Cobalt (co) Or Nickel (ni) Containing Patents (Class 423/594.19)
-
Patent number: 11978898Abstract: A positive electrode for nonaqueous electrolyte battery includes specific peaks in pyrolysis GC/MS measurement, and includes specific pore diameters and pore volumes in a pore distribution curve attained by a mercury intrusion method.Type: GrantFiled: March 3, 2020Date of Patent: May 7, 2024Assignee: KABUSHIKI KAISHA TOSHIBAInventors: Tetsuro Kano, Dai Yamamoto, Yuki Watanabe
-
Patent number: 11909041Abstract: This invention provides an environmental friendly method for the production of high capacity cathode materials for use in Li-ion batteries. Traditional methods for producing lithium mixed metal oxide cathode materials typically generate large amounts of effluent which effluent must be treated prior to discharge. The present process uses mixed metals as raw materials, in a wet chemical reaction with an oxidant, in order to make high-quality metal hydroxide precursors which can be used to prepare high-quality cathode materials after lithiation. As a key feature, in the precursor preparation process, the bulk of the aqueous solution used for the wet chemical reaction can be recycled back to the reactor, so that the total process has little or no effluent generated during production of the cathode precursor material.Type: GrantFiled: April 3, 2019Date of Patent: February 20, 2024Assignee: Tesla, Inc.Inventors: Feng Zou, Yang Liu
-
Patent number: 11305243Abstract: A chemical reaction device that supplies a raw material liquid into a solution and causes particles to precipitate in the solution is provided. The chemical reaction device includes an agitation tank configured to accommodate the solution, an impeller configured to agitate the solution, and a plurality of discharge parts configured to discharge the raw material liquid into the solution.Type: GrantFiled: June 12, 2017Date of Patent: April 19, 2022Assignee: SUMITOMO METAL MINING CO., LTD.Inventors: Shuhei Nakakura, Kazuhiko Tsuchioka, Koichiro Maki, Motoaki Saruwatari, Kazuomi Ryoshi, Masafumi Yoshida
-
Patent number: 11222985Abstract: An n-type semiconductor layer has a single-crystal structure and is made of a wide-gap semiconducting material. A p-type semiconductor layer is provided on the n-type semiconductor layer and made of a material different from the aforementioned wide-gap semiconducting material, and has either a microcrystalline structure or an amorphous structure. An electrode is provided on at least one of the n-type semiconductor layer and the p-type semiconductor layer.Type: GrantFiled: February 14, 2017Date of Patent: January 11, 2022Assignees: Mitsubishi Electric Corporation, Tokyo Institute of TechnologyInventors: Tatsuro Watahiki, Yohei Yuda, Akihiko Furukawa, Shinsuke Miyajima, Yuki Takiguchi
-
Patent number: 10724145Abstract: Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.Type: GrantFiled: January 22, 2016Date of Patent: July 28, 2020Assignee: UChicago Argonne, LLCInventors: Ram Subbaraman, Vojislav Stamenkovic, Nenad Markovic, Dusan Tripkovic
-
Patent number: 10329163Abstract: Disclosed herein are a nickel oxide fine powder that is suitable as a material for electronic parts and has a controlled sulfur content, a low chlorine content, and a fine particle size and a method for industrially and stably producing such a nickel oxide fine powder. Nickel hydroxide obtained by neutralizing an aqueous nickel sulfate solution with an alkali is heat-treated in a non-reducing atmosphere at a temperature higher than 850° C. but lower than 1050° C. to form nickel oxide particles, and a sintered compact of nickel oxide particles that may be formed during the heat treatment is pulverized by preferably allowing the nickel oxide particles to collide with one another. The thus obtained nickel oxide fine powder has a sulfur content of 400 mass ppm or less, a chlorine content of 50 mass ppm or less, a sodium content of 100 mass ppm or less, and a specific surface area of 3 m2/g or more but less than 6 m2/g.Type: GrantFiled: September 14, 2017Date of Patent: June 25, 2019Assignee: SUMITOMO METAL MINING CO., LTD.Inventors: Norimichi Yonesato, Tai Ito
-
Patent number: 9537138Abstract: A method for preparing a mixture of a powder of an electrode active compound and of a powder of an electron conducting compound is disclosed. According to some aspects, the method includes preparing a liquid medium containing the powder of the electrode active compound and the powder of the electron conducting compound, subjecting the liquid medium containing the powder of the electrode active compound and the powder of the electron conducting compound to the action of high energy ultrasonic waves, removing the liquid medium, and collecting the mixture of the powder of the electrode active compound and of the powder of the electron conducting compound. According to some aspects, an electrode including the mixture as an electrochemically active material, a cell including the electrode, and an accumulator or battery including one or more of these cells are disclosed.Type: GrantFiled: February 9, 2010Date of Patent: January 3, 2017Assignee: Commissariat à l'énergie atomique et aux energies alternativesInventors: Sébastien Patoux, Carole Bourbon, Lise Daniel
-
Patent number: 9278867Abstract: A method of preparing insoluble transition metal compound particles is described, comprising: providing a transition metal salt solution having the formula (TM)(S) wherein TM is one or more of Mn, Ni, Co, Mg, Zn, Ca, Sr, Cu, Zr, P, Fe, Al, Ga, In, Cr Ge or Sn; providing a source of a carbonate-, hydroxide-, phosphate-, oxyhydroxide- or oxide-based anionic compound wherein the anionic component, represented by S?, is reactive with TM to form the particles; adding the transition metal salt solution and anionic compound to a reaction chamber; and subjecting the chamber to sonication at an intensity of about 0.1 to about 50 W/mL. In an exemplary embodiment, MnCO3 particles are formed from: MnSO4; and Na2CO3 and/or NH4HCO3, wherein the ratio of MnSO4 to Na2CO3 and/or NH4HCO3 is from about 1:1.5 to 1.5:1. The particles may have narrow size distribution and a tap density of about 1.7-2.3 g/mL.Type: GrantFiled: December 16, 2011Date of Patent: March 8, 2016Assignee: YAVA TECHNOLOGIES INC.Inventors: Trevor Byrne, Madhav Prasad Dahal
-
Patent number: 8967492Abstract: A droplet generation system includes a first nozzle configuration structured to receive a liquid and a gas under pressure in a controllable feed ratio, and to merge the liquid and gas to form an intermediate stream that is a mixture of the gas and of a dispersed phase of the liquid. A second nozzle configuration is connected to receive the intermediate stream from the first nozzle configuration and has a valve mechanism with one or more controllable operating parameters to emit a stream of droplets of the liquid. The mean size of the droplets is dependent on the controllable feed ratio of the liquid and gas and the flow rate of the stream of droplets is dependent on the controllable operating parameter(s) of the valve mechanism. A corresponding method is disclosed, as is the application of the system and method to the production of nanoparticles in a thermochemical reactor.Type: GrantFiled: June 30, 2011Date of Patent: March 3, 2015Assignee: Commonwealth Scientific and Industrial Research OrganisationInventors: Jonian Nikolov, Kok Seng Lim, Han Kwon Chang, Hee Dong Jang
-
Publication number: 20150017084Abstract: A method of forming a metal oxide composite, the method comprising mixing a metal oxide, at least two monomers and a dispersant to produce a slurry; gel casting the slurry to produce a green metal oxide composite; and sintering the green metal oxide composite to produce the metal oxide composite. A metal oxide composite formed according to the method. Use of the metal oxide composite, for catalysing hydrolysis of metal borohydride to produce hydrogen.Type: ApplicationFiled: February 18, 2013Publication date: January 15, 2015Inventors: Lan Zhang, Siew Hwa Chan, Hongquan He
-
Publication number: 20150010463Abstract: In an embodiment, the present disclosure pertains to photocatalysts with high solar-to-hydrogen overall water splitting efficiency. In an embodiment, the photocatalyst is a nanocrystalline cobalt (II) oxide (CoO) nanoparticle. In some embodiments, the present disclosure pertains to methods of synthesizing the photocatalysts disclosed herein. Such a method may comprise using femtosecond laser ablation of cobalt oxide micropowders. In some embodiments, such a method comprises mechanical ball milling of cobalt oxide micropowders. In an embodiment, the photocatalyst disclosed herein decomposes water under visible light without the aid of any co-catalysts or sacrificial reagents. In some embodiments, the present disclosure pertains to methods of splitting water to produce hydrogen.Type: ApplicationFiled: July 2, 2014Publication date: January 8, 2015Applicant: University of HoustonInventors: Jiming Bao, Longb Liao
-
Patent number: 8900540Abstract: An oxidation treatment method of the present invention includes the step of bringing a solution having an ozone concentration of 120 to 500 mg/L into contact with a substance to be treated made of a combustible substance, thereby subjecting the substance to be treated and the surface thereof to an oxidation treatment. An oxidation treatment apparatus of the present invention includes: a dissolving means that dissolves an oxygen-ozone mixed gas in a fluorine-based solvent to form mixed fluid; an undissolved gas removal means that removes an undissolved gas from the mixed fluid to form a solution; and an oxidation treatment means that brings the solution into contact with a substance to be treated made of a combustible substance, thereby subjecting the substance to be treated and the surface thereof to an oxidation treatment.Type: GrantFiled: July 5, 2011Date of Patent: December 2, 2014Assignee: Taiyo Nippon Sanso CorporationInventors: Yoshiki Nishiwaki, Hidetoshi Oota
-
Publication number: 20140332733Abstract: Provided herein are nanofibers and processes of preparing nanofibers. In some instances, the nanofibers are metal and/or ceramic nanofibers. In some embodiments, the nanofibers are high quality, high performance nanofibers, highly coherent nanofibers, highly continuous nanofibers, or the like. In some embodiments, the nanofibers have increased coherence, increased length, few voids and/or defects, and/or other advantageous characteristics. In some instances, the nanofibers are produced by electrospinning a fluid stock having a high loading of nanofiber precursor in the fluid stock. In some instances, the fluid stock comprises well mixed and/or uniformly distributed precursor in the fluid stock. In some instances, the fluid stock is converted into a nanofiber comprising few voids, few defects, long or tunable length, and the like.Type: ApplicationFiled: August 30, 2012Publication date: November 13, 2014Applicant: CORNELL UNIVERSITYInventors: Yong Lak Joo, Nathaniel S. Hansen, Daehwan Cho
-
Patent number: 8871673Abstract: Catalysts for the decomposition of N2O into nitrogen and oxygen in the gas phase, which comprises a porous support composed of polycrystalline or vitreous inorganic material, a cerium oxide functional layer applied thereto and a layer of oxidic cobalt-containing material applied thereto are described. The catalysts can be used, in particular, as secondary or tertiary catalysts in nitric acid plants.Type: GrantFiled: July 11, 2008Date of Patent: October 28, 2014Assignee: UHDE GmbHInventors: Meinhard Schwefer, Rolf Siefert, Frank Seifert, Frank Froehlich, Wolfgang Burckhardt
-
Publication number: 20140311913Abstract: A method for synthesis of nanostructured metal oxide powders. The method comprises converting the metallic material into a precipitate of metal hydroxide by an electrochemical reaction and calcinating the metal hydroxide to form the metal oxides. The method of the invention is also used for the development of cermet particulates and topological insulator particles.Type: ApplicationFiled: April 15, 2014Publication date: October 23, 2014Applicant: UNIVERSITI BRUNEI DARUSSALAMInventors: Peter Hing, Lim Chee Ming, Jung Sang Cheol, Low Siaw Huei
-
Publication number: 20140296062Abstract: A process for preparing a mesoporous metal oxide, i.e., transition metal oxide, Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.Type: ApplicationFiled: September 25, 2013Publication date: October 2, 2014Applicant: UNIVERSITY OF CONNECTICUTInventors: Steven L. Suib, Altug Suleyman Poyraz
-
Publication number: 20140286846Abstract: A process for preparing a mesoporous metal oxide, i.e., transition metal oxide, Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing a micellar solution comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the micellar solution at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing a micellar solution comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the micellar solution at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.Type: ApplicationFiled: September 25, 2013Publication date: September 25, 2014Applicant: UNIVERSITY OF CONNECTICUTInventors: Steven L. Suib, Altug Suleyman Poyraz
-
Publication number: 20140255697Abstract: Nickel hydroxide obtained by neutralizing an aqueous nickel sulfate solution with an alkali is heat-treated in a non-reducing atmosphere at a temperature higher than 850° C. but lower than 1050° C. to form nickel oxide particles, and a sintered compact of nickel oxide particles that may be formed during the heat treatment is pulverized by preferably allowing the nickel oxide particles to collide with one another. The thus obtained nickel oxide fine powder has a sulfur content of 400 mass ppm or less, a chlorine content of 50 mass ppm or less, a sodium content of 100 mass ppm or less, and a specific surface area of 3 m2/g or more but less than 6 m2/g.Type: ApplicationFiled: August 6, 2012Publication date: September 11, 2014Applicant: SUMITOMO METAL MINING CO., LTD.Inventors: Norimichi Yonesato, Tai Ito
-
Patent number: 8809224Abstract: A catalyst for removing nitrogen protoxide from gas mixtures which contain it, comprising mixed oxides of cobalt, manganese and rare earth metals having composition expressed as percentage by weight of CoO, MnO and transition metal oxide in the lowest state of valence as follows: MnO 38-56%, CoO 22-30%, rare earth metal oxide 22-32%.Type: GrantFiled: September 6, 2011Date of Patent: August 19, 2014Assignee: Sud-Chemie Catalysts Italia S.R.L.Inventors: Alberto Cremona, Marvin Estenfelder, Edoardo Vogna
-
Patent number: 8801960Abstract: Because of the composition represented by General Formula: Li1+x+?Ni(1?x?y+?)/2Mn(1?x?y??)/2MyO2 (where 0?x?0.05, ?0.05?x+??0.05, 0?y?0.4; ?0.1???0.1 (when 0?y?0.2) or ?0.24???0.24 (when 0.2<y?0.4); and M is at least one element selected from the group consisting of Ti, Cr, Fe, Co, Cu, Zn, Al, Ge and Sn), a high-density lithium-containing complex oxide with high stability of a layered crystal structure and excellent reversibility of charging/discharging can be provided, and a high-capacity non-aqueous secondary battery excellent in durability is realized by using such an oxide for a positive electrode.Type: GrantFiled: January 31, 2008Date of Patent: August 12, 2014Assignee: Hitachi Maxell, Ltd.Inventors: Atsushi Ueda, Kazutaka Uchitomi, Shigeo Aoyama
-
Publication number: 20140212819Abstract: A lithographic process includes the use of a silicon-containing polymer or a compound that includes at least one element selected from the group consisting of: Ta, W, Re, Os, Ir, Ni, Cu or Zn in a resist material for an EUV lithographic process. The wavelength of the EUV light used in the process is less than 11 nm, for example 6.5-6.9 nm. The invention further relates to novel silicon-containing polymers.Type: ApplicationFiled: May 30, 2012Publication date: July 31, 2014Applicant: ASML Netherlands B.V.Inventors: Sander Frederik Wuister, Vladimir Mihailovitch Krivtsun, Andrei Mikhailovich Yakunin
-
Publication number: 20140186647Abstract: A raw material powder for forming a layer of a solid oxide fuel cell (SOFC) article includes a broad particle size distribution (BPSD) defined by plotted curve of frequency versus diameter of the raw material powder may be characterized as having a first standard deviation including at least about 78% to at least about 99% of a total content of particles of the raw material powder. The plotted curve of the BPSD may also be characterized as having a first maximum value and a first minimum value, wherein the difference between the first maximum value and first minimum value is not greater than about 8%.Type: ApplicationFiled: December 16, 2013Publication date: July 3, 2014Applicant: Saint-Gobain Ceramics & Plastics, Inc.Inventors: Aravind MOHANRAM, Yeshwanth NARENDAR, John D. PIETRAS
-
Publication number: 20140187416Abstract: The current document is directed to processes for producing improved porous catalysts for the dehydrogenation of organic compounds. In one implementation, the process comprises providing a powder of metal particles, sieving the powder using vibrating-screen sieves, aligning metal particles collected from sieving under an external magnetic field, partially sintering the aligned metal particles to form a solid matrix by heating the aligned metal particles in a furnace or microwave oven, or heating the aligned metal particles using a laser sintering process with a controlled amount of external heat, to a temperature below the melting point of the metal powder, and oxidizing the matrix to produce the porous catalyst. The catalysts produced by the disclosed methods have a porous body with increased surface area, can assume various microstructures, and consist essentially of metal oxides.Type: ApplicationFiled: December 17, 2013Publication date: July 3, 2014Applicant: Asemblon Inc.Inventors: Esmaeel Naeemi, David O'Connor
-
Patent number: 8759249Abstract: A method for the production of nanocrystalline nickel oxides as well as the nickel oxides produced by the method according to the invention and the use thereof as catalyst following reduction to nickel metal, in particular for hydrogenation reactions.Type: GrantFiled: May 29, 2009Date of Patent: June 24, 2014Assignee: SUED-Chemie IP GmbH & Co. KGInventors: Hans-Jörg Wölk, Alfred Hagemeyer, Frank Groβmann, Silvia Neumann
-
Publication number: 20140140917Abstract: A process for producing graphene by providing a plurality of metallic particles as templates for graphene formation and providing a carbon source; reacting the metallic particles and carbon source under conditions suitable for graphene formation; and forming graphene particles on the metallic particles. The graphene particles formed on the metallic particles are of a size and shape substantially corresponding to the size and shape of the metallic particles.Type: ApplicationFiled: June 13, 2012Publication date: May 22, 2014Inventor: Karl Coleman
-
Publication number: 20140124701Abstract: LiCoO2 material comprises LiCoO2 particles obtainable by a process in which Co(OH)2 particles comprising essentially octahedral shape particles, or Co3O4 particles obtained from Co(OH)2 comprising essentially octahedral shape particles, or Co3O4 particles comprising essentially octahedral shape particles and lithium salt are heated. Also disclosed are Co(OH)2 particles and the Co3O4 particles. The LiCoO2 material can be used especially as a cathode material in Li-ion batteries.Type: ApplicationFiled: May 31, 2011Publication date: May 8, 2014Applicant: OMG Kokkola Chemicals OyInventors: Aki Vanhatalo, Marten Eriksson, Janne Niittykoski
-
METHOD FOR MANUFACTURING MESOPOROUS MATERIALS, MATERIALS SO PRODUCED AND USE OF MESOPOROUS MATERIALS
Publication number: 20140120021Abstract: The present invention relates to a new synthetise for the preparation of mesoporous structures including mesoporous materials with chiral morphologies and mesoporous materials with local or surface chirality. The method can be used for manufacturing controlled drug delivery devices, for example for delivery of folic acid, and fluorescent particles.Type: ApplicationFiled: October 29, 2013Publication date: May 1, 2014Applicant: Nanologica ABInventor: Alfonso Garcia-Bennett -
Patent number: 8697019Abstract: Nanostructured manganese-containing compositions having reduced manganese dissolution and methods of making and using the same are provided. In one embodiment, a composition of matter comprises a nanostructured oxide or hydroxide doped with Mn4+. The composition of matter can be made by forming a nanostructured oxide or hydroxide material doped with Mn3+ and oxidizing the Mn3+ to Mn4+ to reduce dissolution of the manganese in the nanostructured oxide or hydroxide material. In another embodiment, a method of reducing dissolution of manganese present in a nanostructured MnO2 material comprises: doping a nanostructured MnO2 material with Fe3+ to reduce the dissolution of the manganese.Type: GrantFiled: April 30, 2008Date of Patent: April 15, 2014Assignee: Inframat CorporationInventors: Huimin Chen, Lei Jin
-
Patent number: 8663507Abstract: The present invention relates to pulverulent compounds of the formula NibM1cM2d(0)x(OH)y(SO4)z, a process for the preparation thereof and the use thereof as precursors for the preparation of active materials for lithium secondary batteries.Type: GrantFiled: October 11, 2007Date of Patent: March 4, 2014Assignee: Toda Kogyo Europe GmbHInventors: Stefan Malcus, Armin Olbrich, Juliane Messe-Marktscheffel, Matthias Jahn
-
Patent number: 8617510Abstract: Porous metal oxides are provided. The porous metal oxides are prepared by heat treating a coordination polymer. A method of preparing the porous metal oxide is also provided. According to the method, the shape of the particles of the metal oxide can be easily controlled, and the shape and distribution of pores of the porous metal oxide can be adjusted.Type: GrantFiled: May 20, 2010Date of Patent: December 31, 2013Assignee: Samsung SDI Co., Ltd.Inventors: Dong-min Im, Yong-nam Ham
-
Patent number: 8574540Abstract: A method for producing prefluxed metal oxide from a metal salt selected from nickel hydroxide, cobalt hydroxide, mixed nickel-cobalt hydroxide, nickel carbonate, cobalt carbonate, mixed nickel-cobalt carbonate and combinations thereof includes providing a mixture of at least one slag making oxide and a metal salt selected from the group consisting of nickel hydroxide, cobalt hydroxide, mixed nickel-cobalt hydroxide, nickel carbonate, cobalt carbonate, mixed nickel-cobalt carbonate and combinations thereof, blending with a binder, blending in a flux additive to form a slag-making mixture, forming the slag-making mixture into prefluxed agglomerates, and calcining the prefluxed agglomerates to produce a prefluxed metal oxide. An agglomerate is provided which includes a metal salt selected from nickel hydroxide, cobalt hydroxide, mixed nickel-cobalt hydroxide, nickel carbonate, cobalt carbonate, mixed nickel-cobalt carbonate and combinations thereof, a slag making oxide, and a flux additive.Type: GrantFiled: February 6, 2009Date of Patent: November 5, 2013Assignee: Vale S.A.Inventors: Geoffrey Edwin Osborne, Ahmed Vahed, Samuel Walton Marcuson
-
Patent number: 8568686Abstract: A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.Type: GrantFiled: April 18, 2007Date of Patent: October 29, 2013Assignee: The Regents of the University of CaliforniaInventors: Daniel E. Morse, Birgit Schwenzer, John R. Gomm, Kristian M. Roth, Brandon Heiken, Richard Brutchey
-
Publication number: 20130164202Abstract: A recirculated-suspension pre-calciner system is disclosed, comprising: a vortex cyclone dust collecting equipment including a plurality of devices, wherein a top device of the vortex cyclone dust collecting equipment is used as a feed system; a vertical combustion kiln; a blower; and a powder purge system, wherein powders in the feed system fall into the vortex cyclone dust collecting equipment and pass through a plurality of the devices to mix and exchange heat with flue gas comprising CO2, generating calcination reaction and releasing CO2 into the flue gas. and the steam is separated and transported to the feed system by the blower and acts as a carrier gas of powders.Type: ApplicationFiled: August 20, 2012Publication date: June 27, 2013Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTEInventors: Wei-Cheng CHEN, Wan-Hsia LIU, Chin-Ming HUANG, Shoung OUYANG, Heng-Wen HSU
-
Publication number: 20130089739Abstract: Embodiments of the present disclosure provide for nanoparticles, methods of making nanoparticles, methods of using the nanoparticles, and the like. Nanoparticles of the present disclosure can have a variety of morphologies, which may lead to their use in a variety of technologies and processes. Nanoparticles of the present may be used in sensors, optics, mechanics, circuits, and the like. In addition, nanoparticles of the present disclosure may be used in catalytic reactions, for CO oxidation, as super-capacitors, in hydrogen storage, and the like.Type: ApplicationFiled: October 1, 2012Publication date: April 11, 2013Applicant: King Abdullah University of Science and Technology (KAUST)Inventor: King Abdullah University of Science and Technolo
-
Patent number: 8383077Abstract: A method of stabilizing a metal oxide or lithium-metal-oxide electrode comprises contacting a surface of the electrode, prior to cell assembly, with an aqueous or a non-aqueous acid solution having a pH greater than 4 but less than 7 and containing a stabilizing salt, for a time and at a temperature sufficient to etch the surface of the electrode and introduce stabilizing anions and cations from the salt into said surface. The structure of the bulk of the electrode remains unchanged during the acid treatment. The stabilizing salt comprises fluoride and at least one cationic material selected from the group consisting of ammonium, phosphorus, titanium, silicon, zirconium, aluminum, and boron.Type: GrantFiled: February 14, 2012Date of Patent: February 26, 2013Assignee: UChicago Argonne, LLCInventors: Michael M. Thackeray, Sun-Ho Kang, Christopher S. Johnson
-
Patent number: 8356992Abstract: An oxyfiring system and method for capturing carbon dioxide in a combustion process is disclosed. The oxyfiring system comprises (a) an oxidation reactor for oxidizing a reduced metal oxide; (b) a decomposition reactor wherein a decomposition fuel is combusted and oxidized metal oxide sorbents are reduced with oxygen being released and a flue gas with an oxygen enriched carbon dioxide stream is produced; (c) a fuel combustion reactor for combusting a primary fuel and the oxygen enriched carbon dioxide stream into a primary flue gas; and (d) separation apparatus for separating a portion of the primary flue gas so that a carbon dioxide enriched stream can be prepared. The method comprises providing a primary fuel and an oxygen enriched carbon dioxide stream to a fuel combustion reactor. The primary fuel and oxygen enriched carbon dioxide stream are combusted into a primary flue gas stream which is split into a first flue gas portion and a second flue gas portion.Type: GrantFiled: November 30, 2009Date of Patent: January 22, 2013Assignee: Chevron U.S.A. Inc.Inventor: Raja A Jadhav
-
Patent number: 8318126Abstract: The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.Type: GrantFiled: May 4, 2010Date of Patent: November 27, 2012Inventors: Stanislaus S. Wong, Hongjun Zhou
-
Publication number: 20120230900Abstract: An object of the present invention is to provide a metal salt-containing composition which is applicable to many metal source materials, and can be used for forming a compact and uniform metal oxide film comparable to those formed according to a sputtering method, as well as to provide a substrate having a metal complex film on the surface thereof obtained using the metal salt-containing composition, and a substrate having a metal complex film on the surface thereof obtained by further heating the substrate. Moreover, another object of the present invention is to provide a method for manufacturing a substrate having such a metal complex film on the surface thereof. According to the present invention, a metal salt-containing composition containing a metal salt, a polyvalent carboxylic acid having a cis-form structure, and a solvent, in which: the molar ratio of the polyvalent carboxylic acid to the metal salt is not less than 0.5 and not more than 4.Type: ApplicationFiled: September 28, 2009Publication date: September 13, 2012Applicant: Dai-Ichi Kogyo Seiyaku Co., Ltd.Inventors: Yasuteru Saito, Naoki Ike
-
Patent number: 8257679Abstract: A technique for bonding an organic group with the surface of fine particles such as nanoparticles through strong linkage is provided, whereas such fine particles are attracting attention as materials essential for development of high-tech products because of various unique excellent characteristics and functions thereof. Organically modified metal oxide fine particles can be obtained by adapting high-temperature, high-pressure water as a reaction field to bond an organic matter with the surface of metal oxide fine particles through strong linkage. The use of the same condition enables not only the formation of metal oxide fine particles but also the organic modification of the formed fine particles. The resulting organically modified metal oxide fine particles exhibit excellent properties, characteristics and functions.Type: GrantFiled: July 27, 2009Date of Patent: September 4, 2012Assignee: Tohoku Techno Arch Co., Ltd.Inventor: Tadafumi Ajiri
-
Publication number: 20120219735Abstract: Disclosed are methods for producing carbon, metal and/or metal oxide porous materials that have precisely controlled structures on the nanometer and micrometer scales. The methods involve the single or repeated infiltration of porous templates with metal salts at controlled temperatures, the controlled drying and decomposition of the metal salts under reducing conditions, and optionally the removal of the template. The carbon porous materials are involve the infiltration of a carbon precursor into a porous template, followed by polymerization and pyrolysis. These porous materials have utility in separations, catalysis, among others.Type: ApplicationFiled: February 27, 2012Publication date: August 30, 2012Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ALABAMAInventors: Martin Bakker, Franchessa Maddox Sayler, Amy Grano, Jan-Henrik Smått
-
Patent number: 8236277Abstract: A process comprises (a) combining (1) at least one base and (2) at least one metal carboxylate salt comprising (i) a metal cation selected from metal cations that form amphoteric metal oxides or oxyhydroxides and (ii) a carboxylate anion comprising from one to four alkyleneoxy moieties, or metal carboxylate salt precursors comprising (i) at least one metal salt comprising the metal cation and a non-interfering anion and (ii) at least one carboxylic acid comprising from one to four alkyleneoxy moieties, at least one salt of the carboxylic acid and a non-interfering, non-metal cation, or a mixture thereof; and (b) allowing the base and the metal carboxylate salt or metal carboxylate salt precursors to react.Type: GrantFiled: December 18, 2007Date of Patent: August 7, 2012Assignee: 3M Innovative Properties CompanyInventor: Timothy D. Dunbar
-
Patent number: 8216544Abstract: A ZnO varistor powder can be obtained with high operating voltage and excellent current-voltage nonlinear resistance characteristics. In the ZnO varistor powder, the main ingredient is zinc oxide (ZnO); and at least bismuth (Bi), cobalt (Co), manganese (Mn), antimony (Sb), nickel (Ni), and aluminum (Al), calculated as Bi2O3, CO2O3, MnO, Sb2O3, NiO, and Al3+, are contained as accessory ingredients in amounts of 0.3 to 1.5 mol % Bi2O3, 0.3 to 2.0 mol % Co2O3, 0.3 to 3 mol % MnO, 0.5 to 4 mol % Sb2O3, 0.5 to 4 mol % NiO, and 0.0005 to 0.02 mol % Al3+. ZnO content is greater than or equal to 90 mol %; the bulk density is greater than or equal to 2.5 g/cc; the powder is a spherical powder in which the 50% particle diameter in the particle size distribution is 20 ?m to 120 ?m.Type: GrantFiled: March 5, 2008Date of Patent: July 10, 2012Assignee: Kabushiki Kaisha ToshibaInventors: Hideyasu Ando, Yasunori Kasuga
-
Patent number: 8192595Abstract: A transition metal/carbon nanotube composite includes a carbon nanotube and a transition metal oxide coating layer disposed on the carbon nanotube. The transition metal oxide coating layer includes a nickel-cobalt oxide.Type: GrantFiled: December 2, 2009Date of Patent: June 5, 2012Assignees: Samsung Electronics Co., Ltd., Industry-Academic Cooperation Foundation, Yonsei UniversityInventors: Ho-jung Yang, Hyo-rang Kang, Kwang-bum Kim, Jin-go Kim
-
Patent number: 8137654Abstract: Provided is a roasting method capable of reducing both C and S components in minerals down to 0.5% or less, respectively, and securing a yield ratio of 90% or more for the Mo component. In a rotary kiln 7, a V, Mo and Ni containing material containing C and S components is subjected to oxidizing roasting to remove the C and S components from the material before reducing the material by means of a reducing agent in order to recover valuable metals composed of V, Mo and Ni. The rotary kiln is equipped with a burner 11 disposed on a material charge side 8a of the roasting furnace 8 to which the material is charged. In the roasting furnace, a direction along which the material moves and a flow of oxygen-containing gas introduced into the roasting furnace 8 are set to be parallel with each other.Type: GrantFiled: February 21, 2006Date of Patent: March 20, 2012Assignees: JFE Material Co., Ltd., Sumitomo Heavy Industries, Ltd.Inventors: Kenji Takahashi, Hiroichi Sugimori, Nobuo Ehara
-
Patent number: 8110173Abstract: A method is disclosed for fabrication of NiO nanoparticles and NiO chip-like nanoflakes by solvothermal technique. Mixed organic alcohols were used as solvent to make a homogenous solution from a nickel containing salt (or complex) for production of NiO nanoparticles and chip-like nanoflakes. The solution was heated in a sealed flask sitting inside a warm furnace. The precipitate was filtered, rinsed, dried and calcined to produce nanoparticles or nanoflakes. The size of the particles was controllable by heating time and temperature. Similar procedures were used for production of both nanostructures except hydrogen peroxide addition to the initial solution for NiO chip-like nanoflakes fabrication.Type: GrantFiled: September 5, 2009Date of Patent: February 7, 2012Inventors: Yaser Bahari Molla Mahaleh, Seyed Khatibol Eslam Sadrnezhad, Davood Hosseini
-
Patent number: 8092777Abstract: A process for producing an anisotropic magnetic material includes: preparing a feebly magnetic material capable of transforming into a magnetic material by a prescribed reaction, orienting the feebly magnetic material by imparting an external field to the feebly magnetic material, and transforming the oriented feebly magnetic material to a magnetic substance by the prescribed reaction.Type: GrantFiled: February 4, 2009Date of Patent: January 10, 2012Assignees: Toyota Jidosha Kabushiki Kaisha, National Institute for Materials ScienceInventors: Naoki Nakamura, Tetsuo Uchikoshi, Yoshio Sakka
-
Publication number: 20120003143Abstract: An oxidation treatment method of the present invention includes the step of bringing a solution having an ozone concentration of 120 to 500 mg/L into contact with a substance to be treated made of a combustible substance, thereby subjecting the substance to be treated and the surface thereof to an oxidation treatment. An oxidation treatment apparatus of the present invention includes: a dissolving means that dissolves an oxygen-ozone mixed gas in a fluorine-based solvent to form mixed fluid; an undissolved gas removal means that removes an undissolved gas from the mixed fluid to form a solution; and an oxidation treatment means that brings the solution into contact with a substance to be treated made of a combustible substance, thereby subjecting the substance to be treated and the surface thereof to an oxidation treatment.Type: ApplicationFiled: July 5, 2011Publication date: January 5, 2012Inventors: Yoshiki NISHIWAKI, Hidetoshi Oota
-
Publication number: 20110318249Abstract: Disclosed is a porous metal oxide obtained by subjecting metal alkoxide and/or a partially hydrolyzed condensate of the metal alkoxide to a sol-gel reaction in the presence of terminally branched copolymer particles represented by the following general formula (1) and having a number average molecular weight of not more than 2.Type: ApplicationFiled: March 12, 2010Publication date: December 29, 2011Applicant: MITSUI CHEMICALS, INC.Inventors: Norio Nakayama, Toshihiko Takaki, Haruhiko Fukumoto, Kaori Matoishi, Shiro Nakatsuka, Naoshi Nagai, Eiichi Takahashi, Yukiko Enomoto
-
Patent number: 8066969Abstract: This invention relates, in general, to a method of producing magnetic oxide nanoparticles or metal oxide nanoparticles and, more particularly, to a method of producing magnetic or metal oxide nanoparticles, which comprises (1) adding a magnetic or metal precursor to a surfactant or a solvent containing the surfactant to produce a mixed solution, (2) heating the mixed solution to 50-6001 C to decompose the magnetic or metal precursor by heating so as to form the magnetic or metal oxide nanoparticles, and (3) separating the magnetic or metal oxide nanoparticles. Since the method is achieved through a simple process without using an oxidizing agent or a reducing agent, it is possible to simply mass-produce uniform magnetic or metal oxide nanoparticles having desired sizes compared to the conventional method.Type: GrantFiled: November 26, 2004Date of Patent: November 29, 2011Assignee: Industry-Academic Cooperation Foundation, Yonsei UniversityInventors: Jin-Woo Cheon, Jung-Wook Seo, Jae-Hyun Lee
-
Patent number: 8062620Abstract: The present invention relates to a process for the conversion of cobalt(II)hydroxide into cobalt(III)oxidehydroxide (CoOOH) by reaction of the cobalt(II)hydroxide with oxygen in the presence of certain metal compounds. The invention further relates to the use of cobalt(III)oxidehydroxide thus prepared in the preparation of catalysts or catalysts precursors, especially catalysts or catalyst precursors for the conversion of synthesis gas into normally liquid and normally solid hydrocarbons and to normally liquid or solid hydrocarbons, optionally after additional hydrotreatment, obtained in such a conversion process.Type: GrantFiled: November 28, 2005Date of Patent: November 22, 2011Assignee: Shell Oil CompanyInventors: Ronald Jan Dogterom, Heiko Oosterbeek, Marinus Johannes Reynhout