Group Vib Metal (cr, Mo, Or W) Patents (Class 423/53)
  • Patent number: 10161922
    Abstract: A molybdenum disulfide sensor includes a flexible substrate, a patterned circuit layer and at least a molybdenum disulfide sheet. The flexible substrate has a gas flow channel. The patterned circuit layer is formed on the flexible substrate, and the patterned circuit layer includes a first electrode and a second electrode. The second electrode is faced toward the first electrode, and a gap is formed between the first electrode and the second electrode. The molybdenum disulfide sheet is located in the gap and is connected with the first electrode and the second electrode.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: December 25, 2018
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Chien-Chong Hong, Chung-Hsuan Wu, Shih-Pang Wang
  • Patent number: 10017839
    Abstract: Disclosed is a method for effectively leaching valuable metals such as vanadium and tungsten contained in a waste denitrification catalyst by using roasting and water leaching. According to the present invention, the method for leaching valuable metals contained in a waste denitrification catalyst comprises the steps of: (a) mixing a waste denitrification catalyst containing vanadium (V) and tungsten (W) in the form of an oxide with an alkali metal compound to form a mixture; (b) roasting the mixture to generate a roasting product comprising sodium vanadate (NaVO3) and sodium tungstate (Na2WO4); and (c) injecting the roasting product into water to water leach sodium vanadate and sodium tungstate in the form of a vanadate ion (VO3?) and a tungstate ion (WO42?).
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: July 10, 2018
    Assignee: KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES
    Inventors: Jin-Young Lee, Joon-Soo Kim, Rajesh Kumar
  • Patent number: 9963357
    Abstract: A method for the synthesis of molybdenum disulphide foam wherein the porosity of the foam can be controlled. The porosity of the foam is employed to adapt the foam to various processes and specific requirements. The foam molybdenum disulphide structures have internal cavities are interconnected to create a large processing surface area.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: May 8, 2018
    Assignee: KHALIFA UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Saeed Alhassan Alkhazraji, Salama Almarzouqi
  • Patent number: 9656234
    Abstract: An industrial microwave ultrasonic reactor has an inner wall liner. A microwave generation device is formed by microwave units distributed on an outer sidewall, or by a microwave pipe disposed outside the reactor and microwave units distributed on the microwave pipe. One end of the microwave pipe communicates with the bottom of the reactor via a connection pipe I, and the other end communicates with the top via a return pipe. A shield is disposed outside the microwave generation device to separate the microwave units from the outside, and a heat removal device is disposed outside the shield. An ultrasonic wave generation device is formed by 10 to 30 sets of ultrasonic pulse units disposed at intervals along the outer sidewall. Each set has 10 to 50 members distributed along the circumferential direction of the reactor. A stirring shaft is fixed below a stirring motor and extends into the reactor.
    Type: Grant
    Filed: April 11, 2013
    Date of Patent: May 23, 2017
    Assignee: EXPLOITER MOLYBDENUM CO., LTD.
    Inventors: Weigen Zhao, Longfei Zhao, Nian Li, Jiafu Fan
  • Patent number: 9472396
    Abstract: A plasma-based processing method includes depositing a transition metal dichalcogenide (TMDC) material onto a substrate. The TMDC material is plasma treated in an oxygen containing ambient to oxidize the TMDC material to form oxidized dielectric TMDC material. The oxidized dielectric TMDC material has a higher electrical resistivity as compared an electrical resistivity of the TMDC material before the plasma treating, typically >103 times greater.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: October 18, 2016
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Saiful Khondaker, Muhammad Islam, Laurene Tetard
  • Patent number: 9290664
    Abstract: A treatment method includes the steps of: Providing an initial supply of an ammonium octamolybdate precursor powder having a bi-modal particle size distribution; applying a quantity of solvent to the initial supply of ammonium octamolybdate precursor powder to form a moistened intermediate powder; and allowing the moistened intermediate powder to adsorb the applied solvent over a time period, the quantity of solvent applied and the time period being sufficient to form a treated ammonium octamolybdate powder composition having a substantially uni-modal particle size distribution.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: March 22, 2016
    Assignee: Climax Engineered Materials, LLC
    Inventors: David L. Cottrell, Evan K. Morey
  • Patent number: 9206055
    Abstract: Enriched titanium hydrochloric acid extract residue is provided, for use as the feed stock in the preparation of titanium pigment by sulfuric acid process. The present invention belongs to the field of the preparation of titanium pigment and particularly, relates to the enriched titanium hydrochloric acid extract residue prepared from ilmenite by hydrochloric acid leaching, its use and the method of preparing titanium pigment. The method for preparing titanium pigment using the enriched titanium hydrochloric acid extract residue can effectively utilize the fine ilmenite in Panxi area (the utilization rate is almost 100%), obtain the titanium sulfate solution with an ultralow ratio of iron to titanium dioxide (Fe/TiO2) and double the throughput of digesting equipment.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: December 8, 2015
    Inventors: Lilin Sha, Shuzhong Chen
  • Publication number: 20150147247
    Abstract: Disclosed is a method of pre-treating molybdenite containing copper. The method includes mixing molybdenite containing copper with sulfuric acid, performing a sulfation reaction through a heating process after the mixing process is performed, performing a water leaching process by putting and stirring water after the sulfation reaction is performed, separating a cake from liquid after the water leaching process is performed, and drying the separated cake.
    Type: Application
    Filed: December 13, 2013
    Publication date: May 28, 2015
    Applicant: KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES
    Inventors: Young-Yoon Choi, Shun-Myung Shin, Chul-Woo Nam, Hyung-Seok Kim
  • Publication number: 20150139872
    Abstract: In one aspect, methods of purifying WC compositions are described herein. A method of purifying a WC composition comprises contacting the WC composition with an electrolyte solution comprising a cationic metal oxidant and oxidizing one or more metal impurities of the WC composition with the cationic metal oxidant to solubilize the one or more metal impurities in the electrolyte solution.
    Type: Application
    Filed: November 20, 2014
    Publication date: May 21, 2015
    Inventors: Pankaj Kumar MEHROTRA, Mark S. Greenfield
  • Patent number: 8999031
    Abstract: A composite particle and a population of particles comprising a water-insoluble polyphosphate composition, methods of producing, and methods of using the same are provided. The polyphosphate composition may comprise at least one alkaline earth metal selected from calcium and magnesium and optionally at least one nutrient ion selected from the group consisting of potassium, ammonium, zinc, iron, manganese, copper, boron, chlorine, iodine, molybdenum, selenium or sulfur.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: April 7, 2015
    Assignee: Agtec Innovations, Inc.
    Inventor: Chandrika Varadachari
  • Patent number: 8986634
    Abstract: The present invention refers to a method being easy to recover metals including nickel and aluminum from waste aluminum catalysts, thereby entirely promoting the recovering rate. Said method comprises: preparing and roasting a waste aluminum catalyst with sodium salts, and then obtaining a first solution comprising vanadium and molybdenum, and a dreg comprising nickel and aluminum through leaching and filtrating; collecting and mixing the dreg with alkali powders to obtain a mixture of the dreg and alkali powders, roasting the mixture at 300 to 1000° C. with aluminum in the dreg reacting with hydroxyl generated from the roasting of mixture and further generating aluminum hydroxide, and then obtaining a second solution comprising aluminum and a concentrate having nickel through another leaching and filtrating; and recovering aluminum from the second solution and recovering nickel from the concentrate.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: March 24, 2015
    Inventor: Ping-Tao Wu
  • Patent number: 8920773
    Abstract: Various embodiments provide a process roasting a metal bearing material under oxidizing conditions to produce an oxidized metal bearing material, roasting the oxidized metal bearing material under reducing conditions to produce a roasted metal bearing material, leaching the roasted metal hearing material in a basic medium to yield a pregnant leach solution, conditioning the pregnant leach solution to thrill a preprocessed metal bearing material; and leaching the preprocessed metal bearing material in acid medium.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: December 30, 2014
    Assignee: Freeport Minerals Corporation
    Inventors: Joanna M. Robertson, Thomas R. Bolles, Wayne W. Hazen, Lawrence D. May, Jay C. Smith, David R. Baughman
  • Patent number: 8883097
    Abstract: A method of treating value bearing material comprising oxidized or surface oxidized mineral values includes the steps of crushing the value bearing material, contacting the crushed material! with a sulfide solution to sulfide the oxidized or surface oxidized mineral values, and adding ions of a selected base metal to the crushed value bearing material. The value bearing material may comprise oxidized or surface oxidized base metal or precious metal minerals. The crushed value bearing material is prepared as a slurry or pulp comprising from 15% to 40% solids and the remainder comprising water. The sulfide solution preferably comprises a soluble sulfidiser such as sodium hydrosulfide and the base-metal ion solution preferably comprises metal salt of base metals like copper or iron.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: November 11, 2014
    Assignee: University of Cape Town
    Inventors: Deidre Jane Bradshaw, Andrew James Haigh Newell
  • Patent number: 8790608
    Abstract: Non-spherical siliceous particles having a plurality of porous branches are disclosed and claimed. The porous branches are randomly oriented and elongated, ring-like, and/or aggregated. An additive introduced during synthesis of the particles modifies pore volume and morphology. The tunability of the pore volume includes an inner diameter ranging from about 2 ? to about 50,000 ?. Synthesizing the particles includes mixing under constant or intermittent stirring in a reaction vessel an aqueous silicic acid solution with an acidic heel solution to form a mixture. The stirring may optionally be performed at a variable speed. An additive is introduced into the mixture at a controlled rate, wherein the additive imposes a pH change from a lower pH to a higher pH to the mixture to induce siliceous particle precipitation.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: July 29, 2014
    Assignee: Nalco Company
    Inventors: Brian T. Holland, Sascha Welz
  • Patent number: 8703078
    Abstract: The invention relates to a system and method for the substantially permanent biogeochemical stabilization of solids impacted with hexavalent chromium/Cr(VI), including chromite ore processing residue (“COPR”). The invention comprises a novel treatment method of adding amendment(s) to COPR or other chromate impacted solids for the purpose of (1) weathering COPR minerals (when present) to convert the minerals that control alkalinity of the COPR to non-alkaline forms and liberate incorporated hexavalent chromium (Cr(VI)) in the process; (2) providing a chemical reductant (ferrous iron) to rapidly and permanently reduce the available Cr(VI) to trivalent form (Cr(III)); and/or (3) supporting longer-term biogeochemical Cr(VI) reduction enhanced by recycling of the chemical reductant, ultimately rendering the material non-hazardous as measured by acceptable methods.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: April 22, 2014
    Assignee: ARCADIS Corporate Services, Inc.
    Inventors: Jeff B. Gillow, John F. Horst, Suthan S. Suthersan
  • Patent number: 8657917
    Abstract: A method for recycling metals from waste molybdic catalysts, comprises steps of leaching, by soaking a waste molybdic catalyst into a highly oxidized acid and conducting a reaction between sulfur in the waste molybdic catalyst and the acid to obtain sulfide and vaporizer, wherein metals in the waste molybdic catalyst are dissolved and oxidized by the acid to obtain a first solution and dregs; and refining, by further dissolving metals in the dregs into a second solution, and extracting metals in the waste molybdic catalyst from the first and second solution; wherein, the vaporizer obtained from the step of leaching is converted into highly oxidized acid and recycled in the step of leaching.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: February 25, 2014
    Assignee: Hong Jing Metal Corporation
    Inventors: Yu-Lung Sun, Ming-Zhe Tsai, Yung-Hao Liu
  • Patent number: 8636966
    Abstract: Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: January 28, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Chuck Z. Soderquist, Amanda M. Johnsen, Bruce K. McNamara, Brady D. Hanson, Steven C. Smith, Shane M. Peper
  • Patent number: 8636967
    Abstract: A metal recovery process for heavy effluent from a hydroconversion process. The effluent contains unconverted residue and a solid carbonaceous material containing group 8-10 metal, group 6 metal, and vanadium and/or nickel, and the metals are recovered according to the invention.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: January 28, 2014
    Assignee: Intevep, S.A.
    Inventors: Carlos Canelon, Angel Rivas, Edgar Lopez, Luis Zacarias
  • Patent number: 8628735
    Abstract: In one embodiment, this invention is directed to a method of recovering metals from a metals bearing material comprising: reducing the particle size of at least a portion of the metals bearing material; mixing the metals bearing material in an acid solution to form a first slurry containing at least alkaline earth metal compounds; separating the at least alkaline earth metal compounds from the first slurry to form a first filtrate and a metals bearing material; leaching metals from the metals bearing material to form a pressure leach solution containing transition metals; precipitating and recovering transition metals from the pressure leach solution. In another aspect, the invention relates to a method for recovering metals from a deoiled and dried coal liquefaction residue that contains spent catalyst originating from a Group VIB metal sulfide catalyst.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: January 14, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventor: Rahul S. Bhaduri
  • Patent number: 8628600
    Abstract: One embodiment of method for extracting hexavalent chromium includes preparing a liquid sample by adding a fatty acid to a polymer material, adding water or an aqueous alkali solution to this sample, and extracting hexavalent chromium contained in the sample in the water or the aqueous alkali solution.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: January 14, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Miho Muramatsu, Mitsuhiro Oki, Miyuki Takenaka
  • Publication number: 20130315804
    Abstract: The present invention is directed to a process of treating fly ash and/or fly ash leachate to immobilize heavy metals contained in such fly ash and/or fly ash leachate, which process comprises treating such fly ash and/or fly ash leachate with a soluble ferrous compound under alkaline conditions. This process may be conducted in the absence of any pH modification, mixing (in the sense of a physical blending with a solid material), drying or heating steps, making it practical for treatment of alkaline fly ash (and other coal combustion by-products) which is currently stored in landfills or wet ash lagoons, particularly fly ash which has been recovered from flue gas streams treated with highly alkaline materials such as trona, bicarbonate or limestone and the like.
    Type: Application
    Filed: May 10, 2013
    Publication date: November 28, 2013
    Applicant: FMC Wyoming Corporation
    Inventors: Aileen Halverson, Aaron Reichl
  • Patent number: 8591842
    Abstract: A molecularly imprinted polymer ion exchange resin for selectively removing one or more inorganic ions in a liquid medium is disclosed and described. The exchange resin can include a bead having a porous structure and comprising a cross-linked molecularly imprinted polymer having molecular sized cavities adapted to selectively receive and bind a specific inorganic ion in a liquid medium. A process for preparing a molecularly imprinted polymer ion exchange resin can include (a) polymerizing a polmerizable mixture in the presence of an inorganic ion imprinting complex to form a bead, said inorganic ion imprinting complex including a ligand and an inorganic ion; and (b) removing the inorganic ions from the bead to form the molecularly imprinted polymer ion exchange resin, the bead having a porous structure and comprising a cross-linked molecularly imprinted polymer having molecular sized cavities adapted to selectively receive and bind a specific inorganic ion in an liquid medium.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: November 26, 2013
    Assignee: The Johns Hopkins University
    Inventors: George M. Murray, Kelly A. Van Houten, Glen E. Southard
  • Publication number: 20130294985
    Abstract: TiO2-supported catalysts include at least molybdenum or tungsten as active components for hydrotreating processes, in particular for the removal of sulfur and nitrogen compounds as well as metals out of crude oil fractions and for the hydrogenation of sulfur oxides.
    Type: Application
    Filed: December 19, 2011
    Publication date: November 7, 2013
    Applicant: Sachtleben Chemie GmbH
    Inventors: Raimond L. C. Bonné, Olga Gonsiorová, Markus Schulte
  • Patent number: 8506911
    Abstract: Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: August 13, 2013
    Assignee: Battelle Memorial Institute
    Inventors: Chuck Z. Soderquist, Amanda M. Johnsen, Bruce K. McNamara, Brady D. Hanson, Steven C. Smith, Shane M. Peper
  • Patent number: 8471089
    Abstract: The instant invention relates to a process and plant for the transformation of dangerous wastes containing chromium six as contaminant into non dangerous wastes that can be stored without special care and will be degraded in the environment without time limit. The process basically consists of milling, extracting chromium six in liquid phase and under controlled conditions of stirring, time and temperature, proceeding then, through reduction, to transform the chromium six in chromium three and then precipitating as chromium trioxide, through gasification. The solid resulting from the transformation process can be used as raw material for the manufacturing of firebricks or eventually for the manufacturing of bricks used in the building industry through a process not included in the instant description.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: June 25, 2013
    Assignee: Cromotecnica Mexico
    Inventor: Francisco Garcia Fernandez
  • Patent number: 8470271
    Abstract: A process for chlorinating ore, slag, mill scale, scrap, dust and other resources containing recoverable metals from the groups 4-6, 8-12, and 14 in the periodic table. The process comprises: a) forming a liquid fused salt melt consisting essentially of aluminum chloride and at least one other metal chloride selected from the group consisting of alkali metal chlorides and alkaline earth metal chlorides, wherein the aluminum chloride content in the liquid salt melt exceeds 10% by weight; b) introducing the recoverable metal resources into said liquid salt melt: c) reacting the aluminum chloride as chlorine donor with said recoverable metal resource to form metal chlorides, which are dissolved in the salt melt; and d) recovering the formed metal chlorides from the salt melt.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: June 25, 2013
    Assignee: Salt Extraction Aktiebolag
    Inventors: Seshadri Seetharaman, Olle Grinder
  • Patent number: 8440152
    Abstract: A process for recovering metals from a stream rich in hydrocarbons and carbonaceous residues by means of a treatment section, characterized in that it comprises the following steps: sending said stream to a primary treatment, effected in one or more steps, wherein said stream is treated in the presence of a fluxant agent in a suitable apparatus, at a temperature ranging from 80 to 180° C., preferably from 100 to 160° C., and subjected to liquid/solid separation in order to obtain a clarified product essentially consisting of liquids and a cake (oilcake); possibly subjecting the separated cake to drying, in order to remove the hydrocarbon component having a boiling point lower than a temperature ranging from 300 to 350° C. from the cake; sending the cake, possibly dried, to a secondary thermal treatment comprising: a flameless pyrolysis of the cake effected between 400 and 800° C., preferably between 500 and 670° C.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: May 14, 2013
    Assignee: ENI S.p.A.
    Inventors: Andrea Bartolini, Ugo Cornaro, Paolo Pollesel, Paul Dominique Oudenne
  • Patent number: 8415000
    Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: April 9, 2013
    Assignee: Inpria Corporation
    Inventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
  • Publication number: 20130078167
    Abstract: A method of recovering vanadium, nickel and molybdenum from heavy crude oil refinery residues comprises pyrolysis and combustion of the residues at temperatures up to 900° C. to produce an ash, converting the ash to an aqueous slurry comprising sodium hydroxide as leading agent and hydrogen peroxide as oxidizer, and extracting vanadium, nickel and molybdenum salts and oxides from the slurry. Extraction processes for the metals are disclosed.
    Type: Application
    Filed: March 3, 2011
    Publication date: March 28, 2013
    Applicant: INTEVEP, S.A.
    Inventor: Matthew Stephen Grimley
  • Publication number: 20130064742
    Abstract: A process is disclosed for separation and recovery of vanadium, molybdenum, iron, tungsten, cobalt and nickel from alumina-based materials, mattes, ores, manufacturing by-products and waste. These elements are oxidized. The oxides are reacted with gaseous HCl to form volatile chloride-bearing compounds that subsequently sublimate. The volatile compounds are condensed in a downward-stepped thermal gradient that allows collection of moderate to high purity compounds of individual elements with exception of a nickel-cobalt co-condensate. Nickel is separated from cobalt by precipitation of nickel chloride from concentrated HCl pressurized with gaseous HCl.
    Type: Application
    Filed: September 17, 2012
    Publication date: March 14, 2013
    Applicant: METALS RECOVERY TECHNOLOGY INC.
    Inventor: JOSEPH L. THOMAS
  • Patent number: 8383070
    Abstract: A method of recovering rhenium (Re) and other metals from Re-bearing materials in the form of ammonium perrhenate having at least the step of adding Re-bearing materials into a leaching slurry. Additionally, the method has the step of adjusting the pH of the slurry to obtain Re in soluble form in a metal salt solution and insoluble residues; filtering the metal salt solution to remove the insoluble residues; selectively precipitating Re from the metal salt solution; filtering the Re precipitate from the metal salt solution to obtain a Re filtercake; and formulating and drying the Re filtercake to obtain a Re sulfide product. The method further has the step of combining the Re sulfide product with a Molybdenum (Mo) concentrate containing Re to obtain a Mo/Re concentrate; roasting the Mo/Re concentrate to obtain Mo oxide product and a flue gas containing Re; and treating the flue gas containing Re to obtain ammonium perrhenate.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: February 26, 2013
    Assignees: World Resources Company, WRC World Resources Company GmbH
    Inventors: Eberhard Luederitz, Ulrich R. Schlegel, Peter T. Halpin, Dale L. Schneck
  • Patent number: 8382880
    Abstract: A process for digesting molybdenum oxide concentrates includes suspending a molybdenum-containing starting material in an aqueous solution so as to obtain a suspension. While stirring, an oxidizing agent and an alkali solution of at least one alkali metal are metered to the suspension so as to set a pH and produce a product having a molybdenum content of at least 98% of the molybdenum-containing starting material. The alkali metal is selected from the group consisting of Na, K and Li.
    Type: Grant
    Filed: November 4, 2008
    Date of Patent: February 26, 2013
    Assignee: H. C. Starck GmbH
    Inventors: Josef Schmoll, Brigitte Schimrosczyk, Gisbert Ebeling, Joerg Henze
  • Patent number: 8366917
    Abstract: A method of recovering minerals from hydrocarbonaceous materials can include forming a constructed permeability control infrastructure. This constructed infrastructure defines a substantially encapsulated volume. A comminuted hydrocarbonaceous material can be introduced into the control infrastructure to form a permeable body of hydrocarbonaceous material. The permeable body can be contacted with an agent sufficient to remove minerals therefrom. The agent is typically a solution containing a solvent, leachant, chelating agent and the like via which minerals can be removed having value, toxic minerals, radioactive minerals and the like.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: February 5, 2013
    Assignee: Red Leaf Resources, Inc
    Inventors: Todd Dana, James W. Patten
  • Patent number: 8323481
    Abstract: A method of sequestering carbon dioxide emissions during recovery of hydrocarbons from hydrocarbonaceous materials can include forming a constructed permeability control infrastructure. This constructed infrastructure defines a substantially encapsulated volume. A comminuted hydrocarbonaceous material can be introduced into the control infrastructure to form a permeable body of hydrocarbonaceous material. The permeable body can be heated sufficient to remove hydrocarbons therefrom. During heating, the hydrocarbonaceous material is substantially stationary as the constructed infrastructure is a fixed structure. Additionally, during heating, any carbon dioxide that is produced can be sequestered. Removed hydrocarbons can be collected for further processing, use in the process, and/or use as recovered.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: December 4, 2012
    Assignee: Red Leaf Resources, Inc.
    Inventors: Todd Dana, James W. Patten
  • Patent number: 8323593
    Abstract: Processes for reducing hexavalent chromium, Cr(VI) in a chromite ore processing residue matrix and processes for analyzing and determining effective treatment are disclosed.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: December 4, 2012
    Assignee: TRC Environmental Corporation
    Inventor: Robert Stanforth
  • Patent number: 8282897
    Abstract: A process for the recovery of high purity boehmite with controlled pore size from spent hydroprocessing catalyst includes the step of treating the spent hydroprocessing catalyst composition in order to get recovery of the aluminas after extracting the valuable metals. The process permits easy and resourceful recovery of high quality boehmite from waste catalyst, which can be further used as hydroprocessing catalyst carrier having a pore structure almost identical or better than that used in heavy oil hydroprocessing catalysts. Such catalyst carrier is required to have high pore volume, macro-porosity, high strength and optimum surface area for active metal dispersion. The treating steps include process steps such as decoking, roasting, leaching, dissolving, digestion, precipitation, washing, stripping, and the like. The recovery steps include digestion, hydrothermal treatment, flocculation or precipitation, filtration, drying, calcination and the like.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: October 9, 2012
    Assignee: Kuwait Institute for Scientific Reaearch
    Inventor: Meena Marafi
  • Publication number: 20120251416
    Abstract: The present disclosure is a process for the recycling of tungsten carbide alloy. Tungsten carbide alloy scrap is heated in an oxidizing atmosphere and the oxidized material is pulverized by grinding. The powder material is treated with a carburizing mixture for reducing and carburizing the powdered tungsten oxides and other metal oxides. The method is cost effective and environment friendly.
    Type: Application
    Filed: December 7, 2010
    Publication date: October 4, 2012
    Inventor: Jayakannan Arumugavelu
  • Patent number: 8268267
    Abstract: A process is disclosed for separation and recovery of vanadium, molybdenum, iron, tungsten, cobalt and nickel from alumina-based materials, mattes, ores, manufacturing by-products and waste. These elements are oxidized. The oxides are reacted with gaseous HCl to form volatile chloride-bearing compounds that subsequently sublimate. The volatile compounds are condensed in a downward-stepped thermal gradient that allows collection of moderate to high purity compounds of individual elements with exception of a nickel-cobalt co-condensate. Nickel is separated from cobalt by precipitation of nickel chloride from concentrated HCl pressurized with gaseous HCl.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: September 18, 2012
    Assignee: Metals Recovery Technology Inc.
    Inventor: Joseph L. Thomas
  • Patent number: 8221710
    Abstract: Methods for recovering base metals, including, among other metals, molybdenum and nickel, from metal sulfides containing a Group VIB metal and a Group VIII metal. Generally, the methods comprise: contacting metal sulfides with a leaching solution containing ammonia and air to dissolve the metals into the leaching solution, forming a slurry containing soluble complexes of the metals, ammonium sulphate and solid residue containing ammonium metavanadate and any carbonaceous materials. The solid residue containing ammonium metavanadate and carbonaceous materials is then separated from the slurry and metal complexes are precipitated from the slurry by adjusting the pH. A second slurry may be formed comprising a second solid residue and a primary filtrate comprising ammonium sulfate solution that is substantially free of metals.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: July 17, 2012
    Assignee: Sherritt International Corporation
    Inventors: John Stiksma, Roman Berezowsky
  • Patent number: 8217215
    Abstract: The instant invention relates to a process and plant for the transformation of dangerous wastes containing chromium six as contaminant into non dangerous wastes that can be stored without special care and will be degraded in the environment without time limit. The process basically consists of milling, extracting chromium six in liquid phase and under controlled conditions of stirring, time and temperature, proceeding then, through reduction, to transform the chromium six in chromium three and then precipitating as chromium trioxide, through gasification. The solid resulting from the transformation process can be used as raw material for the manufacturing of firebricks or eventually for the manufacturing of bricks used in the building industry through a process not included in the instant description.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: July 10, 2012
    Assignee: Cromotecnica Mexico S.A. de C.V.
    Inventor: Francisco Garcia Fernandez
  • Patent number: 8211390
    Abstract: A method of isolating a radioisotope according to example embodiments may include vaporizing a source compound containing a first isotope and a second isotope of an element, wherein the second isotope may have at least one of therapeutic and diagnostic properties when used as a radiopharmaceutical. The vaporized source compound may be ionized to form charged particles of the first and second isotopes. The charged particles may be separated to isolate the particles of the second isotope. The isolated charged particles of the second isotope may be collected with an oppositely-charged collector. Accordingly, the isolated second isotope may be used to produce therapeutic and/or diagnostic radiopharmaceuticals having higher specific activity.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: July 3, 2012
    Assignee: Advanced Applied Physics Solutions, Inc.
    Inventors: Suzanne Lapi, Thomas J. Ruth, Dirk W. Becker, John M. D'Auria
  • Publication number: 20120148461
    Abstract: An improved process for the separation of different metal values from raw materials, and an apparatus for carrying out such processes are disclosed.
    Type: Application
    Filed: August 24, 2010
    Publication date: June 14, 2012
    Applicant: Metal Tech Ltd.
    Inventors: Aik Rosenberg, Boris Tarakanov, Sergey Gusakov, Igal Antonir, Alexander Rogov, Rami Noach, Ivgeny Jichor
  • Patent number: 8178477
    Abstract: Proppants which can be used to prop open subterranean formation fractions are described. Proppant formulations which use one or more proppants of the present invention are described, as well as methods to prop open subterranean formation fractions, and other uses for the proppants and methods of making the proppants.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: May 15, 2012
    Assignee: Oxane Materials, Inc.
    Inventors: Robert D. Skala, John R. Loscutova, Christopher E. Coker
  • Patent number: 8173166
    Abstract: The present teachings are directed methods of producing tungsten-containing nanoparticles, specifically tungsten nanoparticles and tungsten oxide nanoparticles with an average particle size of less than about five nanometers.
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: May 8, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Liufeng Xiong, Ting He
  • Publication number: 20120107200
    Abstract: The instant invention relates to a process and plant for the transformation of dangerous wastes containing chromium six as contaminant into non dangerous wastes that can be stored without special care and will be degraded in the environment without time limit. The process basically consists of milling, extracting chromium six in liquid phase and under controlled conditions of stirring, time and temperature, proceeding then, through reduction, to transform the chromium six in chromium three and then precipitating as chromium trioxide, through gasification. The solid resulting from the transformation process can be used as raw material for the manufacturing of firebricks or eventually for the manufacturing of bricks used in the building industry through a process not included in the instant description.
    Type: Application
    Filed: December 21, 2011
    Publication date: May 3, 2012
    Applicant: CROMOTECNICA MEXICO
    Inventor: Francisco Garcia FERNANDEZ
  • Patent number: 8168846
    Abstract: The instant invention relates to a process and plant for the transformation of dangerous wastes containing chromium six as contaminant into non dangerous wastes that can be stored without special care and will be degraded in the environment without time limit. The process basically consists of milling, extracting chromium six in liquid phase and under controlled conditions of stirring, time and temperature, proceeding then, through reduction, to transform the chromium six in chromium three and then precipitating as chromium trioxide, through gasification. The solid resulting from the transformation process can be used as raw material for the manufacturing of firebricks or eventually for the manufacturing of bricks used in the building industry through a process not included in the instant description.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: May 1, 2012
    Assignee: Cromotecnica Mexico
    Inventor: Francisco Garcia Fernandez
  • Patent number: 8137654
    Abstract: Provided is a roasting method capable of reducing both C and S components in minerals down to 0.5% or less, respectively, and securing a yield ratio of 90% or more for the Mo component. In a rotary kiln 7, a V, Mo and Ni containing material containing C and S components is subjected to oxidizing roasting to remove the C and S components from the material before reducing the material by means of a reducing agent in order to recover valuable metals composed of V, Mo and Ni. The rotary kiln is equipped with a burner 11 disposed on a material charge side 8a of the roasting furnace 8 to which the material is charged. In the roasting furnace, a direction along which the material moves and a flow of oxygen-containing gas introduced into the roasting furnace 8 are set to be parallel with each other.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: March 20, 2012
    Assignees: JFE Material Co., Ltd., Sumitomo Heavy Industries, Ltd.
    Inventors: Kenji Takahashi, Hiroichi Sugimori, Nobuo Ehara
  • Patent number: 8088347
    Abstract: Process for recovering copper sulphide and optionally molybdenum sulphide from a copper bearing ore by froth flotation includes crushing said ore, mixing the obtained ground powder with at least a collector and water, aerating the slurry, and removing and concentrating the mineral froth formed at the surface of the bath, wherein the collector comprises a thioglycolic acid derivate having the following formula: wherein R1 is N or O, and R2 is an alkyl group having 2 to 12 carbon atoms.
    Type: Grant
    Filed: March 7, 2008
    Date of Patent: January 3, 2012
    Assignee: S.P.C.M. SA
    Inventors: Daniel Canady, Mark Dewald
  • Patent number: 8043399
    Abstract: A method for detoxifying spent CCA (copper, chromium, arsenic) treated wood, from which CCA is efficiently removed from the wood, allowing both the CCA and the wood to be reused has been developed. The method comprises the steps of (1) microwave-enhanced acid extraction of CCA, (2) separation of the acid-containing CCA solution from the wood, (3) separation/precipitation of CCA from the acid extract, (4) recovery and regeneration of CCA-bearing precipitant for reuse in the wood preservation industry, (5) recycling recovered acid solution, (6) microwave-assisted liquefaction of the extracted wood, and (7) use of detoxified liquefied wood to form polymeric materials such as polyurethanes and phenolic resin adhesives. The recovered CCA may be used to treat wood. The recovered acids may be used to extract CCA from CCA-treated wood, and the liquefied wood may be used as phenolic or polyurethane resins.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: October 25, 2011
    Assignee: Board of Supervisors of Louisiana State University and Agricultural and Mechanical College LSU Inc
    Inventors: Chung-Yun Hse, Todd Finley Shupe, Bin Yu, Hui Pan
  • Patent number: 8003563
    Abstract: A method for producing a tungsten trioxide powder for a photocatalyst according to the present invention is characterized by comprising a sublimation step for obtaining a tungsten trioxide powder by subliming a tungsten metal powder or a tungsten compound powder by using inductively coupled plasma process in an oxygen atmosphere, and a heat treatment step for heat-treating the tungsten trioxide powder obtained in the sublimation step at 300° C. to 1000° C. for 10 minutes to 2 hours in an oxidizing atmosphere. A tungsten trioxide powder which is obtained by the method for producing a tungsten trioxide powder for a photocatalyst according to the present invention has excellent photocatalytic performance under visible light.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: August 23, 2011
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Akira Sato, Kayo Nakano, Yasuhiro Shirakawa