From Mixture Containing Alkali Metal Or Alkaline Earth Metal Patents (Class 423/504)
  • Patent number: 8821821
    Abstract: Elemental fluorine is often manufactured electrochemically from a solution of KF in hydrogen fluoride and contains varying amounts of entrained electrolyte salt in solid form as impurity. The invention concerns a process for the purification of such impure elemental fluorine by contact with liquid hydrogen fluoride, e.g., in a jet gas scrubber or by bubbling the raw fluorine through liquid hydrogen fluoride. After this purification step, any entrained hydrogen fluoride is removed by adsorption, condensing it out or both. After passing through a filter with very small pores, the purified fluorine is especially suited for the semiconductor industry as etching gas or as chamber cleaning gas in the manufacture of semiconductors, TFTs and solar cells, or for the manufacture of micro-electromechanical systems (“MEMS”).
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: September 2, 2014
    Assignee: Solvay SA
    Inventors: Oliviero Diana, Peter M. Predikant, Philippe Morelle, Maurizio Paganin, Christoph Sommer
  • Patent number: 8591743
    Abstract: A portable system for extracting iodine from brine on-site is disclosed. The portable system includes a mobile platform containing a treatment unit for oxidizing iodine ions into elemental iodine, an adsorption unit capable of binding iodine, and may also have an electrolytic cell and/or a gas-liquid separator. The treatment unit and the adsorption unit may be located in the same or different portable operating devices. When transported to a field site containing natural gas wells, the natural gas wells provide a fluid stream containing natural gas and brine. The separators can separate the natural gas from the brine, and the brine is then run through the treatment unit and the adsorption unit to bind iodine present in the brine. The brine is then returned to the natural gas well. Upon saturation, the portable operating device is transported to a second location, where iodine is extracted from the adsorption unit.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: November 26, 2013
    Inventor: Charles A. Schneider
  • Patent number: 8574610
    Abstract: An article or material is applied to the environment of the body of an animal (including humans) to provide both absorbency and antimicrobial activity. The article or material may comprise a water absorbent material; and a composition that reacts with water to produce molecular iodine. The composition provides a local concentration (in the water) of at least 10 parts per million iodine in water carried by the material (that is actual water supported by the water absorbent material) when the material has 5% by weight of water present in the water absorbent. The material may be a flowable material, or the article may be diaper, sanitary pad, bandage, adhesive pad or wrap for an animal.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: November 5, 2013
    Assignee: Biolargo Life Technologies, Inc.
    Inventor: Kenneth R. Code
  • Publication number: 20130101499
    Abstract: Methods for the reductive post-treatment of NaCl-containing solutions, wherein such methods comprise: providing a NaCl-containing solution obtained from an anode side of an NaCl electrolysis cell, the solution comprising reducible components; and subjecting the solution to cathodic electrochemical reduction.
    Type: Application
    Filed: December 10, 2012
    Publication date: April 25, 2013
    Applicant: Bayer Intellectual Property GmbH
    Inventor: Bayer Intellectual Property GmbH
  • Publication number: 20120070365
    Abstract: A process for preparing gaseous elemental bromine and transferring it to a site of its intended use, comprising feeding a bromide (Br—) source, an oxidant and an acid into a reaction vessel to form an acidic aqueous reaction mixture, oxidizing the bromide at a temperature in the range between 59 C and the boiling point of said reaction mixture, thereby forming elemental bromine in a gaseous state, passing a stream of air through the reaction vessel and transferring metered amounts of the resultant mixture of air and bromine vapors to said site of use. The invention also provides an apparatus for carrying out the process.
    Type: Application
    Filed: February 9, 2010
    Publication date: March 22, 2012
    Inventors: Mira Bergstein Freiberg, Aharon Meirom, Dan Kopel, Shaul Shmilowitz, Naim Faza
  • Patent number: 8133467
    Abstract: Processes are provided for conjointly producing Br2 and a concentrated aqueous solution containing at least about 5 wt % CaCI2, based on the weight of the concentrated aqueous solution, from an aqueous HBr rich stream and, optionally, a feed brine dilute in CaCI2. Such processes can comprise feeding the aqueous HBr-rich stream and the feed brine to a tower, oxidizing bromide moieties within the tower with Cl2 to produce Br2, recovering Br2 from the tower, removing a bromide-depleted bottoms from the tower, such bottoms containing HCI, adding a Ca++ source to the bromide-depleted bottoms to convert substantially all of the HCI in the bottoms to CaCI2, and, as necessary, removing water from the treated bottoms to produce the concentrated aqueous solution.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: March 13, 2012
    Assignee: Albemarle Corporation
    Inventors: Joe D. Sauer, George W. Cook, Jr., Tyson J. Hall, George A. Newbill
  • Patent number: 8133468
    Abstract: Processes are provided for conjointly producing Br2, a concentrated aqueous solution containing CaCI2, and Cl2 from an aqueous HBr-rich stream and a feed brine dilute in CaCI2 that comprises NaCI. Such processes can comprise feeding the aqueous HBr-rich stream and the feed brine to a tower, oxidizing bromide moieties within the tower with Cl2 from a Cl2 source, at least a portion of which is produced according to this invention, to produce Br2, recovering Br2 from the tower, removing a bromide-depleted bottoms from the tower, such bottoms containing HCI, adding a Ca++ source to the bromide-depleted bottoms to convert substantially all of the HCI in the bottoms to CaCI2, as necessary, removing water from the treated bottoms to produce the concentrated aqueous solution, producing Cl2 and caustics from residual chlorides such as NaCI, and using at least a portion of the thus produced Cl2 in the Cl2 source.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: March 13, 2012
    Assignee: Albemarle Corporation
    Inventors: Joe D. Sauer, George W. Cook, Jr., Tyson J. Hall, George A. Newbill
  • Patent number: 8133469
    Abstract: Processes are provided for conjointly producing Br2 and a concentrated aqueous solution containing at least about 5 wt % CaCI2, based on the weight of the concentrated aqueous solution, from an HBr-rich recycle stream and a feed brine dilute in CaCI2. wherein the aqueous HBr-rich stream is produced from an HBr-rich recycle stream and a portion of the feed brine.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: March 13, 2012
    Assignee: Albemarle Corporation
    Inventors: Joe D. Sauer, George W. Cook, Jr., Tyson J. Hall
  • Patent number: 7799114
    Abstract: The invention relates to a method for recovering gold in connection with the hydrometallurgical production of copper from a waste or intermediate product containing sulphur and iron that is generated in the leaching of the copper raw material. The recovery of both copper and gold occurs in a chloride environment. The gold contained in the waste or intermediate is leached by means of divalent copper, oxygen and alkali bromide in a solution of copper (II) chloride and alkali chloride, in conditions where the oxygen-reduction potential is a maximum of 650 mV and the pH a minimum of 0.5. The bromide accelerates the dissolution of the gold.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: September 21, 2010
    Assignee: Outotec Oyj
    Inventors: Liisa Haavanlammi, Olli Hyvärinen, Marika Tiihonen, Reijo Tontti
  • Patent number: 7736617
    Abstract: An object of the present invention is to provide a method for recovering iodine, which can be carried out simply and economically without practicing mixing processing operation of iodine-containing material, an alkali metal compound and a solvent in advance before introducing to a combustion furnace. The object of the present invention can be attained by a method for recovering iodine which comprises feeding an iodine-containing solution containing iodine and/or iodine compound, a basic alkali metal compound solution and/or a basic alkaline earth metal compound solution separately to a roasting furnace, oxidatively decomposing a combustible material by heat treatment, and absorbing iodine and/or iodine salt contained in a component at heat treatment exit with water or an aqueous solution.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: June 15, 2010
    Assignee: Nippoh Chemicals Co., Ltd.
    Inventors: Shigenobu Shoji, Haruhisa Hujihira, Satoshi Kanbe
  • Publication number: 20100119438
    Abstract: Methods for recovering iodine from an aqueous solution containing sodium chloride and iodide are disclosed. In particular, sodium hypochlorite is generated from the aqueous solution itself, and the sodium hypochlorite is used to oxidize the iodide into iodine. The iodine is then recovered from the aqueous solution.
    Type: Application
    Filed: November 12, 2009
    Publication date: May 13, 2010
    Inventors: Thomas M. Becker, Martin S. Heineke, Charles A. Schneider
  • Patent number: 7713510
    Abstract: Methods are provided for producing bromine wherein an aqueous solution is formed from at least a bromide source, an oxidant, and a catalyst comprising a Group 1 cation and an oxide of a transition metal.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: May 11, 2010
    Assignee: Albemarle Corporation
    Inventors: William B. Harrod, Danielle Kristen Garrett
  • Patent number: 7572428
    Abstract: A process for producing a fluorine gas of the invention comprises a step (1) of generating a fluorine gas by sectioning the interior of a fluorine gas generation container equipped with a heating means, by the use of a structure having gas permeability, then filling each section with a high-valence metal fluoride and heating the high-valence metal fluoride. The process may comprise a step (2) of allowing the high-valence metal fluoride, from which a fluorine gas has been generated in the step (1), to occlude a fluorine gas. According to the process of the invention, a high-purity fluorine gas that is employable as an etching gas or a cleaning gas in the process for manufacturing semiconductors or liquid crystals can be produced inexpensively on a mass scale.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: August 11, 2009
    Assignee: Showa Denko K.K.
    Inventors: Masakazu Oka, Tomoyuki Fukuyo, Junichi Torisu
  • Publication number: 20090104087
    Abstract: A method of producing [18F]F2 from [18F] fluoride through a plasma induced scrambling procedure is provided. The present invention also provides an apparatus for preparing [18F]F2 from [18F] fluoride in a plasma induced scrambling procedure. Kit claims for preparing [18F]F2 from [18F] fluoride in a plasma induced scrambling procedure as well as method of use and use of claims for preparing [18F]F2 from [18F] fluoride through a plasma induced scrambling procedure are also provided.
    Type: Application
    Filed: April 24, 2007
    Publication date: April 23, 2009
    Inventors: Bengt Langstrom, Johan Ulin
  • Patent number: 7300625
    Abstract: A chlorine gas generating candle in a vented container which serves as a portable means to generate heated chlorine gas for killing insects, bacteria, viruses and other dangerous biological agents. The device has application in sanitizing dwellings, swimming pools and the like, and is effective in case of accidental release and/or biological attack. The chlorine gas generating candle disinfects an enclosed space with a quantity of heated chlorine gas. The chlorine gas generator is a self contained unit including an igniter which can be activated to initiate a self propagating burn of the entire candle and a resultant distribution of toxic chlorine gas. The use of one or a plurality of chlorine generators described in this application can provide any desired concentration of the killing gas. The chlorine gas generating candle can be safely and easily transported and does not require a source of power to operate.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: November 27, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Vladimir Hlavacek, Carl Gotzmer
  • Patent number: 6994836
    Abstract: There is disclosed a method of recovering chlorine gas from calcium chloride comprising the steps of introducing calcium chloride into a heat-resistant vessel which is provided with a gas inlet pipe and a gas outlet pipe, heating the calcium chloride up to at least the melting point thereof while introducing an inert gas from the gas inlet pipe into the vessel to produce fused salt of calcium chloride, and heating the interior of the vessel up to at least 1073K and switching a gas to be introduced from the gas inlet pipe from the inert gas to oxygen to allow the fused salt of calcium chloride to react with the oxygen to obtain chlorine gas and calcium oxide, the chlorine gas being subsequently rapidly and continuously discharged from the vessel through the gas outlet pipe.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: February 7, 2006
    Assignee: President of Shizuoka University
    Inventors: Akifumi Ueno, Naoto Azuma, Takefumi Kondo, Toshimitsu Sukigara, Yusaku Sakata
  • Patent number: 6955801
    Abstract: A step (1) of heating a fluoronickel compound to release a fluorine gas, a step (2) of allowing a fluorine gas to be occluded into a fluorinated compound, and a step (3) of heating the fluoronickel compound and reducing an inner pressure are conducted in a container, respectively, at least once, and thereafter a high-purity fluorine gas is obtained in the step (1). Also, a step (5) of heating a fluoronickel compound and reducing an inner pressure and a step (6) of allowing a fluorine gas reduced in a hydrogen fluoride content to be occluded into the fluoronickel compound are conducted in a container having a fluorinated layer formed on its surface, respectively, at least once, the step (5) is further conducted, and thereafter a fluorine gas containing impurity gases is contacted with the fluoronickel compound to fix and remove the fluorine gas, and the impurities are analyzed by gas chromatography.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: October 18, 2005
    Assignee: Showa Denka K.K.
    Inventors: Junichi Torisu, Hitoshi Atobe, Yasuyuki Hoshino
  • Patent number: 6770255
    Abstract: The specification discloses a process for recovering chlorine from a chlorinator waste. The process involves treating the chlorinator waste with oxygen in a fluidised bed under conditions which promote the conversion of metal chlorides to metal oxides and discourage the oxidation of carbon contained in the waste. Suitable conditions include a bed temperature in a range from 400 to 700° C., a superficial velocity in a range from 0.2 to 1 metre/second and stoichiometric ratio, R, in a range from 0.2 to 1.2.
    Type: Grant
    Filed: February 23, 2001
    Date of Patent: August 3, 2004
    Assignee: The Commonwealth of Australia Commonwealth Scientific and Industrial Research Organization
    Inventors: Viruthiamparambath Rajakumar, Damien Bowyer O'Connell Harding
  • Publication number: 20040042956
    Abstract: There is disclosed a method of recovering chlorine gas from calcium chloride comprising the steps of introducing calcium chloride into a heat-resistant vessel which is provided with a gas inlet pipe and a gas outlet pipe, heating the calcium chloride up to at least the melting point thereof while introducing an inert gas from the gas inlet pipe into the vessel to produce fused salt of calcium chloride, and heating the interior of the vessel up to at least 1073K and switching a gas to be introduced from the gas inlet pipe from the inert gas to oxygen to allow the fused salt of calcium chloride to react with the oxygen to obtain chlorine gas and calcium oxide, the chlorine gas being subsequently rapidly and continuously discharged from the vessel through the gas outlet pipe.
    Type: Application
    Filed: November 8, 2002
    Publication date: March 4, 2004
    Inventors: Akifumi Ueno, Naoto Azuma, Takefumi Kondo, Toshimitsu Sukigara, Yusaku Sakata
  • Patent number: 5520901
    Abstract: A method of removing iodine from an environment which had been previously treated with a composition containing iodine and an iodide salt is disclosed. The method involves the addition to the environment of at least one reagent which is a metal sulfite salt or a hydroxide-producing compound, in an amount sufficient to water-solubilize substantially all of the iodine, followed by recovery of the iodine. This technique is particularly useful for recovering iodine from extractant solutions used in the removal of mercury from contaminated materials.
    Type: Grant
    Filed: July 21, 1993
    Date of Patent: May 28, 1996
    Assignee: General Electric Company
    Inventor: Donald F. Foust
  • Patent number: 5458781
    Abstract: Aqueous solutions containing bromide and one or more polyvalent anions are separated by nanofiltration into two streams, a brine enriched in the bromide and a brine enriched in the polyvalent anion. The bromide-enriched brine can be concentrated using reverse osmosis, and the concentrated brine can be used, e.g., as feed to a process for recovering elemental bromine or for the production of metal bromide salt.
    Type: Grant
    Filed: June 29, 1992
    Date of Patent: October 17, 1995
    Assignee: Ethyl Corporation
    Inventor: Kaung-Far Lin
  • Patent number: 5158683
    Abstract: Aqueous solutions containing bromide and one or more polyvalent anions are separated by nanofiltration into two streams, a brine enriched in the bromide and a brine enriched in the polyvalent anion. The bromide-enriched brine can be concentrated using reverse osmosis, and the concentrated brine can be used, e.g., as feed to a process for recovering elemental bromine or for the production of metal bromide salt.
    Type: Grant
    Filed: September 3, 1991
    Date of Patent: October 27, 1992
    Assignee: Ethyl Corporation
    Inventor: Kaung-Far Lin
  • Patent number: 5154911
    Abstract: A process for the efficient production of Cl.sub.2 from gaseous HCl, using a catalyst containing a transition metal oxide, an alkali metal chloride, and, optionally, a trivalent rare earth chloride, operates efficiently at moderate temperatures and without volatilization of the catalyst. The process comprises two steps: (1) a chloridizing step in which the HCl is contacted with the catalyst at an elevated temperatures, converting the transition metal oxide to a transition metal chloride with elimination of water; and (2) an oxidizing step in which the transition metal chloride produced in the first step is contacted with a source of oxygen at a temperature at least about 300.degree. C. but less than 400.degree. C. and sufficiently high that Cl.sub.2 is evolved and the transition metal chloride is reconverted to a transition metal oxide. The temperature of the oxidizing step is increased over that of the chloridizing step. Preferably, the transition metal oxide is MnO.sub.2, in which case the MnO.sub.
    Type: Grant
    Filed: April 24, 1991
    Date of Patent: October 13, 1992
    Assignee: University of Southern California
    Inventors: Sidney W. Benson, Mohamed W. M. Hisham
  • Patent number: 5084264
    Abstract: An improved process for generating an elemental halogen selected from chlorine, bromine or iodine, from a corresponding hydrogen halide by absorbing a molten salt mixture, which includes sulfur, alkali metals and oxygen with a sulfur to metal molar ratio between 0.9 and 1.1 and includes a dissolved oxygen compound capable of reacting with hydrogen halide to produce elemental halogen, into a porous, relatively inert substrate to produce a substrate-supported salt mixture. Thereafter, the substrate-supported salt mixture is contacted (stage 1) with a hydrogen halide while maintaining the substrate-supported salt mixture during the contacting at an elevated temperature sufficient to sustain a reaction between the oxygen compound and the hydrogen halide to produce a gaseous elemental halogen product. This is followed by purging the substrate-supported salt mixture with steam (stage 2) thereby recovering any unreacted hydrogen halide and additional elemental halogen for recycle to stage 1.
    Type: Grant
    Filed: December 12, 1989
    Date of Patent: January 28, 1992
    Assignee: Battelle Memorial Institute
    Inventor: Stephen E. Lyke
  • Patent number: 5069884
    Abstract: Process for the purification of an aqueous alkali metal chloride solution from iodine compounds and ammonium compounds, in which the operation is carried out in two successive stages comprising a first stage in which the iodine compounds are oxidized to molecular iodine which is removed from the solution on a halogenated basic anion exchange resin, and a second stage in which the ammonium compounds are oxidized to form nitrogen which is removed in a stream of inert gas.
    Type: Grant
    Filed: May 8, 1990
    Date of Patent: December 3, 1991
    Assignee: Solvay & Cie (Societe Anonyme)
    Inventors: Mauro Filippone, Carlo Lessi
  • Patent number: 5021231
    Abstract: A process for the preparation of chlorine and sodium sulphate which contains the steps of reacting sulphuric acid with sodium sulphate and ferric oxide or alumina, crystallizing and drying the resulting double salt trisodium-iron(III) sulphate or trisodium-aluminum sulphate and roasting the obtained trisodium-iron(III) sulphate or trisodium-aluminum sulphate with sodium chloride under the influence of oxygen thereby forming sodium sulphate, chlorine and ferric oxide or alumina.
    Type: Grant
    Filed: May 3, 1990
    Date of Patent: June 4, 1991
    Assignee: Shell Oil Company
    Inventors: Just J. C. Jansz, Gerhardus Santing
  • Patent number: 4978518
    Abstract: A continuous process for the extraction of bromine from a bromide-rich brine in high efficiency while dramatically reducing the steam requirement for the distillation by operating a contact tower under vacuum. The contact tower is designed to operate near the boiling point of the feed brine so that only stripping steam is needed to remove elemental bromine from the brine.
    Type: Grant
    Filed: July 21, 1987
    Date of Patent: December 18, 1990
    Assignee: Ethyl Corporation
    Inventors: Kenneth C. Lesher, Herbert W. Henry
  • Patent number: 4725425
    Abstract: A continuous process for the extraction of bromine from a bromine-rich brine in high efficiency while dramatically reducing the steam requirement for the distillation by operating a contact tower under vacuum. The contact tower is designed to operate near the boiling point of the feed brine so that only stripping steam is needed to remove elemental bromine from the brine.
    Type: Grant
    Filed: June 19, 1984
    Date of Patent: February 16, 1988
    Assignee: Ethyl Corporation
    Inventors: Kenneth C. Lesher, Herbert W. Henry
  • Patent number: 4719096
    Abstract: A highly efficient continuous process for the winning of bromine from a bromide-containing brine which increases overall bromine recovery efficiency, decreases chlorine requirements, decreases waste-brine neutralization, improves steam recovery, increases capacity and significantly reduces total amount of steam necessary for bromine recovery over prior art. This is accomplished by operating a two-stage subatmospheric apparatus comprising a steaming out tower and a secondary flash chamber. The steaming out or contact tower is operated near the vapor pressure of the feed brine so that only stripping steam is required to remove elemental bromine from the brine. The second stage or secondary flash chamber is operated at a lower pressure than the stage one steaming out tower and enables recovery of bromine, steam and chlorine from the waste bromide-depleted brin or tail brine which might otherwise to be lost.
    Type: Grant
    Filed: June 20, 1985
    Date of Patent: January 12, 1988
    Assignee: Ethyl Corporation
    Inventors: Kenneth C. Lesher, Herbert W. Henry
  • Patent number: 4711680
    Abstract: A solid grain pure fluorine gas generator which comprises the in-situ generation of a thermodynamically unstable transition metal fluoride from its stable anion by a displacement reaction with a stronger Lewis acid, followed by the spontaneous irreversible decomposition of said unstable transition metal fluoride to a stable lower fluoride and elemental fluorine of superatmospheric pressure.
    Type: Grant
    Filed: May 23, 1983
    Date of Patent: December 8, 1987
    Assignee: Rockwell International Corporation
    Inventor: Karl O. Christe
  • Patent number: 4434241
    Abstract: The present invention provides a process for the recovery of rhodium, lithium, and iodine values from tar which is generated during carbonylation reactions. The process comprises sequentially extracting the tar with water and then leaching the remaining tar with acetic acid, burning the resulting residue, and recycling the resulting rhodium-enriched residue to the reaction process. Preferably, the process further comprises the recovery of iodine values by the incineration of the acetic acid leachate and treatment of the off-gas with aqueous alkali hydroxide. Lithium values are recovered by evaporating water from the aqueous phase of the water extraction step and recycling the resulting residue to the reaction process.
    Type: Grant
    Filed: September 27, 1982
    Date of Patent: February 28, 1984
    Assignee: Eastman Kodak Company
    Inventor: Thomas H. Larkins, Jr.
  • Patent number: 4404179
    Abstract: Process for destruction of hypochlorite, e.g. sodium hypochlorite, in an apparatus comprising a nozzle connected to one end of a desorption tube the other end of which is connected to a vessel, in the process pressurized acidified liquid issues from the nozzle in the form of a jet which contacts the wall of the desorption tube, hypochlorite solution is mixed with the acidified liquid before the liquid issues from the nozzle, and gaseous chlorine, produced by reaction of the hypochlorite and acid, and liquid are removed from the vessel.
    Type: Grant
    Filed: July 20, 1981
    Date of Patent: September 13, 1983
    Assignee: Imperial Chemical Industries PLC
    Inventors: Stephen J. Eastwood, Kelvin S. Timms
  • Patent number: 4363789
    Abstract: A method for producing alumina from a material containing alumina values via a chlorination step which process comprises the steps of:(A) dehydrating the material, if necessary, at a temperature of between about 500 and about 1300.degree. K.;(B) chlorinating the product of step (A) in the presence of chlorine and carbon at a temperature below about 1200.degree. K. and under conditions which provide chlorination of a majority of the iron present in the clay without substantial chlorination of titania values which may be present therein with concommittant formation of an iron chloride cloud above the surface of the chlorination reaction mixture;(C) introducing oxygen into the iron chloride cloud under conditions to cause oxidation of a majority of the iron chloride contained in the cloud;(D) chlorinating the non-gaseous product of step (B) in the presence of chlorine and carbon at a temperature above about 1300.degree. K.
    Type: Grant
    Filed: April 20, 1981
    Date of Patent: December 14, 1982
    Assignee: Reynolds Metals Company
    Inventor: Wendell E. Dunn, Jr.
  • Patent number: 4355008
    Abstract: There is described a method for producing alumina from a material containing alumina values via a chlorination step which process comprises the steps of:(A) dehydrating the material, if necessary, at a temperature of between about 500 and about 1300.degree. K;(B) chlorinating the product of step (A) in the presence of chlorine and carbon at a temperature below about 1200.degree. K and under conditions which provide chlorination of a majority of the iron present in the clay without substantial chlorination of titania values which may be present therein with concommittant formation of an iron chloride cloud above the surface of the chlorination reaction mixture;(C) introducing oxygen into the iron chloride cloud under conditions to cause oxidation of a majority of the iron chloride contained in the cloud;(D) chlorinating the non-gaseous product of step (B) in the presence of chlorine and carbon at a temperature above about 1300.degree.
    Type: Grant
    Filed: April 20, 1981
    Date of Patent: October 19, 1982
    Assignee: Reynolds Metals Company
    Inventor: Wendell E. Dunn, Jr.
  • Patent number: 4331645
    Abstract: A method for the production of reduction cell grade alumina from alkali metal/aluminum chloride complexes comprising the steps of:A. reacting the alkali metal/aluminum chloride complexes with oxygen in a three phase fluidized bed comprising:(I) as a solid phase, particles or pebbles of alumina of at least about 1/16" in average diameter;(II) as a gaseous phase oxygen fed at a rate to provide a fluidizing gas velocity above about 8'/sec.; and(III) as a liquid phase coating the particles of alumina an alkali metal/aluminum chloride complexes; andB. separating the product solids from the gases exiting the fluidized bed.
    Type: Grant
    Filed: April 20, 1981
    Date of Patent: May 25, 1982
    Assignee: Reynolds Metals Company
    Inventor: Wendell E. Dunn, Jr.
  • Patent number: 4284617
    Abstract: A novel solid composition and method for generating fluorine and gaseous orine components comprising fluorine rich inorganic oxidizing salts such as tetrafluoro ammonium tetrafluoroborate borofluoride and a high energy fuel selected from the group consisting of metals and metal nitrides together with a complexing agent capable of reacting with and trapping the boron trifluoride combustion by-product.
    Type: Grant
    Filed: November 30, 1979
    Date of Patent: August 18, 1981
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Richard E. Bowen, Robert A. Robb, Ottmar H. Dengel, Carl Gotzmer, Frank J. Pisacane
  • Patent number: 4138559
    Abstract: A process for recovering chlorine values from an aqueous solution of a chloroisocyanuric acid compound is disclosed. After reacting a mineral acid with the aqueous solution to form an acidified reaction mixture containing dissolved chlorine, the reaction mixture is fed to a stripping column which employs an inert gas to remove the dissolved chlorine. The stripping column is maintained to provide a continuous liquid phase and a non-continuous gas phase. Chlorine gas is readily recovered in a vessel such as a scrubber. Cyanuric acid may be subsequently recovered from the chlorine-depleted solution.
    Type: Grant
    Filed: January 30, 1978
    Date of Patent: February 6, 1979
    Assignee: Olin Corporation
    Inventors: Michael C. Fullington, Louis C. Hirdler
  • Patent number: 4125595
    Abstract: A process for the production of highly pure bromine from heated bromine-containing solutions. The process is an improvement over prior bromine-extraction methods comprising introducing steam and chlorine countercurrent to heated bromine-containing solution into a bromine column having a reboiler said reboiler having a liquid zone and a gaseous zone, withdrawing a mixture of bromine, chlorine and steam overhead from said bromine column, condensing the mixture of bromine, chlorine and steam withdrawn overhead to form crude bromine and sour water and distilling the crude bromine so formed.
    Type: Grant
    Filed: September 23, 1977
    Date of Patent: November 14, 1978
    Inventors: Dietmar Kunze, Walter Raschka
  • Patent number: 4110423
    Abstract: A reaction mass for use in the preparation of chlorine and ammonia by contact with ammonium chloride, in which the reaction mass contains iron oxide which is capable of chemically combining with chlorine in the reaction with ammonium chloride and an alkali metal chloride, with the ratio of iron oxide and alkali metal chloride being such that the ratio of the chlorine chemically combined with the iron to the chlorine chemically combined with the alkali metal is less than 1.
    Type: Grant
    Filed: February 14, 1975
    Date of Patent: August 29, 1978
    Assignee: Societe RHONE-PROGIL
    Inventor: Roger Botton
  • Patent number: 4087623
    Abstract: Disclosed is a method of removing iodine-containing compounds from the reaction product of iodine-catalyzed acetoxylation, wherein an olefin is reacted with oxygen and a carboxylic acid, and the iodine is recycled to the reactor.
    Type: Grant
    Filed: October 1, 1976
    Date of Patent: May 2, 1978
    Assignee: Chem Systems, Inc.
    Inventors: Martin Barry Sherwin, Robert Hansen
  • Patent number: 4086328
    Abstract: Chlorine dioxide is produced in a continuous process by reaction of sodium chlorate and hydrochloric acid. The reaction medium is maintained at its boiling point under subatmospheric pressure and the resulting steam is used to dilute the chlorine dioxide and chlorine and remove the same from the reaction zone. Sodium chloride is deposited from the reaction medium in the reaction zone. The reaction medium also contains buffering anions and the actual hydrogen ion concentration of the reaction medium is maintained in the range of about 0.05 to 0.3 normal to maintain an economic production rate for the chlorine dioxide.
    Type: Grant
    Filed: February 22, 1977
    Date of Patent: April 25, 1978
    Assignee: Erco Industries Limited
    Inventor: Richard Swindells
  • Patent number: 4073875
    Abstract: The present invention relates to the production of chlorine and magnesium oxide. According to the process substantially anhydrous magnesium chloride, containing at least 95% MgCl.sub.2, is admixed with particulate magnesium oxide and contacted with gas comprising oxygen at a temperature from about 700.degree. C. to about 1100.degree. C. One of the advantages of the process according to the present invention is to utilize the exothermicity of the oxidation of the molten magnesium chloride, the reaction being self-sustained. According to a preferred embodiment, the particulate magnesium oxide is preheated at a temperature of above 720.degree. C. before it is admixed with the molten magnesium chloride and serves as the heat transfer agent for the subsequent oxidation of the magnesium chloride.The process may be carried out in a stack reactor or in a fluidized bed reactor. The oxidation is effected with substantially dry, pure oxygen or air.
    Type: Grant
    Filed: June 18, 1976
    Date of Patent: February 14, 1978
    Assignees: Yissum Research Development Co. of the Hebrew Univ., Israel Chemicals Ltd.
    Inventor: Max H. Feilchenfeld
  • Patent number: 4031194
    Abstract: Bromine is continuously produced by simultaneously feeding an aqueous solution of bromide or hydrobromic acid and chlorine gas into the top of a contact tower which is separated into an upper reaction section and a lower distillation section, having a gas outlet port therebetween; and feeding steam from the bottom of the tower whereby free bromine formed in the upper reaction port section and free bromine distilled from the lower distillation tower section are recovered through said bromine outlet port, wherein the aqueous solution containing bromide or hydrobromic acid is heated at lower than 80.degree. C in the reaction section and the solution is heated to higher than 90.degree. C in the distillation section.
    Type: Grant
    Filed: February 17, 1976
    Date of Patent: June 21, 1977
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Yoshihisa Ogawa, Tsunenori Inazaki, Michihiro Kouda
  • Patent number: 3996005
    Abstract: Small amounts of NO.sub.2 and O.sub.3 in air are determined by utilizing the reactions of these gases with solid alkali metal halides to produce halogen, and the reaction of NO.sub.2 with various salts such as PbI.sub.2 to produce NO; halogens produced from the reaction may be measured by the use of an electrolytic cell, the output of which is dependent on the halogen concentration of the gas contacting one electrode thereof, while the NO concentration may be determined by the chemiluminescence technique.
    Type: Grant
    Filed: October 14, 1975
    Date of Patent: December 7, 1976
    Assignee: Rockwell International Corporation
    Inventor: Leo E. Topol
  • Patent number: 3989808
    Abstract: A simple, inexpensive system for purifying and storing pure fluorine is described. The method utilizes alkali metal-nickel fluorides to absorb tank fluorine by forming nickel complex salts and leaving the gaseous impurities which are pumped away. The complex nickel fluoride is then heated to evolve back pure gaseous fluorine.
    Type: Grant
    Filed: July 28, 1975
    Date of Patent: November 2, 1976
    Assignee: The United States of America as represented by the United States Energy Research and Development Administration
    Inventor: Larned B. Asprey
  • Patent number: 3975506
    Abstract: A chlorine dioxide-producing process is provided in which water vapor is used to dilute and remove the chlorine dioxide produced from sodium chlorate and hydrochloric acid from the reaction vessel. A cyclic arrangement is provided in which the recycle liquid heated to the boiling point of the reaction medium in the generator is allowed to expand gradually to provide a vapor/liquid/solid mixture which is discharged at low velocity to the generator. Vibration due to boiling is considerably reduced and wear of generator walls due to impinging materials is eliminated.
    Type: Grant
    Filed: May 12, 1975
    Date of Patent: August 17, 1976
    Assignee: Erco Industries Limited
    Inventor: Gerald Cowley
  • Patent number: 3944647
    Abstract: Vapor feed containing titanium tetrachloride and ferric chloride vapor is contacted with sodium chloride for complexing said ferric chloride as liquid sodium ferric chloride salt complex while leaving titanium tetrachloride as vapor residue. The salt complex is reacted with molecular oxygen for providing recovered chlorine gas product. Such gas can be recycled to said complexing operation for providing a high grade of chlorine and titanium tetrachloride-rich product. Substantially complete chlorination of ilmenite is a prime source of said vapor feed.
    Type: Grant
    Filed: April 8, 1974
    Date of Patent: March 16, 1976
    Assignee: SCM Corporation
    Inventor: James Paul Bonsack