Organic Compound-containing Patents (Class 423/576.7)
  • Patent number: 10758469
    Abstract: The present invention relates to a composition that acts prior to the action of a tooth whitening composition or tooth whitening patch, the composition containing an oral cavity stimulation alleviating component able to reduce stimulation by the tooth whitening composition or patch. The present invention also relates to a tooth whitening kit whereby oral cavity stimulation is alleviated. The composition that acts prior to the action of a tooth whitening composition or patch of the present invention provides an outstanding tooth whitening effect while alleviating pain by mitigating intra-oral stimulation brought about by the rapid action of a tooth whitening component due to a tooth whitening component active agent.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: September 1, 2020
    Inventors: Jong-Hoon Kim, Jae-Hyun Ahn, Ji-Hye Kim, In-Ho Lee, Seong-Eun Bang
  • Patent number: 9023310
    Abstract: A process for recovering sulfur from a hydrogen sulfide-bearing gas utilizes an aqueous reaction medium, a temperature of about 110-150° C., and a high enough pressure to maintain the aqueous reaction medium in a liquid state. The process reduces material and equipment costs and addresses the environmental disadvantages associated with known processes that rely on high boiling point organic solvents.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: May 5, 2015
    Assignee: Gas Technology Institute
    Inventor: Arunabha Basu
  • Patent number: 8986638
    Abstract: The present invention relates to a process for the catalytic oxidation of sulphide, mono- and/or dihydrogen sulphide, comprising the step of contacting the sulphide, mono- and/or dihydrogen sulphide in the presence of oxygen with a chelate complex comprising (i) a metal cation selected from the group consisting of Fez+, Mnz+, Niz+ and Coz+, where z=2 or 3, and (ii) a chelate ligand containing a porphyrin, a phthalocyanine or a porphyrazine ring coordinated to the metal cation, and at least one cationic substituent covalently attached to the ring in the chelate ligand.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: March 24, 2015
    Assignee: Friedrich-Alexander-Universitaet Erlanden-Nuernberg
    Inventors: Ivana Ivanovic-Burmazovic, Milos Filipovic
  • Patent number: 8652435
    Abstract: An improved process for reduction-oxidation desulphurization uses an oxidizer operating at a pressure greater than the absorber where a liquid reduction-oxidation catalyst solution contacts a sulfur-containing gas feed stream.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: February 18, 2014
    Assignee: Merichem Company
    Inventor: Gary J. Nagl
  • Patent number: 7419652
    Abstract: The invention relates to a process for removing hydrogen sulfide and recovering sulfur from a gas stream, comprising the steps of: contacting said gas stream with an aqueous catalyst solution of a polyvalent metal redox catalyst in a contacting zone to absorb said hydrogen sulfide and form a reduced catalyst solution comprising reduced polyvalent metal redox catalyst and sulfur particles; oxidizing said reduced catalyst solution while removing sulfur particles to form said oxidized aqueous catalyst solution comprising polyvalent metal redox catalyst in an oxidized state with sulfur particles removed; and recovering sulfur by transferring at least one of said sulfur particles and foam to a separation zone; wherein a coagulating reagent is added to a feed of said separation zone prior to entering said separation zone to promote settlement of sulfur particles.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: September 2, 2008
    Assignee: Research Institute of Petroleum Industry (RIPI)
    Inventors: Mohammad Reza Khattaty, Khaled Forsat, Reza Hashemi, Manafi Varkiani Hossein
  • Patent number: 7402547
    Abstract: Contact of a crude feed with one or more catalysts produces a total product that includes a crude product. The crude feed has a residue content of at least 0.2 grams of residue per gram of crude feed. Methods of preparing the one or more catalysts are described. The crude product is a liquid mixture at 25° C. and 0.101 MPa. One or more properties of the crude product may be changed by at least 10% relative to the respective properties of the crude feed. The crude product may include hydrocarbons with different boiling point distributions.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: July 22, 2008
    Assignee: Shell Oil Company
    Inventors: Scott Lee Wellington, Stanley Nemec Milam
  • Patent number: 6669921
    Abstract: The present invention relates to a process for regenerating an at least partly reduced catalytic redox solution. The solution includes at least one polyvalent metal chelated by a chelating agent and is circulated in at least one regeneration zone while an oxygen-containing gas is injected into the regeneration zone. The process includes measuring a concentration of oxygen dissolved in a regeneration zone effluent. The process also includes adjusting a flow rate of the at least partly reduce catalytic redox solution entering the at least one regeneration zone and/or an oxygen-containing gas entering the regeneration zone in response to a measured concentration of oxygen, until a concentration of oxygen in the regeneration zone effluent is less than 20% of an amount of oxygen dissolved in water saturated with oxygen. Thus, degradation of the chelating agent in the catalytic redox solution is minimized.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: December 30, 2003
    Assignee: Institute Francais du Petrole
    Inventors: Thierry Huard, Christian Streicher
  • Patent number: 6627108
    Abstract: A desulphurizing composition for the treatment of CLAUS plant tail gases, comprises: an organic solvent A with a boiling point of more than 200° C. at atmospheric pressure; a catalyst composition B of at least one alkali- or alkaline-earth salt (S) of an organic monoacid or an organic polyacid which has at least one dissociation constant value (pK) in the range 2.2 to 8 such as formic acid, acetic acid, ascorbic acid, fumaric acid, maleic acid, malonic acid, oxalic acid, tartaric acid, benzoic acid, salicyclic acid, and sulphosalicyclic acid; at least one complexing agent (C) such as an alkali or alkaline-earth salt or a ferrous or ferric salt of a mono- or poly-aminocarboxylic acid, citric acid, a sulphocyanide ion, a ferrocyanide ion, a ferricyanide ion, a phosphate ion, a pyrophosphate ion, a fluoride ion and/or a thiosulphate ion; and water (W), in the following proportions by weight: S=0.1% to 30%; C=0.001% to 30%; W=balance.
    Type: Grant
    Filed: October 17, 2000
    Date of Patent: September 30, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Claude Dezael, Fabrice Lecomte
  • Patent number: 6596253
    Abstract: In the desulfurization of a gaseous feed containing hydrogen sulfide, comprising contacting the gaseous feed with a catalytic solution containing a chelated polyvalent metal under suitable conditions for oxidation of the hydrogen sulfide to elementary sulfur and concomitant reduction of the chelated polyvalent metal from a higher oxidation level to a lower oxidation level, recovering a gaseous effluent substantially freed from hydrogen sulfide, and a catalytic solution at least partly reduced and containing elementary sulfur, separating the solid elementary sulfur from the reduced catalytic solution, and regenerating the reduced catalytic solution by contacting the catalytic solution with a gas containing oxygen by means of an ejector.
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: July 22, 2003
    Assignee: Institut Francais du Petrole
    Inventors: Cécile Barrere-Tricca, Christian Streicher, Jean-Charles Viltard
  • Patent number: 6174507
    Abstract: The invention is a process for separating acid gases from synthesis gas and treating the resulting solids. A mixture comprising synthesis gas and acid gas is contacted with a fluid that reacts with said acid gas to form a particulate solid dispersed in a fluid. The slurry comprising fluid and particulate solid is filtered to separate the particulate solid from the fluid by means of a regenerable filter. The particulate solids are removed from the regenerable filter by back-washing with a back-washing fluid to form a pumpable slurry comprising a mixture of particulate solids and back-washing fluid. The slurry is gasified to form synthesis gas and vitrified solids.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: January 16, 2001
    Assignee: Texaco Inc.
    Inventors: Paul S. Wallace, Kay A. Johnson, Delome D. Fair