Ammoniating Or Nitrating Patents (Class 423/56)
  • Patent number: 4804528
    Abstract: A process for removing dichromates from chlorate-rich solutions containing hypochlorite and dichromate ions and produced by the electrolysis of brine. The dichromate is reduced in a two-stage process by the addition of ammonia under controlled conditions of pH and temperature to a mixed di- and trivalent chromium hydroxide which is precipitated from solution and removed. The process provides an economical method of recovering chromium from electrolytically produced chlorate solutions.
    Type: Grant
    Filed: January 12, 1988
    Date of Patent: February 14, 1989
    Assignee: C-I-L Inc.
    Inventor: Ian H. Warren
  • Patent number: 4762812
    Abstract: A process for the recovery of a spent molybdenum catalyst from a hydroprocess for the upgrading of a nickel and vanadium containing hydrocarbonaceous mineral oil. The nickel and vanadium contaminated molybdenum catalyst is oxidized to convert the metals to oxides. Aqueous ammonia is added to preferentially dissolve molybdenum from nickel and vanadium. An amount of ammonia is used in excess of the amount required to produce an active catalyst for recycle and the excess ammonia is removed prior to recycle of the catalyst. The selectively of the separation of molybdenum from nickel and vanadium is improved by adding a reducing agent before or during the ammonia dissolving step. Hydrazine is a suitable reducing agent. The recovered molybdenum is sulfided and recycled.
    Type: Grant
    Filed: August 21, 1985
    Date of Patent: August 9, 1988
    Assignee: Chevron Research Company
    Inventors: Jaime Lopez, Eugene A. Pasek, Anthony V. Cugini
  • Patent number: 4741886
    Abstract: A process is disclosed for recovering tungsten from tungsten bearing material containing arsenic. The process involves adjusting a water slurry of the material to a pH of less than about 4 with an acid to solubilize the major portion of the tungsten, adding an insoluble ferric compound to the slurry to form a two phase system in which the solid phase contains the major portion of the arsenic and of any phosphorus which may be present, and a solution phase containing the major portion of the tungsten. After separation of the solid from the solution, the solution is adjusted to a pH of less than about 2 with an acid and a suffficient amount of hexamethylenetetramine is added to the solution to precipitate the major portion of the tungsten, followed by separating the precipitate from the resulting liquor. The solid phase containing the arsenic and phosphorus, if any, can be contacted with water and a soluble ferric salt to produce a treated solid which passes the EP toxicity test.
    Type: Grant
    Filed: October 24, 1986
    Date of Patent: May 3, 1988
    Assignee: GTE Products Corporation
    Inventors: Clarence D. Vanderpool, Richard A. Scheithauer, Martin B. MacInnis
  • Patent number: 4735791
    Abstract: A process is disclosed for producing ammonium molybdate from molybdenum trioxide which involves digesting molybdenum trioxide with ammonia in a sealed vessel equipped with one or more stirrers at a temperature of from about 20.degree. C. to about 80.degree. C., with the amount of ammonia being equal to the stoichiometric amount needed to form normal ammonium molybdate, up to about 2.9 times this stoichiometric amount, to form an ammonium molybdate solution containing essentially all of the starting molybdenum; followed by separating the solution from any insolubles. The method is especially useful for molybdenum containing iron as an impurity. Essentially all of the iron reports with the insolubles.
    Type: Grant
    Filed: April 3, 1987
    Date of Patent: April 5, 1988
    Assignee: GTE Products Corporation
    Inventor: Michael J. Cheresnowsky
  • Patent number: 4702895
    Abstract: A method is disclosed for purifying molybdenum which involves adding to an ammoniacal ammonium molybdate solution containing the impurities of phosphorus and arsenic with the phosphorus concentration being from about 0.01 to about 0.12 g/l, a soluble magnesium salt to form a precipitate comprising magnesium ammonium salts of the phosphorus and arsenic, and to form a purified ammonium molybdate solution. The amount of the magnesium salt is sufficient to result in a concentration of from about 0.005 to about 0.04 moles/l in the ammoniacal ammonium molybdate solution. The resulting purified ammonium molybdate contains no greater than about 0.01 g P/l. The precipitate is separated from the purified solution which is then contacted with a chelating cation exchange resin supplying a sufficient amount of a cation to result in removal of the major portion of the magnesium ions from the purified solution and form a further purified ammonium molybdate solution.
    Type: Grant
    Filed: May 2, 1986
    Date of Patent: October 27, 1987
    Assignee: GTE Products Corporation
    Inventors: Michael J. Cheresnowsky, Timothy A. Brunelli, Tai K. Kim
  • Patent number: 4654131
    Abstract: A method of removing sodium ions from an alkaline aqueous solution such as a leach solution which contains dissolved sodium tungstate. The method involves passing the solutions through the anode compartment of an electrolytic cell and passing an electrical direct current through the cell causing the sodium ions to pass through the cation selective membrane and tungstic acid to be produced in the anode compartment. Sodium-containing alkali is bled from the cathode compartment at a rate sufficient to prevent build-up of alkali in the cathode compartment. The tungstic acid is typically converted to ammonium tungstate by treatment with ammonia and then the ammonium tungstate further treated for recovery of the tungsten values.
    Type: Grant
    Filed: February 13, 1986
    Date of Patent: March 31, 1987
    Inventor: Bernard Verbaan
  • Patent number: 4612172
    Abstract: A process is disclosed for removing potassium from a relatively impure molybdenum trioxide and forming a molybdenum compound of high purity. The process involves first contacting the impure molybdenum trioxide with an acid leach which consists essentially of a mineral acid and the ammonium salt of the mineral acid in a weight ratio of above about 3 to 1 of acid leach to molybdenum trioxide at a sufficient temperature and for a sufficient time to solubilize the major portion of the potassium and form a leached molybdenum trioxide, followed by separating the leached molybdenum trioxide from the resulting potassium containing acid leach. The leached molybdenum trioxide is then water washed to remove residual impurities and the washed molybdenum trioxide is dissolved in ammonium hydroxide having an ammonium concentration sufficient to form an ammonium molybdate solution from which is crystallized the highly pure molybdenum compound.
    Type: Grant
    Filed: February 22, 1985
    Date of Patent: September 16, 1986
    Assignee: GTE Products Corporation
    Inventors: Timothy A. Brunelli, Michael J. Cheresnowsky
  • Patent number: 4604266
    Abstract: Processes are described for preparing pure ammonium molybdate from impure roasted molybdenum concentrates. An aqueous solution of nitric acid and ammonium nitrate is contacted with impure molybdenum concentrate to solubilize a major portion of the impurities. The resulting molybdenum concentrate is digested in ammonium hydroxide under conditions that maximize iron precipitation and removal. The resulting ammonium molybdate solution is separated from the sludge and further purified by chelating cation exchange resin in the ammonium form.
    Type: Grant
    Filed: March 27, 1985
    Date of Patent: August 5, 1986
    Assignee: GTE Products Corporation
    Inventors: Michael J. Cheresnowsky, Timothy A. Brunelli, Robin W. Munn, Tai K. Kim
  • Patent number: 4604267
    Abstract: Processes are described for preparing pure ammonium molybdate from impure roasted molybdenum concentrates. An aqueous solution of nitric acid, ammonium sulfate, and ammonium nitrate is contacted with impure molybdenum concentrate to solubilize a major portion of the impurities. The resulting molybdenum concentrate is digested in ammonium hydroxide under conditions that maximize iron precipitation and removal. The resulting ammonium molybdate solution is separated from the sludge and further purified by chelating cation exchange resin in the ammonium form.
    Type: Grant
    Filed: March 27, 1985
    Date of Patent: August 5, 1986
    Assignee: GTE Products Corporation
    Inventor: Michael J. Cheresnowsky
  • Patent number: 4601890
    Abstract: Processes are described for preparing pure ammonium molybdate from impure roasted molybdenum concentrates. An aqueous solution of hydrochloric acid and ammonium nitrate is contacted with impure molybdenum concentrate to solubilize a major portion of the impurities. The resulting molybdenum concentrate is digested in ammonium hydroxide under conditions that maximize iron precipitation and removal. The resulting ammonium molybdate solution is separated from the sludge and further purified by chelating cation exchange resin in the ammonium form.
    Type: Grant
    Filed: March 27, 1985
    Date of Patent: July 22, 1986
    Assignee: GTE Products Corporation
    Inventor: Michael J. Cheresnowsky
  • Patent number: 4596701
    Abstract: Processes are described for preparing pure ammonium molybdate from impure roasted molybdenum concentrates. An aqueous solution of sulfuric acid, ammonium sulfate, and ammonium persulfate is contacted with impure molybdenum concentrate to solubilize a major portion of the impurities. The resulting molybdenum concentrate is digested in ammonium hydroxide under conditions that maximize iron precipitation and removal. The resulting ammonium molybdate solution is separated from the sludge and further purified by chelating cation exchange resin in the ammonium form.
    Type: Grant
    Filed: March 27, 1985
    Date of Patent: June 24, 1986
    Assignee: GTE Products Corporation
    Inventors: Michael J. Cheresnowsky, Brice E. Martin
  • Patent number: 4587109
    Abstract: The invention relates to a process for recovering and purifying the molybdenum from a solution containing more molybdenum than vanadium.The process of the invention comprises the step of contacting the solution which contains molybdenum and vanadium, originally at a pH at least equal to 11 with an excess of an ammonium salt sufficient to precipitate the greatest part of vanadium in the form of solid ammonium vanadate, this excess being yet hot higher than a value such that after precipitation of vanadium, the quantity of ammonium having not reacted with the vanadate would be over a concentration which would account for risks of precipitating also molybdenum which is contained in the liquid phase of the supernatant.The molybdenum which is obtained is of industrial grade.
    Type: Grant
    Filed: July 8, 1983
    Date of Patent: May 6, 1986
    Assignee: Compagnie Generale des Matieres Nucleaires (COGEMA)
    Inventors: Georges Lyaudet, Jean Vial
  • Patent number: 4555386
    Abstract: Processes are described for preparing pure ammonium molybdate from impure roasted molybdenum concentrates. An aqueous solution of nitric acid, ammmonium sulfate, and ammonium nitrate is contacted with impure molybdenum concentrate to solubilize a major portion of the impurities. The resulting molybdenum concentrate is digested in ammonium hydroxide under conditions that maximize iron precipitation and removal. The resulting ammonium molybdate solution is separated from the sludge and further purified by chelating cation exchange resin in the ammonium form.
    Type: Grant
    Filed: February 29, 1984
    Date of Patent: November 26, 1985
    Assignee: GTE Products Corporation
    Inventor: Michael J. Cheresnowsky
  • Patent number: 4554138
    Abstract: A process for enhancing recovery of metals, especially cobalt, from spent hydroprocessing catalysts when the spent catalyst particles are first roasted at between 400.degree. C. and 600.degree. C. and then contacted with a first aqueous solution of ammonia and an ammonium salt to recover nickel, cobalt, molybdenum, tungsten, and vanadium. The once-leached spent hydroprocessing catalysts are again leached by contacting them with a second aqueous solution of ammonium sulfate at a pH of 1 to 4.
    Type: Grant
    Filed: October 30, 1984
    Date of Patent: November 19, 1985
    Assignee: Chevron Research Company
    Inventor: Paul J. Marcantonio
  • Patent number: 4552729
    Abstract: A method is disclosed for removing tin from aqueous sodium tungstate solutions. The method involves adding ammonia to the sodium tungstate solution, adjusting the pH to above about 9.5 with an acid, adding magnesium chloride to form insoluble material containing the major portion of the tin, silicon, arsenic and phosphorus and a resulting sodium tungstate solution containing the major portion of the tungsten, and separating the insoluble material from the resulting solution.
    Type: Grant
    Filed: December 7, 1984
    Date of Patent: November 12, 1985
    Assignee: GTE Products Corporation
    Inventors: Michael J. Miller, Martin C. Vogt, Richard A. Scheithauer
  • Patent number: 4542121
    Abstract: A process for the preparation of novel highly active, highly selective hydrotreating catalysts. These catalysts are prepared, in bulk or in supported form, from a catalyst precursor characterized by the formula B.sub.x [Mo.sub.3 S.sub.z ] where B is an ammonium ion, polyammonium ion, tertiary or quaternary phosphonium ion, or a hydrocarbyl substituted ammonium ion, hydrocarbyl substituted polyammonium ion, or hydrocarbyl substituted tertiary or quaternary phosphonium ion, x is 1 where B is a divalent cationic moiety, or 2 where B is a monovalent cationic moiety, [Mo.sub.3 S.sub.z ] is a divalent anionic moiety wherein z is an integer greater than 15. The catalyst precursor is dispersed in an ammonium sulfide or dilute ammonium polysulfide solution and heated to remove sulfur from said catalyst precursor to provide a z value of 15 or less. Carbon is also removed from the catalyst precursor and, where B of the B.sub.x [Mo.sub.3 S.sub.
    Type: Grant
    Filed: January 13, 1984
    Date of Patent: September 17, 1985
    Assignee: Exxon Research and Engineering Co.
    Inventors: Howard L. Mitchell, III, Willard H. Sawyer
  • Patent number: 4525331
    Abstract: Processes are described for preparing pure ammonium molybdate from impure roasted molybdenum concentrates. An aqueous solution of nitric acid and ammonium nitrate is contacted with impure molybdenum concentrate to solubilize a major portion of the impurities. The resulting molybdenum concentrate is digested in ammonium hydroxide under conditions that maximize iron precipitation and removal. The resulting ammonium molybdate solution is separated from the sludge and further purified by chelating cation exchange resin in the ammonium form.
    Type: Grant
    Filed: February 24, 1984
    Date of Patent: June 25, 1985
    Assignee: GTE Products Corporation
    Inventors: Michael J. Cheresnowsky, Timothy A. Brunelli, Robin W. Munn, Tai K. Kim
  • Patent number: 4478698
    Abstract: Low grade copper concentrates containing molybdenum are roasted under conditions to form copper and molybdenum compounds which are soluble in dilute sulfuric acid solutions.Molybdenum is then recovered by solvent extraction from these solutions and further precipitated as ammonium molybdate, while copper can be electrowinned or precipitated from the raffinate.Overall recovery efficiencies are 96% for copper and 84% for molybdenum.
    Type: Grant
    Filed: January 3, 1984
    Date of Patent: October 23, 1984
    Assignee: Corporacion Nacional Del Cobre De Chile
    Inventors: Igor Wilkomirsky, Andres Reghezza, Hector Petit-Laurent
  • Patent number: 4448755
    Abstract: In a process for producing pure ammonium paratungstate from ammonium tungstate solutions containing tin, sulfide is added to the ammonium tungstate solution in an amount sufficient to form a soluble complex of the sulfide with the tin. The solution is then evaporated to a volume at which essentially all of the tungsten is in the form of insoluble ammonium paratungstate and essentially all of the tin is in the mother liquor in the form of a soluble complex along with other impurities. The solid ammonium paratungstate is then separated from the mother liquor by filtration.
    Type: Grant
    Filed: December 1, 1983
    Date of Patent: May 15, 1984
    Assignee: GTE Products Corporation
    Inventors: Richard A. Scheithauer, Michael J. Miller, Martin B. MacInnis, James N. Christini, Martin C. Vogt
  • Patent number: 4431747
    Abstract: A supported carbon-containing molybdenum sulfide and tungsten sulfide catalyst useful for conducting methanation and hydrotreating reactions, principally the latter, can be formed by compositing a preselected quantity of a porous, refractory inorganic oxide with a complex salt characterized by the formulaB.sub.x [MO.sub.y S.sub.
    Type: Grant
    Filed: July 20, 1982
    Date of Patent: February 14, 1984
    Assignee: Exxon Research and Engineering Co.
    Inventors: Robert L. Seiver, Russell R. Chianelli
  • Patent number: 4430442
    Abstract: A process for the preparation of novel highly active, highly selective hydrotreating catalysts. These catalysts are prepared, in bulk or in supported form, by contacting together and decomposing, in the presence of hydrogen, hydrocarbon, and sulfur, a catalyst precursor characterized by the formula B.sub.x [Mo.sub.3 S.sub.z ] where B is an ammonium ion, polyammonium ion, tertiary or quaternary phosphonium ion, or a hydrocarbyl substituted ammonium ion, hydrocarbyl substituted polyammonium ion, or hydrocarbyl substituted tertiary or quaternary phosphonium ion, x is 1 where B is a divalent cationic moiety, or 2 where B is a monovalent cationic moiety, [Mo.sub.3 S.sub.z ] is a divalent anionic moiety wherein z is an integer ranging from about 10 to about 46. A preferred precursor catalyst species is Mo.sub.3 (S.sub.2).sub.6 S.
    Type: Grant
    Filed: July 20, 1982
    Date of Patent: February 7, 1984
    Assignee: Exxon Research and Engineering Co.
    Inventors: Willard H. Sawyer, Howard L. Mitchell, III
  • Patent number: 4430443
    Abstract: A supported carbon-containing molybdenum sulfide and tungsten sulfide catalyst useful for conducting methanation and hydrotreating reactions, principally the latter, can be formed by compositing a preselected quantity of a porous, refractory inorganic oxide with a complex salt characterized by the formulaB.sub.x [MO.sub.y S.sub.
    Type: Grant
    Filed: July 20, 1982
    Date of Patent: February 7, 1984
    Assignee: Exxon Research and Engineering Co.
    Inventors: Robert L. Seiver, Russell R. Chianelli
  • Patent number: 4417997
    Abstract: The Abstract of the Invention is a method of making a solution of the nitrates of iron and chromium from a spent catalyst containing oxides of iron and chromium, which method comprises:(a) dissolving the catalyst in sulphuric acid;(b) reacting the resulting sulphates solution with a source of nitrate ions and of cations of which the sulphate is of low solubility, whereby to precipitate such sulphate;(c) separating the sulphate, whereby to give a nitrates solution of low sulphate content.
    Type: Grant
    Filed: May 24, 1982
    Date of Patent: November 29, 1983
    Assignees: Katalco Corp., Imperial Chemical Industries Limited
    Inventors: James R. Jennings, George N. Pessimisis
  • Patent number: 4407781
    Abstract: A method is disclosed for separating uranium from molybdenum in an aqueous solution. The pH of the solution is lowered to about 1 to about 4 using an inorganic acid such as hydrochloric acid. The carbon dioxide is then removed from the solution which can be done by aeration. The pH of the solution is raised to about 9 in the presence of ammonium ions which result in the precipitation of ammonium diuranate. The precipitated ammonium diuranate may then be filtered or otherwise separated from the molybdenum which remains in the solution.
    Type: Grant
    Filed: March 5, 1981
    Date of Patent: October 4, 1983
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas J. Crossley, Thomas P. Zinge
  • Patent number: 4405572
    Abstract: Molybdenum catalyst employed in the epoxidation of an olefin with an organic hydroperoxide preferably the epoxidation of propylene, is recovered from the bottoms fraction by adding aqueous alkaline material to the bottoms fraction and separating the aqueous phase. The molybdenum can be recovered from the aqueous phase by acidification and precipitating it as an insoluble compound.
    Type: Grant
    Filed: August 25, 1982
    Date of Patent: September 20, 1983
    Assignee: MorChem Products, Inc.
    Inventors: Calvin E. Moore, Mark E. Hutchinson, David S. Fetterman
  • Patent number: 4382069
    Abstract: Rapid recovery of molybdenum from an acid solution containing dissolved molybdenum is accomplished by using a multiple batch method. A first batch of ammonium molybdate precipitate is formed by diluting a first portion of acid with 1.5 times that volume of water, adding anhydrous ammonia, and seeding with ammonium molybdate particles while maintaining a temperature between 90.degree. C. and boiling. Subsequent batches of precipitate are formed by dissolving the previous precipitate in additional acid, similarly diluting as above, and adding anhydrous ammonia while maintaining temperature as above. All precipitates are coarse and fast settling.
    Type: Grant
    Filed: August 12, 1982
    Date of Patent: May 3, 1983
    Assignee: Westinghouse Electric Corp.
    Inventor: Herman R. Heytmeijer
  • Patent number: 4374100
    Abstract: The residue from a Mo-catalyzed coal liquefaction process is treated to recover the Mo in a form in which the Mo can easily be recycled and reused as a catalyst for coal liquefaction. The process includes intimately mixing the residue with alkali in excess of the stoichiometric amount required for water-soluble molybdate formation, subjecting the mixture to an oxidative roast at about 600.degree. C. to about 800.degree. C. for up to about one hour, leaching the roasted product with water to extract Mo values into solution, and then carrying out a series of steps involving acidifying and ammoniating the solution to form a Mo-bearing precipitate which is recovered and dissolved in aqueous ammonium hydroxide to form a solution which can be applied to coal to catalyze coal liquefaction.
    Type: Grant
    Filed: June 30, 1982
    Date of Patent: February 15, 1983
    Assignee: Amax Inc.
    Inventors: Roger F. Sebenik, Calvin J. Hallada, Henry F. Barry, George A. Tsigdinos
  • Patent number: 4346061
    Abstract: Prior to evaporative crystallization of ammonium tungstate solutions to give ammonium paratungstate (APT), an aluminum compound, e.g. aluminum sulfate solution, is added to precipitate silicon and phosphorus impurities. The yield of crystallized ammonium paratungstate is thereby increased.
    Type: Grant
    Filed: March 31, 1981
    Date of Patent: August 24, 1982
    Assignee: Union Carbide Corporation
    Inventor: John B. Goddard
  • Patent number: 4344924
    Abstract: Chromium and vanadium can be co-extracted from alkaline solutions or leach liquors containing these metals using quaternary amine solvent mixtures. The alkaline leach liquors usually are derived by leaching of calcined ores or concentrates. The loaded solvent mixture is scrubbed with chromium solution to remove all metals except chromium, and the chromium is then recovered from the solvent phase. The vanadium can be recovered from the scrub liquor. Recovery of aluminum is also possible.
    Type: Grant
    Filed: August 11, 1980
    Date of Patent: August 17, 1982
    Assignee: Canadian Patents & Development Ltd.
    Inventors: Bernard H. Lucas, Gordon M. Ritcey
  • Patent number: 4320094
    Abstract: Alloy scrap containing refractory metals such as chromium, molybdenum, tungsten, vanadium, niobium and tantalum and base metals such as nickel, cobalt, copper and iron are treated to partition the refractory metal values from the base metal values without an energy intensive remelting step. The scrap in finely divided form is calcined in the presence of an oxygen containing gas and a member of a certain group of alkali metal salts at a temperature in the range of 800.degree. C. to 1150.degree. C. for 1/4 hour to four hours. This treatment converts the refractory metals to alkali metal molybdates, tungstates, chromates, vanadates, niobates and tantalates and the base metals to oxides. The calcined product may then be water leached to produce a substantially base metal-free liquor rich in refractory metal values. Both the refractory and the base metal values may be subsequently recovered by conventional hydrometallurgical techniques.
    Type: Grant
    Filed: April 15, 1980
    Date of Patent: March 16, 1982
    Assignee: Cabot Corporation
    Inventors: Jameel Menashi, Alkis S. Rappas, Donald A. Douglas
  • Patent number: 4307065
    Abstract: For rapid and efficient recovery of dissolved molybdenum from spent acid, the spent acid solution is first diluted to a predetermined acid-water volume ratio and anhydrous ammonia added thereto to raise the solution temperature to at least about 90.degree. C. The solution temperature is maintained at less than boiling and the ammonia addition continued until the solution pH is from about 1.5 to about 3.5. The partially neutralized solution is then seeded with solid ammonium molybdate particles in order to hasten the onset of nucleation. The seeded solution is maintained at a temperature of at least about 90.degree. C. but less than the boiling temperature for a period of from about one hour to about four hours in order to precipitate substantially all molybdenum therefrom as ammonium molybdate. Thereafter, the precipitated ammonium molybdate is separated from the residual solution.
    Type: Grant
    Filed: January 9, 1981
    Date of Patent: December 22, 1981
    Assignee: Westinghouse Electric Corp.
    Inventor: Herman R. Heytmeijer
  • Patent number: 4230677
    Abstract: Method for the recovery of high purity Cr.sub.2 O.sub.3 from a Na.sub.2 CrO.sub.4 or Na.sub.2 Cr.sub.2 O.sub.7 solution by producing (NH.sub.4).sub.2 CrO.sub.4 by solvent extraction, evaporating the aqueous (NH.sub.4).sub.2 CrO.sub.4 and igniting the resulting solids to provide high purity Cr.sub.2 O.sub.3.
    Type: Grant
    Filed: November 30, 1978
    Date of Patent: October 28, 1980
    Assignee: Union Carbide Corporation
    Inventors: Tadashi J. Kagetsu, William B. De Atley, Joseph S. Fox, Oreste J. Malacarne
  • Patent number: 4168296
    Abstract: A process for recovering tungsten from tungsten bearing ores comprises producing a concentrate from the ore and leaching the concentrate at atmospheric pressure in a strong mineral acid solution, for example, a solution of sulfuric acid, hydrochloric acid or nitric acid within a temperature range of from 40.degree. to 90 Centigrade for from one to four hours in the presence of an inorganic complexing agent, and adding an ammonium salt compound for precipitating the tungsten. The precipitate is then dissolved in Ammonium Hydroxide and the tungsten recovered as Ammonium Paratungstate.
    Type: Grant
    Filed: February 17, 1978
    Date of Patent: September 18, 1979
    Inventor: Adolph Q. Lundquist
  • Patent number: 4145397
    Abstract: From roasted products of used catalysts from hydrotreatment desulfurization of petroleum, valuable molybdenum, vanadium, cobalt and nickel are recovered easily and a high percent recovery by means of a combination of simple chemical procedures and also inexpensive chemicals. The recovered metal components can be reused for preparing new catalysts and the like.
    Type: Grant
    Filed: August 3, 1977
    Date of Patent: March 20, 1979
    Assignees: Marubeni Corporation, Fuji Fine Chemical Co. Ltd.
    Inventors: Shigeo Toida, Akira Ohno, Kozo Higuchi, deceased, by Makoto Higuchi, heir at law, by Yuko Higuchi, heir at law
  • Patent number: 4115513
    Abstract: To obtain highly purified, lamp grade ammonium paratungstate crystals from any of several different tungsten ores, the ore is reduced to finely divided status and slurried in heated HCl solution to convert tungsten values to WO.sub.3.H.sub.2 O. Recovered tungstic oxide is washed and dissolved in heated aqueous solution of sodium carbonate or sodium hydroxide with the pH maintained at about 8 to 8.5 to form soluble sodium tungstate. Sodium hydroxide is added to raise the pH to about 10.5 to 11.5, and magnesium chloride is added in amount sufficient to somewhat neutralize the solution. Sodium hydroxide is added to raise the pH to about 10.5 to 11.5 to precipitate as hydroxide the magnesium and additional metallic impurities. At least one of ammonium sulfide and thioacetamide is and the heated solution is acidified to a pH in the range from about 2 to 3 to precipitate any molybdenum as MoS.sub.3.
    Type: Grant
    Filed: August 16, 1977
    Date of Patent: September 19, 1978
    Assignee: Westinghouse Electric Corp.
    Inventors: Avinash D. Kulkarni, James G. Cleary
  • Patent number: 4105743
    Abstract: A mixture of metal hydroxides is leached with an ammoniacal carbonate solution, to dissolve nickel, copper and zinc. Metal is recovered from the leaching solution. The solid leaching residue is leached with sulphuric acid at a pH of 1.5- 3, to dissolve a further amount of nickel, copper and zinc. The acidic leaching solution is passed to the ammoniacal leaching process.
    Type: Grant
    Filed: June 15, 1977
    Date of Patent: August 8, 1978
    Assignee: Mx-Processer Reinhardt & Co. AB
    Inventors: Hans Reinhardt, Harald D. Ottertun, Sven O. S. Andersson
  • Patent number: 4092400
    Abstract: A process for recovering tungsten values in the form of ammonium paratungstate from tungsten ores and ore concentrates, particularly wolframite ores and ore concentrates, incorporating a plurality of steps for necessary removal of impurities and formation of the product ammonium paratungstate. The steps of the process include grinding, caustic leaching, filtrations, chemical treatment including acidification particularly for the removal of silica impurities, further filtration, solvent extraction of the tungsten values, stripping of the tungsten values from the solvent solution in the form of ammonium paratungstate, and recovery of the ammonium paratungstate product. The caustic leaching step may be carried out in the substantial absence of oxygen.
    Type: Grant
    Filed: April 11, 1977
    Date of Patent: May 30, 1978
    Assignee: Engelhard Minerals & Chemicals Corp.
    Inventors: Vladimir Zbranek, Zdenka Zbranek, Daniel Arthur Burnham
  • Patent number: 4083922
    Abstract: A process is provided for the manufacture of a tungstate salt, especially ammonium tungstate. The process comprises treating finely divided metallic tungsten and/or intermetallic iron/tungsten species with an aqueous solution in the presence of an oxidizing agent, such as oxygen or hydrogen peroxide. The solution contains cations which are ammonium and/or alkali-metal ions and anions which are hydroxide, carbonate and/or bicarbonate ions. The finely divided material generally contains no more than impurity quantities of alkaline earth metals. The process is useful in deriving tungsten values from wolframite ores, which are reduced prior to the aqueous treatment.
    Type: Grant
    Filed: January 27, 1977
    Date of Patent: April 11, 1978
    Assignee: Du Pont of Canada Limited
    Inventor: Hans Peter Kasserra
  • Patent number: 4083920
    Abstract: A process is provided for extracting tungsten values from tungsten compositions. The process comprises treating a tri (alkaline earth metal) tungstate, especially tricalcium tungstate, at a temperature of preferably no greater than 50.degree. C. with a aqueous solution of hydrochloric and/or nitric acid, preferably having a concentration of no greater than 5 molar. The acid is supplied in excess of te stoichiometric amount required to convert the tungstate to tungstic acid and sufficient to maintain the thusly formed tungstic acid insoluble in the solution. The tungstic acid can then be separated from the solution and converted to soluble ammonium tungstate, which in turn can be converted into tungsten trioxide and finally into metallic tungsten. The tri (alkaline earth metal) tungstate starting material can be prepared from iron tungstate, manganese tungstate, and/or an alkaline earth metal tungstate or from ores or concentrates of these tungstates, by a high temperature treatment with calcium oxide.
    Type: Grant
    Filed: January 27, 1977
    Date of Patent: April 11, 1978
    Assignee: Du Pont of Canada Limited
    Inventors: Stephen Peter Beaton, Hans Peter Kasserra
  • Patent number: 4080421
    Abstract: A process is provided for preparing ammonium tungstate. In the process, a reduced calcium tungstate is treated in the presence of an oxidizing agent with an aqueous solution having at least ammonium cations and carbonate and/or bicarbonate anions, at a temperature of 10.degree. C to the boiling point of the solution. The reduced calcium tungstate reacts with the ammonium cations to form the ammonium tungstate which is soluble in the solution and with the anions to form a calcium compound which is insoluble in the solution. Oxygen and/or hydrogen peroxide are preferred oxidizing agents. The process is especially useful in separating tungsten values from scheelite ores or concentrates.
    Type: Grant
    Filed: January 27, 1977
    Date of Patent: March 21, 1978
    Assignee: Du Pont of Canada Ltd.
    Inventor: Hans Peter Kasserra
  • Patent number: 4080420
    Abstract: A process is provided for treating tri (alkaline earth metals) tungstates with an aqueous solution containing cations selected from ammonium, sodium and potassium ions and mixtures thereof, and anions selected from hydroxide, carbonate, bicarbonate, and phosphate ions and mixtures thereof, to form a tungstate salt which is soluble in the solution and an alkaline earth metal compound which is insoluble in the solution. The tri (alkaline earth metal) tungstate can be prepared from iron tungstate, manganese tungstate, and/or an alkaline earth metal tungstate or from ores or concentrates of these tungstates, by a high temperature treatment with an alkaline earth metal donor compound, such as calcium oxide. A preferred soluble tungstate is ammonium tungstate, which can be further processed to yield tungsten trioxide and/or tungsten.
    Type: Grant
    Filed: January 27, 1977
    Date of Patent: March 21, 1978
    Assignee: Du Pont of Canada Ltd.
    Inventors: Hans Peter Kasserra, Denis Bertram Kelly, Isaac Obadia
  • Patent number: 4079116
    Abstract: A process for producing a high purity ammonium heptamolybdate and/or ammonium dimolybdate product by which a particulated molybdenum oxide concentrate is purified to remove contaminating metal cations, whereafter it is leached with an ammoniacal leach solution to extract the molybdenum trioxide constituent therein as soluble ammonium molybdate compounds. The resultant ammoniacal leach solution is thereafter concentrated at an elevated temperature, whereafter at least a portion thereof is adjusted to provide an ammonia-to-molybdenum trioxide mol ratio ranging from about 0.86:1 to about 1.25:1, and the adjusted solution thereafter is cooled to effect a precipitation of ammonium heptamolybdate crystals which are separated and recovered, and the balance of the cooled solution is recirculated for admixture with additional ammoniacal leach solution.
    Type: Grant
    Filed: December 27, 1976
    Date of Patent: March 14, 1978
    Assignee: AMAX Inc.
    Inventors: Richard A. Ronzio, Phillip K. Davis, Robert C. Ziegler
  • Patent number: 4062927
    Abstract: An improved process for preparing a hydroxyl-amine salt by reduction of a solution of nitrate ions or nitrogen monoxide. Dissolved molybdenum in amounts as low as about two milligrams per liter of nitrate/nitrogen monoxide solution are known to interfere with the reduction reaction. The present invention provides a simple method of reducing molybdenum contamination, and hence enhancing the efficiency of the reduction reaction. Dissolved molybdenum is removed from the nitrate/nitrogen monoxide solution by coprecipitation with a complex iron-ammonium phosphate. If chromium is present, it will also be removed by this coprecipitation.
    Type: Grant
    Filed: June 14, 1976
    Date of Patent: December 13, 1977
    Assignee: Stamicarbon, B.V.
    Inventors: Abraham H. De Rooij, Jozef M. G. Prop, Willem J. Wassen
  • Patent number: 4000244
    Abstract: The present invention relates to a special process for the recovery of molybdenum by the wet-chemical digestion of molybdenum sulphide containing materials by means of nitric acid. The invention relates especially to the combination of a leaching procedure (that provides a very pure molybdenum oxide) and a liquid extraction procedure for the recovery of molybdenum and other values from the residual solution that is left over from the leaching procedure.
    Type: Grant
    Filed: April 30, 1975
    Date of Patent: December 28, 1976
    Assignee: Molyscand AB
    Inventors: Bengt Olov Pontus Mollerstedt, Karl-Erik Backius
  • Patent number: 3994720
    Abstract: A process is disclosed for extracting nickel, copper, cobalt and molybdenum from a complex ore containing copper, nickel, cobalt, molybdenum, manganese and iron. The process features treatment of the ore with alcohol, aldehyde or mixtures thereof followed by leaching with an aqueous solution of ammonia and ammonium salt. A specific complex ore is sea nodules.
    Type: Grant
    Filed: March 28, 1975
    Date of Patent: November 30, 1976
    Assignee: Ethyl Corporation
    Inventor: Michael Dubeck
  • Patent number: 3963823
    Abstract: Dissolved molybdenum is recovered from spent sulfuric acid-nitric acid solution by adding ammonium hydroxide to spent acid solution to raise pH thereof to from about 1.5 to about 3, and preferably from 2 to 3. Solution is then agitated and simultaneously heated at a temperature less than about 95.degree.C until substantially all dissolved molybdenum is precipitated as ammonium molybdate complex, from which the precipitate is then recovered.
    Type: Grant
    Filed: February 25, 1975
    Date of Patent: June 15, 1976
    Assignee: Westinghouse Electric Corporation
    Inventor: Avinash D. Kulkarni
  • Patent number: 3957946
    Abstract: A process for purifying concentrates of molybdenum oxide containing a variety of naturally-occurring contaminating metals, such as potassium, copper, calcium, magnesium, iron, aluminum, lead, zinc, bismuth, and the like, as well as compounds thereof, by roasting the impure concentrate at an elevated temperature in an oxygen atmosphere to convert sub-oxides of molybdenum to molybdenum trioxide and contaminating metal molybdites to corresponding metal molybdates, which are extracted by a hot aqueous leaching of the concentrate and the solubilized molybdate ions are recovered. The aqueous leached concentrate, after separation from the aqueous leach solution, is leached with an ammoniacal leach solution for converting the molybdenum trioxide constituent therein into soluble ammonium molybdate compounds, and the resultant leach solution is removed from the remaining insoluble residue, which is discarded.
    Type: Grant
    Filed: December 23, 1974
    Date of Patent: May 18, 1976
    Assignee: Amax Inc.
    Inventors: Richard A. Ronzio, Robert C. Ziegler, Fred N. Oberg, R. Stanley Rickard
  • Patent number: 3932580
    Abstract: A method for purifying technical grade molybdenum oxide derived from the roasting of molybdenite concentrates by which the molybdenum oxide feed material is admixed with sulfuric acid and pugged to form a plurality of reaction pellets which are heated to an elevated temperature to effect a baking and subsequent roasting thereof and a reaction between the metal contaminants and the sulfuric acid to produce aqueous soluble sulfate compounds. The resultant roasted pelletized oxide is ground and leached to remove the contaminating metal sulfates, whereafter the leached pellets are contacted with an aqueous ammoniacal solution for converting the molybdenum oxide constituent therein to ammonium molybdate dissolved in the solution, which is separated from the insoluble residue, which is discarded to waste and the solution is crystallized to recover the ammonium molybdate product which, in turn, may be calcined to produce a high purity molybdenum oxide product.
    Type: Grant
    Filed: October 21, 1974
    Date of Patent: January 13, 1976
    Assignee: Amax Inc.
    Inventors: Michael A. Vertes, Richard A. Ronzio