Abstract: Disclosed herein are methods, systems, and compositions for providing catalysts for tail gas clean up in sulfur recovery operations. Aspects of the disclosure involve obtaining catalyst that was used in a first process, which is not a tailgas treating process and then using the so-obtained catalyst in a tailgas treating process. For example, the catalyst may originally be a hydroprocessing catalyst. A beneficial aspect of the disclosed methods and systems is that the re-use of spent hydroprocessing catalyst reduces hazardous waste generation by operators from spent catalyst disposal. Ultimately, this helps reduce the environmental impact of the catalyst life cycle. The disclosed methods and systems also provide an economically attractive source of high-performance catalyst for tailgas treatment, which benefits the spent catalyst generator, the catalyst provider, and the catalyst consumer.
Type:
Grant
Filed:
October 4, 2021
Date of Patent:
April 18, 2023
Assignee:
Evonik Operations GmbH
Inventors:
Terence McHugh, James Seamans, Brian Visioli, Pettus Kincannon, John Wesley Thompson, Alexander Enderlin
Abstract: Embodiments of the disclosure include systems and processes for the recovery of sulfur dioxide (SO2) from tail gas of sulfur recovery plant or from flue gas of a power plant, such as flue gas originating from an H2S-containing fuel gas for a gas turbine. SO2-containing gas is dissolved in chilled water and produce SO2-containing chilled water. The SO2-containing chilled is contacted with H2S-containing gas to aqueously react H2S and SO2 and form elemental sulfur. A water stream with the entrained sulfur is routed to a solid-liquid separate, and separated sulfur may be processed or disposed of. The water is recycled and chilled for use in the reaction. Embodiments also include the generation of sulfur dioxide (SO2) from produced sulfur instead of using tail gas or flue gas.
Abstract: A process of producing degassed liquid sulfur within a vertical sulfur condenser may include providing a plurality of condenser tubes within an external casing; submerging exit ends of the plurality of condenser tubes within a liquid reservoir resulting in submerged exit ends of the plurality of condenser tubes; passing the Claus process gas into an inlet end of the plurality of condenser tubes; condensing the Claus process gas within the condenser tubes to produce condensed Claus process gas within the plurality of condenser tubes; and collecting the condensed Claus process gas in the liquid reservoir upon exiting of the condensed Claus process gas at an exit end of the plurality of condenser tubes. The process may further include converting hydrogen sulfide by the Claus reaction 2H2S+SO23/xSx+2H2O, and decomposing polysulfanes to hydrogen sulfide and sulfur, wherein elemental sulfur is freed from hydrogen sulfide.
Abstract: A method for mitigation of H2S during a steam injection hydrocarbon producing process includes the steps of injecting steam and an additive comprising soluble molasses condensate (SMC) and amines of natural origin into a steam injection well; and producing hydrocarbons from a hydrocarbon producing well in subterranean fluid communication with the steam injection well, wherein the additive reduces H2S content in the hydrocarbon produced from the hydrocarbon producing well.
Type:
Grant
Filed:
February 14, 2013
Date of Patent:
July 7, 2015
Assignee:
Intevep, S.A.
Inventors:
Alfredo Viloria, Rafael Yoll, Yanine González, Mónica Román, José Biomorgi, Yefrenck Castro
Abstract: A process of producing degassed liquid sulfur within a horizontal sulfur condenser may include condensing a portion of a Claus process gas introduced into a condenser tube to produce liquid sulfur; creating first and second chambers above a liquid sulfur reservoir with a baffle; passing the liquid sulfur and the Claus process gas into the first chamber; forcing the Claus process gas from the liquid reservoir within the first chamber to the second chamber; causing a chemical reaction between dissolved hydrogen sulfide in the liquid sulfur and sulfur dioxide from the Claus process gas on a catalyst to produce elemental sulfur and reducing the dissolved H2S content of the remaining sulfur; converting hydrogen sulfide by a Claus reaction; decomposing polysulfanes to hydrogen sulfide and sulfur, freeing elemental sulfur from hydrogen sulfide; forcing the Claus process bubbles from the liquid reservoir into the second chamber above the liquid reservoir.
Abstract: A process of producing degassed liquid sulfur using process gas containing H2S to agitate the liquid sulfur being degassed while in contact with a degassing catalyst. Process gas is less costly and less complicated and quickly accomplishes substantial degassing rendering the liquid sulfur much safer in storage and transportation.
Abstract: A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.
Type:
Grant
Filed:
July 15, 2002
Date of Patent:
November 8, 2005
Assignee:
Research Triangle Institute
Inventors:
Santosh K. Gangwal, Apostolos A. Nikolopoulos, Mary Anne Dorchak, Thomas P. Dorchak