Selenium Or Tellurium Or Compound Thereof Patents (Class 423/508)
  • Patent number: 8673260
    Abstract: This invention relates to a process for the phase-controlled synthesis of ternary and quaternary mixed-metal sulfide nanoparticles by reacting soft metal ions with hard metal ions in a high-boiling organic solvent in the presence of a complexing and activating ligands to control the reactivity of the metal ions. Ternary and quaternary mixed metal sulfides nanoparticles of copper, sulfur, and iron, aluminum, tin, and silicon are preferred. This invention also relates to the phase controlled preparation of polymorphs of bornite nanoparticles and the phase controlled preparation of stabilized ?- and ?-chalconite nanoparticles.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: March 18, 2014
    Assignee: Franklin and Marshall College
    Inventor: Katherine Plass
  • Patent number: 8663522
    Abstract: Fiber draw synthesis process. The process includes arranging reactants in the solid state in proximate domains within a fiber preform. The preform is fluidized at a temperature below the melting temperature of the reactants. The fluidized preform is drawn into a fiber thereby bringing the reagents in the proximate domains into intimate contact with one another resulting in a chemical reaction between the reactants thereby synthesizing a compound within the fiber. The reactants may be dissolved or mixed in a host material within the preform. In a preferred embodiment, the reactants are selenium and zinc.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: March 4, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Nicholas D. Orf, Sylvain Danto, Ofer Shapira, Fabien Sorin, Yoel Fink, John D. Joannopoulos
  • Patent number: 8658850
    Abstract: It is an object of the present invention to provide a beneficial method for detoxifying a harmful compound to detoxify the harmful compound containing arsenic etc., effectively. The method of detoxifying a harmful compound according to the present invention is characterized in that a methyl radical and/or a carboxymethyl radical is (are) contacted with a harmful compound comprising at least one element selected from the group comprising arsenic, antimony and selenium to detoxify the harmful compound. Furthermore, in a preferred embodiment of the method of detoxifying a harmful compound according to the present invention, the method is characterized in that the radical is generated by the exposure to light.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: February 25, 2014
    Assignee: Nippon Sheet Glass Company, Limited
    Inventor: Koichiro Nakamura
  • Patent number: 8636973
    Abstract: The present invention relates to means and methods for producing crystals or crystalline substances. In particular, crystals or crystalline substances which are useful as pharmaceutical ingredients can be manufactured.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: January 28, 2014
    Assignee: Biosyn Arzneimittel GmbH
    Inventors: Thomas Stiefel, Ortwin Kottwitz
  • Patent number: 8632745
    Abstract: A method of controlling stoichiometry in a multicomponent material includes providing a solid sample comprising N elements and having a first composition in a main chamber, which is connected to at most N?1 reservoirs. Each of the reservoirs is configured to contain a vapor comprising one of the N elements, where N?2. The solid sample is heated to a first temperature in the main chamber, and each of the reservoirs is heated to a first reservoir temperature (T1, T2 . . . TN-1) sufficient to achieve a predetermined vapor pressure of the vapor contained therein. The reservoirs are placed in gaseous communication with the main chamber, and thermodynamic equilibrium is achieved between the vapor from each of the reservoirs and the solid sample in the main chamber. Consequently, a stoichiometry of the solid sample is changed to arrive at a second composition thereof.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: January 21, 2014
    Assignee: UT-Battelle, LLC
    Inventors: Nagraj Sheshgiri Kulkarni, Miroslaw Stefan Gruszkiewicz, Boyd Mccutchen Evans, III
  • Publication number: 20140010750
    Abstract: Disclosed herein is a method of synthesizing a nanocrystal. The method can include reacting a bismuth material, an antimony material, and a ligand together with a heat source. The method may also include injecting a sulfur precursor at a predetermined temperature and maintaining the predetermined temperature for a predetermined amount of time to form a plurality of precursor nanocrystals. The precursor nanocrystals may include Bi0.5Sb1.5S3 nanocrystals.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 9, 2014
    Inventors: Clinton T. Ballinger, Gregg Bosak, Katie Fiske, Luke Nally, Adam Z. Peng, Susanthri Perera, Alfred Waring
  • Publication number: 20140001036
    Abstract: Provided are a photocatalyst having higher activity for hydrogen production through water splitting and a photoelectrode comprising the photocatalyst. The photocatalyst for water splitting of the present invention comprises a Ga selenide, an Ag—Ga selenide, or both thereof.
    Type: Application
    Filed: February 20, 2012
    Publication date: January 2, 2014
    Inventors: Haruyuki Nakanishi, Tsutomu Minegishi, Kazunari Domen, Jun Kubota, Chika Miwada
  • Patent number: 8613899
    Abstract: An apparatus includes a manifold with a chamber for mixing multiple reactants. Gases are jetted into the manifold by a plurality of inlet injectors. The inlet injectors are arranged such that the gases passing into the manifold impinge on each other at a common point to form a mixture. The mixture passes through a plurality of holes in one side of the manifold into a deposition chamber where the mixture of gases impinges on additional gases at a common point to provide a reaction resulting in deposition of solid materials in the deposition chamber. The solid materials are free-standing.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: December 24, 2013
    Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: Heather A. G. Stern, Vincent DiFilippo, Jitendra S. Goela, Michael A. Pickering, Hua Bai, Debashis Chakraborty, Hangyao Wang
  • Publication number: 20130334469
    Abstract: The present invention discloses an Al—Sb—Te phase change material used for PCM and fabrication method thereof. Said phase change material, which can be prepared by PVD, CVD, ALD, PLD, EBE, and ED, is a mixture of three elements aluminum (Al), antimony (Sb) and tellurium (Te) with a general formula of Alx(SbyTe1)1-x, where 0<x?0.85, 0.67?y?7. Said material is electrically driven from outside. By adjusting the content of three elements in the mixture, storage materials with different crystallization temperatures, melting temperatures and activation energies of crystallization can be achieved. Any two elements of aluminum, antimony and tellurium can be bonded to each other, so the adjustability is very high, maintaining the phase change properties in a wide range.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 19, 2013
    Inventors: Cheng Peng, Liangcai Wu, Fang Rao, Zhitang Song, Bo Liu, Xilin Zhou, Min Zhu
  • Publication number: 20130315804
    Abstract: The present invention is directed to a process of treating fly ash and/or fly ash leachate to immobilize heavy metals contained in such fly ash and/or fly ash leachate, which process comprises treating such fly ash and/or fly ash leachate with a soluble ferrous compound under alkaline conditions. This process may be conducted in the absence of any pH modification, mixing (in the sense of a physical blending with a solid material), drying or heating steps, making it practical for treatment of alkaline fly ash (and other coal combustion by-products) which is currently stored in landfills or wet ash lagoons, particularly fly ash which has been recovered from flue gas streams treated with highly alkaline materials such as trona, bicarbonate or limestone and the like.
    Type: Application
    Filed: May 10, 2013
    Publication date: November 28, 2013
    Applicant: FMC Wyoming Corporation
    Inventors: Aileen Halverson, Aaron Reichl
  • Publication number: 20130306927
    Abstract: A method of forming a metal chalcogenide material. The method comprises introducing a metal precursor and a chalcogenide precursor into a chamber, and reacting the metal precursor and the chalcogenide precursor to form a metal chalcogenide material on a substrate. The metal precursor is a carboxylate of an alkali metal, an alkaline earth metal, a transition metal, a post-transition metal, or a metalloid. The chalcogenide precursor is a hydride, alkyl, or aryl precursor of sulfur, selenium, or tellurium or a silylhydride, silylalkyl, or silylaryl precursor of sulfur, selenium, or tellurium. Methods of forming a memory cell including the metal chalcogenide material are also disclosed, as are memory cells including the metal chalcogenide material.
    Type: Application
    Filed: May 21, 2012
    Publication date: November 21, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Eugene P. Marsh, Stefan Uhlenbrock
  • Publication number: 20130302239
    Abstract: A method for making a chalcopyrite-type compound includes reacting a reaction mixture in a solvent under a reaction temperature and a reaction pressure to form the chalcopyrite-type compound. The reaction mixture includes at least one first compound and at least one second compound. The first compound contains M1 and A. The reaction temperature ranges from 130-280° C. and the reaction pressure is greater than 3 Kg/cm2. The second compound contains M2 and A. M1 is selected from Cu, Au, Ag, Na, Li and K, M2 is selected from In, Ga, Al, Ti, Zn, Cd, Sn, Mg, and combinations thereof, and A is selected from S, Se, Te, and combinations thereof.
    Type: Application
    Filed: May 9, 2012
    Publication date: November 14, 2013
    Inventors: Chung-Chi JEN, Bang-Yen CHOU, Juo-Hao LI, Wen-Hao YUAN, Chiu-Kung HUANG, Jun-Shing CHIOU, Tzo-Ing LIN
  • Patent number: 8574538
    Abstract: The invention relates to a solid material with the following formula (A): (Cu+1a-u; Ag+1u; Zn+2b-v-(y/2); Cd+2v; Sn+4c-w-(y/2); 1X+4w; 2X+3y; S?2x)(A), in which the solid material: is in divided state in the form of particles having a mean equivalent diameter of 15 nm to 400 nm; has, according to X-ray diffraction analysis of the solid material, a unique crystalline structure; is suitable for forming a stable dispersion of at least one solid material with formula (A) in a liquid, referred to as dispersion liquid, made up of at least one compound with a value of ?p higher than 8 and a value of ?H higher than 5.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: November 5, 2013
    Assignees: Universite Paul Sabatier Toulouse III, Centre National de la Recherche Scientifique (C.N.R.S.), Institut National des Sciences Appliquees de Toulouse, Ecole Superieure des Beaux-Arts de la Reunion
    Inventors: Jean-Yves Chane-Ching, Arnaud Gillorin, Xavier Marie, Pascal Dufour, Oana Zaberca
  • Publication number: 20130280855
    Abstract: To obtain high-quality chalcopyrite particles having a small particle size using a relatively inexpensive raw material in a simple and easy process in which complicated equipment (such as vacuum equipment) is not necessary. Provided is a method for producing a compound having a chalcopyrite structure represented by a compositional formula: ABC2, the method including: a step of dissolving a Group 11 element A, a Group 13 element B, and a Group 16 element C of the periodic table in a solvent to prepare a solution; and a step of contacting the solution with a reducing agent.
    Type: Application
    Filed: December 28, 2010
    Publication date: October 24, 2013
    Applicant: TOHOKU SEIKI INDUSTRIES, CO., LTD.
    Inventors: Koji Moriya, Jiro Nagaoka, Yoshinobu Takano, Yuuki Sano, Keitaro Harada, Masayoshi Yokoo
  • Publication number: 20130280843
    Abstract: Herein disclosed is a method of forming a thermoelectric material having an optimized stoichiometry, the method comprising: reacting a precursor material including a population of nanocrystals with a first ionic solution and a second ionic solution to form a reacted mixture.
    Type: Application
    Filed: April 19, 2013
    Publication date: October 24, 2013
    Applicant: Evident Technologies, Inc.
    Inventors: Susanthri Perera, Dave Socha, Adam Z. Peng, Clinton T. Ballinger
  • Patent number: 8562939
    Abstract: A method for producing a high yield of high quality, low size distribution, and size tunable semiconductor nanocrystals. The method produces III-V, II-VI, II-V, IV-VI, IV, ternary, quarternary, and quinary semiconductor nanocrystals (quantum dots) using a catalyst assisted two-phase reaction.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: October 22, 2013
    Assignee: Evident Technologies
    Inventor: Adam Peng
  • Patent number: 8551441
    Abstract: New methods for improving thermoelectric properties of bismuth telluride based materials are described. Constrained deformation, such as by canned/sandwich, or encapsulated, rolling and plane strain channel die compression, particularly at temperatures above 80% of the melting point of the material on an absolute temperature scale, changes the crystallographic texture and grain size to desirably increase the values of both the thermoelectric power factor and the thermoelectric figure of merit ZT for the material.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: October 8, 2013
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Raghavan Srinivasan, Jonathan E. Spowart, Nicholas Gothard
  • Patent number: 8518364
    Abstract: A nanostructure, being either an Inorganic Fullerene-like (IF) nanostructure or an Inorganic Nanotube (INT), having the formula A1?x-Bx-chalcogenide are described. A being a metal or transition metal or an alloy of metals and/or transition metals, B being a metal or transition metal B different from that of A and x being ?0.3. A process for their manufacture and their use for modifying the electronic character of A-chalcogenide are described.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: August 27, 2013
    Assignee: Yeda Research and Development Company Ltd.
    Inventors: Reshef Tenne, Francis Leonard Deepak, Hagai Cohen, Sidney R. Cohen, Rita Rosentsveig, Lena Yadgarov
  • Publication number: 20130206232
    Abstract: Nanorod and nanowire compositions are disclosed comprising copper indium selenide, copper indium gallium selenide, copper indium sulfide, or a combination thereof. Also disclosed are photovoltaic devices comprising the nanorod and/or nanowire compositions. Also disclosed are methods for producing the nanorod and nanowire compositions, and photovoltaic devices described herein.
    Type: Application
    Filed: July 8, 2011
    Publication date: August 15, 2013
    Applicant: Board of Regents of the University of Texas System
    Inventors: Brian A. Korgel, Chet Steinhagen
  • Patent number: 8506923
    Abstract: The present invention is a method and material for using a sorbent material to capture and stabilize mercury. The method for using sorbent material to capture and stabilize mercury contains the following steps. First, the sorbent material is provided. The sorbent material, in one embodiment, is nano-particles. In a preferred embodiment, the nano-particles are unstabilized nano-Se. Next, the sorbent material is exposed to mercury in an environment. As a result, the sorbent material captures and stabilizes mercury from the environment. In the preferred embodiment, the environment is an indoor space in which a fluorescent has broken.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: August 13, 2013
    Assignee: Brown University
    Inventors: Robert H. Hurt, Steven P. Hamburg, Love Sarin, Indrek Kulaots
  • Publication number: 20130200313
    Abstract: Hybrid particles that comprise a coating surrounding a chalcopyrite material, the coating comprising a metal, a semiconductive material, or a polymer; a core comprising a chalcopyrite material and a shell comprising a functionalized chalcopyrite material, the shell enveloping the core; or a reaction product of a chalcopyrite material and at least one of a reagent, heat, and radiation. Methods of forming the hybrid particles are also disclosed.
    Type: Application
    Filed: February 3, 2012
    Publication date: August 8, 2013
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: ROBERT V. FOX, RENE RODRIGUEZ, JOSHUA J. PAK, CHIVIN SUN
  • Patent number: 8491865
    Abstract: The present invention is a method and material for using a sorbent material to capture and stabilize mercury. The method for using sorbent material to capture and stabilize mercury contains the following steps. First, the sorbent material is provided. The sorbent material, in one embodiment, is nano-particles. In a preferred embodiment, the nano-particles are unstabilized nano-Se. Next, the sorbent material is exposed to mercury in an environment. As a result, the sorbent material captures and stabilizes mercury from the environment. In the preferred embodiment, the environment is an indoor space in which a fluorescent has broken.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: July 23, 2013
    Assignee: Brown University
    Inventors: Robert H. Hurt, Steven P. Hamburg, Love Sarin, Indrek Kulaots
  • Patent number: 8480995
    Abstract: The present invention relates to a use of sodium selenosulfate for supplementing selenium and enhancing the therapeutic efficacy of chemotherapy agents for cancers, and a rapid process for preparing sodium selenosulfate comprising: mixing sodium selenite, the reducing agent and sodium sulfite in a certain proportion to form sodium selenosulfate quickly.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: July 9, 2013
    Assignee: University of Science and Technology of China
    Inventor: Jinsong Zhang
  • Patent number: 8470288
    Abstract: The present invention relates to synthesis of copper zinc tin sulfide, Cu2ZnSnS4(CZTS) in an ionic liquid, using a mixture of copper-containing sulfides, zinc-containing sulfides, and tin-containing sulfides. Cu2ZnSnS4 is useful as an absorber material in thin film solar cells.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: June 25, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventor: Alex Sergey Ionkin
  • Patent number: 8470287
    Abstract: The present invention relates to synthesis of copper zinc tin sulfide, Cu2ZnSnS4. Copper zinc tin sulfide is useful as an absorber material in a thin film solar cell application.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: June 25, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventor: Alex Sergey Ionkin
  • Publication number: 20130149232
    Abstract: The present invention relates to means and methods for producing crystals or crystalline substances. In particular, crystals or crystalline substances which are useful as pharmaceutical ingredients can be manufactured.
    Type: Application
    Filed: June 22, 2011
    Publication date: June 13, 2013
    Applicant: BIOSYN ARZNEIMITTEL GMBH
    Inventors: Thomas Stiefel, Ortwin Kottwitz
  • Patent number: 8460632
    Abstract: A method of manufacturing a quantum dot, the method including: mixing of a Group II precursor and a Group III precursor in a solvent to prepare a first mixture; heating the first mixture at a temperature of about 200° C. to about 350° C.; adding a Group V precursor and a Group VI precursor to the first mixture while maintaining the first mixture at the temperature of about 200° C. to about 350° C. to prepare a second mixture; and maintaining the second mixture at the temperature of about 200° C. to about 350° C. to form a quantum dot.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: June 11, 2013
    Assignees: Samsung Display Co., Ltd., SNU R&DB Foundation
    Inventors: Jong Hyuk Kang, Junghan Shin, Jae Byung Park, Dong-Hoon Lee, Minki Nam, Kookheon Char, Seonghoon Lee, WanKi Bae, Jaehoon Lim, Joohyun Jung
  • Patent number: 8454928
    Abstract: A process for depositing a tellurium-containing film on a substrate is disclosed, including (a) providing a substrate in a reactor; (b) introducing into the reactor at least one tellurium-containing precursor having the formula TeLn or cyclic LTe(-L-)2TeL, wherein at least one L contains a N bonded to one said Te, “n” is between 2-6, inclusive, and each “L,” is independently selected from certain alkyl and aryl groups. The process further includes (c) optionally, introducing at least one M-containing source, wherein M is Si, Ge, Sb, Sn, Pb, Bi, In, Ag or Se, or a combination of any of those; (d) optionally, introducing a hydrogen-containing fluid; (e) optionally, introducing an oxygen-containing fluid; (f) optionally, introducing a nitrogen-containing fluid; (g) reacting the precursor(s) and M-containing source(s), if any, in the reactor with the hydrogen-, oxygen- and/or nitrogen-containing fluid, if any; and (h) depositing a tellurium-containing film onto the substrate.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: June 4, 2013
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventor: Christian Dussarrat
  • Patent number: 8454927
    Abstract: The invention relates to methods for preparing 3-element semiconductor nanocrystals of the formula WYxZ(1-x), wherein W is a Group II element, Y and Z are different Group VI elements, and 0<X<1, comprising dissolving a Group II element, a first Group VI element, and a second Group VI element in a one or more solvents. The Group II, VI and VI elements are combined to provide a II:VI:VI SCN precursor solution, which is heated to a temperature sufficient to produce semiconductor nanocrystals of the formula WYxZ(1-x). The solvent used to dissolve the Group II element comprises octadecene and a fatty acid. The solvent used to dissolve the Group VI elements comprises octadecene. The invention also includes semiconductor nanocrystals prepared according to the disclosed methods, as well as methods of using the semiconductor nanocrystals.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: June 4, 2013
    Assignee: Crystalplex Corporation
    Inventor: Lianhua Qu
  • Patent number: 8449859
    Abstract: The present invention relates to syntheses of quaternary chalcogenide compounds such as copper zinc tin sulfide in cesium, rubidium, barium and lanthanum containing fluxes. The quaternary chalcogenides are useful as the absorber layer as a p-type semiconductor in a thin film solar cell application.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: May 28, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Alex Sergey Ionkin, Brian M. Fish
  • Publication number: 20130129603
    Abstract: Tellurium (Te)-containing precursors, Te containing chalcogenide phase change materials are disclosed in the specification. A method of making Te containing chalcogenide phase change materials using ALD, CVD or cyclic CVD process is also disclosed in the specification in which at least one of the disclosed tellurium (Te)-containing precursors is introduced to the process.
    Type: Application
    Filed: January 8, 2013
    Publication date: May 23, 2013
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventor: Air Products and Chemicals, Inc.
  • Publication number: 20130118585
    Abstract: Embodiments of the invention are to a copper indium diselenide (CIS) comprising nanoparticle where the nanoparticle includes a CIS phase and a second phase comprising a copper selenide. The CIS comprising nanoparticles are free of surfactants or binding agents, display a narrow size distribution and are 30 to 500 nm in cross section. In an embodiment of the invention, the CIS comprising nanoparticles are combined with a solvent to form an ink. In another embodiment of the invention, the ink can be used for screen or ink-jet printing a precursor layer that can be annealed to a CIS comprising absorber layer for a photovoltaic device.
    Type: Application
    Filed: June 22, 2011
    Publication date: May 16, 2013
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Timothy James Anderson, Chinho Park, Rangarajan Krishnan, Umme Farva
  • Publication number: 20130109601
    Abstract: A nanostructure, being either an Inorganic Fullerene-like (IF) nanostructure or an Inorganic Nanotube (INT), having the formula A1?x-Bx-chalcogenide are described. A being a metal or transition metal or an alloy of metals and/or transition metals, B being a metal or transition metal B different from that of A and x being ?0.3. A process for their manufacture and their use for modifying the electronic character of A-chalcogenide are described.
    Type: Application
    Filed: November 7, 2012
    Publication date: May 2, 2013
    Applicant: YEDA RESEARCH AND DEVELOPMENT COMPANY LTD.
    Inventor: Yeda research and development company ltd.
  • Publication number: 20130095602
    Abstract: This invention relates to processes for making kesterite compositions with atypical Cu:Zn:Sn:S ratios and/or kesterite compositions with unusually small coherent domain sizes. This invention also relates to these kesterite compositions and their use in preparing CZTS films.
    Type: Application
    Filed: December 4, 2012
    Publication date: April 18, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventor: E I Du Pont De Nemours and Company
  • Patent number: 8414862
    Abstract: The present invention relates to synthesis of copper zinc tin sulfide, Cu2ZnSnS4, and its corresponding selenide and telluride analogs in ionic liquids. Cu2ZnSnS4 and related compounds are useful as absorber materials in thin film solar cells.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: April 9, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventor: Alex Sergey Ionkin
  • Patent number: 8409541
    Abstract: A method for producing a thiometallate or selenometallate material is provided in which a first salt containing an anionic component selected from the group consisting of MoS42?, MoSe42?, WS42?, WSe42? and a second salt containing a cationic component comprising copper in any non-zero oxidation state are mixed under anaerobic conditions in an aqueous mixture at a temperature of from 50° C. to 150° C.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: April 2, 2013
    Assignee: Shell Oil Company
    Inventors: Michael Anthony Reynolds, Stanley Nemec Milam
  • Publication number: 20130056691
    Abstract: Materials and structures for improving the performance of semiconductor devices include ZnBeO alloy materials, ZnCdOSe alloy materials, ZnBeO alloy materials that may contain Mg for lattice matching purposes, and BeO material. The atomic fraction x of Be in the ZnBeO alloy system, namely, Zn1-xBexO, can be varied to increase the energy band gap of ZnO to values larger than that of ZnO. The atomic fraction y of Cd and the atomic fraction z of Se in the ZnCdOSe alloy system, namely, Zn1-yCdyO1-zSez, can be varied to decrease the energy band gap of ZnO to values smaller than that of ZnO. Each alloy formed can be undoped, or p-type or n-type doped, by use of selected dopant elements.
    Type: Application
    Filed: October 25, 2012
    Publication date: March 7, 2013
    Applicant: Moxtronics, Inc.
    Inventor: Moxtronics, Inc.
  • Patent number: 8366967
    Abstract: Metal chalcogenide precursor solutions are described that comprise an aqueous solvent, dissolved metal formate salts and a chalcogenide source composition. The chalcogenide source compositions can be organic compounds lacking a carbon-carbon bond. The precursors are designed to form a desired metal chalcogenide upon thermal processing into films with very low levels of contamination. Potentially contaminating elements in the precursors form gaseous or vapor by-products that escape from the vicinity of the product metal chalcogenide films.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: February 5, 2013
    Assignee: Inpria Corporation
    Inventors: Douglas A. Keszler, Bejamin L. Clark
  • Patent number: 8361431
    Abstract: A process and method for recovering elemental selenium, selenite or selenate from minerals and selenium salts solutions using a reducing sugar to reduce selenium before precipitating the elemental selenium, selenite and/or the selenate.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: January 29, 2013
    Assignee: Pacific Rare Specialty Metals & Chemicals, Inc.
    Inventors: Robert John Hisshion, Rosauro C. Manalo
  • Patent number: 8357316
    Abstract: One gamma radiation source comprises 75Selenium or a precursor thereof, wherein the 75Selenium is provided in the form of one or more thermally stable compounds, alloys or mixtures with one or more nonmetals which upon irradiation do not produce products capable of sustained emission of radiation which would unacceptably interfere with the gamma radiation of 75Selenium. A further gamma radiation source comprises 75Selenium or a precursor thereof, wherein the 75Selenium is provided in the form of one or more thermally stable compounds, alloys or mixtures with one or more metals or nonmetals, the neutron irradiation of which does produce products capable of sustained emission of radiation which would acceptably complement the gamma radiation of 75Selenium.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: January 22, 2013
    Inventors: John J. Munro, III, Kevin J. Schehr
  • Publication number: 20130001480
    Abstract: A method for increasing the ZT of a material, involves creating a reaction cell including a material in a pressure-transmitting medium, exposing the reaction cell to elevated pressure and elevated temperature for a time sufficient to increase the ZT of the material, and recovering the material with an increased ZT.
    Type: Application
    Filed: March 11, 2010
    Publication date: January 3, 2013
    Applicant: DIAMOND INNOVATIONS, INC.
    Inventors: Abds-Sami Malik, Francis J. DiSalvo, Yongkwan Dong
  • Patent number: 8329137
    Abstract: A method for making a chalcopyrite-type compound includes reacting a reaction mixture in a solvent under reflux condition to form the chalcopyrite-type compound. The reaction mixture includes at least one first compound and at least one second compound. The first compound contains M1 and A. The second compound contains M2 and A. M1 is selected from Cu, Au, Ag, Na, Li and K, M2 is selected from In, Ga, Al, Ti, Zn, Cd, Sn, Mg, and combinations thereof, and A is selected from S, Se, Te, and combinations thereof.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: December 11, 2012
    Assignee: Nanowin Technology Co., Ltd.
    Inventors: Chung-Chi Jen, Wen-Hao Yuan, Bang-Yen Chou, Yen-Liang Tu, Chiu-Kung Huang, Jun-Shing Chiou, Tzo-Ing Lin
  • Patent number: 8277772
    Abstract: A method of extracting Te and bismuth oxide and recovering byproduct comprises: leaching raw materials with a Te content of ?1.8% by utilizing a leaching system containing H2SO4, Cl?, Br?, NH4+ and NaClO3, reducing leach solution with SO2 gas by precipitation method after separating impurities from it, washing with concentrated hydrochloric acid to obtain tellurium precipitation (18), purifying to obtain Te with a purity of higher than 99.99%. The filtrate produced is used for extracting Bi2O3 with a purity of higher than 99.99% when Bi content in the raw material is ?2%. Acidic waste solution produced during the process could be returned to the leaching step for recycle.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: October 2, 2012
    Inventors: Jun Wang, Xiuzhen Wang, Zexian Song
  • Patent number: 8268270
    Abstract: A coating solution for forming a light-absorbing layer of a chalcopyrite solar cell, including a hydrazine-coordinated Cu chalcogenide complex, a hydrazine-coordinated In chalcogenide complex and hydrazine-coordinated Ga chalcogenide complex dissolved in dimethylsulfoxide, the hydrazine-coordinated Cu chalcogenide complex being obtained by dissolving Cu or Cu2Se and a chalcogen in dimethylsulfoxide having hydrazine added, and adding a poor solvent to the resulting solution.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: September 18, 2012
    Assignee: Tokyo Ohka Kogyo Co., Ltd.
    Inventors: Masaru Kuwahara, Koichi Misumi, Hidenori Miyamoto
  • Patent number: 8268285
    Abstract: A process and method for recovering elemental tellurium from minerals and acidic solutions using a reducing sugar as the reducing agent in order to reduce and precipitate tellurium as tellurium dioxide (TeO2) from which elemental tellurium may be recovered.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: September 18, 2012
    Assignee: Pacific Rare Specialty Metals and Chemicals, Inc.
    Inventors: Robert John Hisshion, Crispinne C. Patiño
  • Publication number: 20120223277
    Abstract: Methods for orienting a plurality of sliver structures include applying at least one directional force to a group of sliver structures each having an orientation material applied to an edge to cause the plurality of sliver structures to orient in a common direction. The method may also include capturing the oriented sliver structures in a capture device to maintain the orientation of the sliver structures in the common direction. The oriented sliver structures may be used to form sub-assemblies such as solar array sub-assemblies that are used to generate solar power. Methods of applying an orientation material to sliver structures and resulting sliver structures are also disclosed.
    Type: Application
    Filed: March 1, 2011
    Publication date: September 6, 2012
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Gurtej S. Sandhu, Naga Chandrasekaran
  • Patent number: 8252265
    Abstract: A method for making a chalcopyrite-type compound includes: reacting a reaction mixture in a first solvent under reflux condition to form the chalcopyrite-type compound containing M1, M2, and A, in which M1 is selected from Cu, Au, Ag, Na, Li, and K, M2 is selected from In, Ga, Al, Ti, Zn, Cd, Sn, Mg, and combinations thereof, and A is selected from S, Se, Te, and combinations thereof; filtering the reaction mixture to obtain a crude cake; mixing the crude cake with a second solvent and a powder of a post-treatment material selected from S, Se, Te, and combinations thereof; and heating the mixture under reflux condition.
    Type: Grant
    Filed: January 20, 2011
    Date of Patent: August 28, 2012
    Assignee: Nanowin Technology Co., Ltd.
    Inventors: Chung-Chi Jen, Wen-Hao Yuan, Bang-Yen Chou, Yen-Liang Tu, Chiu-Kung Huang, Jun-Shing Chiou, Tzo-Ing Lin
  • Publication number: 20120201741
    Abstract: The present invention relates to syntheses of quaternary chalcogenide compounds such as copper zinc tin sulfide in cesium, rubidium, barium and lanthanum containing fluxes. The quaternary chalcogenides are useful as the absorber layer as a p-type semiconductor in a thin film solar cell application.
    Type: Application
    Filed: November 22, 2010
    Publication date: August 9, 2012
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Alex Sergey Ionkin, Brian M. Fish
  • Patent number: 8231848
    Abstract: Ternary and quaternary Chalcopyrite CuInxGa1-xSySe2-y (CIGS, where 0?x and y?1) nanoparticles were synthesized from molecular single source precursors (SSPs) by a one-pot reaction in a high boiling solvent using salt(s) (i.e. NaCl as by-product) as heat transfer agent via conventional convective heating method. The nanoparticles sizes were 1.8 nm to 5.2 nm as reaction temperatures were varied from 150° C. to 190° C. with very high-yield. Tunable nanoparticle size is achieved through manipulation of reaction temperature, reaction time, and precursor concentrations. In addition, the method developed in this study was scalable to achieve ultra-large quantities production of tetragonal and quaternary Chalcopyrite CIGS nanoparticles.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: July 31, 2012
    Assignee: Sun Harmonics Ltd
    Inventors: Yuhang Ren, Chivin Sun, Kai Shum
  • Publication number: 20120189531
    Abstract: A method for making a chalcopyrite-type compound includes: reacting a reaction mixture in a first solvent under reflux condition to form the chalcopyrite-type compound containing M1, M2, and A, in which M1 is selected from Cu, Au, Ag, Na, Li, and K, M2 is selected from In, Ga, Al, Ti, Zn, Cd, Sn, Mg, and combinations thereof, and A is selected from S, Se, Te, and combinations thereof; filtering the reaction mixture to obtain a crude cake; mixing the crude cake with a second solvent and a powder of a post-treatment material selected from S, Se, Te, and combinations thereof; and heating the mixture under reflux condition.
    Type: Application
    Filed: January 20, 2011
    Publication date: July 26, 2012
    Inventors: Chung-Chi JEN, Wen-Hao YUAN, Bang-Yen CHOU, Yen-Liang TU, Chiu-Kung HUANG, Jun-Shing CHIOU, Tzo-Ing LIN