IV) chloride at 20.degree. to 90.degree. C., 30 to 300 dm.sup.3 (S.T.P.)h.sup.-1 of chlorine being passed in per dm.sup.3 of tin(IV) chloride present in the reaction chamber and 0.08 to 0.3 dm.sup.3 h.sup.-1 of tin(IV) chloride being recycled with cooling per 1 dm.sup.3 (S.T.P.)h.sup.-1 of chlorine passed in. An excess of tin of at least 4 times the weight of chlorine passed in per hour is maintained. An amount of tin(IV) chloride is taken out of the cycle such that the level of the tin(IV) chloride in the reaction chamber remains approximately constant. The tin(IV) chloride taken off is brought into contact at 60.degree. to 110.degree. C. for an average residence time of 1 to 7 hours with tin in liquid tin(IV) chloride, thereafter filtered and, if appropriate, treated with absorbing agents. Pure, ready-for-use tin(IV) chloride is obtained continuously without a purification by distillation in a simple, readily cleanable apparatus made of a cheap material.
    Type: Grant
    Filed: February 5, 1982
    Date of Patent: August 2, 1983
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Werner Schmidt, Harald Scholz, Nikolaus Niedzielski
  • Patent number: 4317800
    Abstract: A process for reducing environmental pollution resulting from disposal of waste containing halogenated hydrocarbons by simultaneous treatment with used metal and/or metal scrap at elevated temperatures. The halogenated hydrocarbons are pyrolyzed and the resulting hydrogen halide containing gas is brought into contact with the used metal and/or metal scrap at elevated temperatures so as to form metal halogenides that are volatile under the conditions applied. The volatile metal halogenides are largely separated from the gaseous mixture formed, and at least part of the remaining gaseous mixture and/or hydrocarbon residue is used as fuel to maintain the required temperature. The waste feed compositions and process conditions can be chosen to effect separation between various metals by selective halogenation and condensation, and substantially all of the hydrogen halide can be tied up and recovered as metal halogenides.
    Type: Grant
    Filed: September 15, 1980
    Date of Patent: March 2, 1982
    Assignee: Esmil B.V.
    Inventors: Wijtze Sloterdijk, Gerrit Dapper, Cornelis A. Verbraak, Willem Kirchner
  • Patent number: 4311570
    Abstract: A wide variety of chemical processes using thin films of reactants are carried out on the surface of a body rotating at high speed and the products are readily isolated (for example as fine particles or fibres) by using centrifugal force to fling the products from the rim of the body.
    Type: Grant
    Filed: February 21, 1979
    Date of Patent: January 19, 1982
    Assignee: Imperial Chemical Industries Limited
    Inventors: Geoffrey Cowen, Philip Norton-Berry, Margaret L. Steel
  • Patent number: 4288411
    Abstract: The process is based on the series of halide-forming affinities. The oxides are passed through a series of zones equal in number to the plurality of halides or mixtures which are to be produced. A halide of an element of lower halide-forming affinity is fed counter-current to the oxides. The halide supply is in stoichiometric equivalent to the total content of halide to be extracted. The oxide of the said fed element is also extracted.
    Type: Grant
    Filed: August 3, 1979
    Date of Patent: September 8, 1981
    Inventors: Gerhard Holland, Rudolf Nowak
  • Patent number: 4276084
    Abstract: A hydrometallurgical process is used to recover lead from a lead-bearing ore concentrate. The lead-bearing ore concentrate is leached with a solution of cupric chloride in order to precipitate lead as lead chloride, produce elemental sulfur and substantially leave the balance of the ore concentrate sulfides in unreacted form. The residue of the cupric chloride leach is leached with a brine solution in order to solubilize the lead chloride to the exclusion of the balance of the residue. Thereafter, the lead chloride is crystallized from the brine solution. Elemental lead may be obtained by the reduction of the lead chloride crystals.The present process avoids air pollution problems inherent to smelting processes, allows for a high recovery of lead of 97% or greater and allows for the direct production of a high purity lead.
    Type: Grant
    Filed: October 1, 1979
    Date of Patent: June 30, 1981
    Assignee: Hazen Research, Inc.
    Inventors: James E. Reynolds, Alan R. Williams
  • Patent number: 4275045
    Abstract: After dissolving irradiated nuclear fuel in a nitric acid medium, the vapor produced by this dissolution and consisting of water, nitrogen oxides and iodine is passed into a condenser, then into a column for the absorption of the nitrous vapor in which is formed recombined nitric acid containing iodine and nitrous ions, the iodine contained in the recombined acid being then separated-out. The nitrous ions present in the recombined acid have a favorable influence on the important first stage of that separation.
    Type: Grant
    Filed: February 27, 1979
    Date of Patent: June 23, 1981
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Maurice Anav, Jacques Duhayon, Jean-Pierre Goumondy, Andre Leseur, Edmond Zellner
  • Patent number: 4275046
    Abstract: A method is described for the preparation of high surface area metal fluorides and metal oxyfluorides comprising reacting high surface area metal oxides with a fluorocarbon vapor wherein the fluorocarbon is selected from the group consisting of CH.sub.4-Q F.sub.Q wherein Q is 1 to 3 and totally or partially fluorinated C.sub.2 -C.sub.6 alkanes, alkenes and alkynes and C.sub.5 -C.sub.6 cyclic alkanes, preferably fluoroform (CHF.sub.3) wherein the metal oxides and the fluorocarbon vapors are contacted at a temperature of from about 300.degree. to about 800.degree. C., for a time sufficient to effect the essentially complete conversion of the metal oxides into metal fluorides or the partial conversion of the metal oxides into metal oxyfluorides.
    Type: Grant
    Filed: January 16, 1978
    Date of Patent: June 23, 1981
    Assignee: Exxon Research & Engineering Co.
    Inventors: Gary B. McVicker, Joseph J. Eggert
  • Patent number: 4244935
    Abstract: A method of forming the chloride of a metal-oxygen-containing substance, including the steps of coating particles of such substance with green carbon, i.e. carbon which contains substances more volatile than carbon, heating the coated particles to drive off the volatile matter and produce openings such as pores and fissures, and then reacting the particles from the step of heating with a source of chlorine.
    Type: Grant
    Filed: April 20, 1978
    Date of Patent: January 13, 1981
    Assignee: Aluminum Company of America
    Inventor: M. Benjamin Dell
  • Patent number: 4209501
    Abstract: A process for forming a metal chloride of a metal or its compound comprising forming a liquid fused salt bath mixture of at least two metal chlorides with one of the chlorides being selected from the group consisting of ferric chloride, ferrous chloride, cupric chloride and cuprous chloride, and introducing the metal or compound into the liquid fused salt bath in the presence of a chlorine source to form the metal chloride and elemental sulfur, and recovering the formed chloride from the liquid fused salt bath mixture. Chlorine gas or sulfur chloride may be introduced into the bath as an additional source of chlorine for reaction with the metal and for the generation of a portion of the ferrous chloride or cuprous chloride into ferric chloride or cupric chloride.
    Type: Grant
    Filed: January 4, 1979
    Date of Patent: June 24, 1980
    Assignee: Cato Research Corporation
    Inventor: Paul R. Kruesi
  • Patent number: 4173623
    Abstract: Lead sources, and particularly lead sulfide concentrates, are halogenated utilizing a halogen gas in a dry atmosphere at a relatively low temperature to selectively halogenate the lead. The process is improved by effecting the halogenation in a fluidized state in a fluidized bed reactor, the fluidized state of the lead sulfide being accomplished by introducing a mixture of halogen gas and an oxygen-containing gas at a rate sufficient to maintain the lead sulfide in the desired fluidized state. Thereafter, metallic lead may be obtained by leaching the halogenated mixture with brine, filtering to separate elemental sulfur and residue from soluble lead halide. The soluble lead halide is then crystallized and the desired metallic lead is obtained by fused salt electrolysis.
    Type: Grant
    Filed: June 1, 1978
    Date of Patent: November 6, 1979
    Assignee: UOP Inc.
    Inventors: J. Mark Richardson, Norbert L. Novinski, II