Group Viib Metal (mn, Tc, Or Re) Patents (Class 423/605)
  • Patent number: 8318126
    Abstract: The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: November 27, 2012
    Inventors: Stanislaus S. Wong, Hongjun Zhou
  • Publication number: 20120282164
    Abstract: Provided are a method of easily controlling the aspect ratio of a nano-structure, which can be effectively used in various fields of application, including a positive active material for a rechargeable battery, an electrode material for a storage battery, a redox catalyst, a molecule support, and so on, and by which various nano-structures of desired sizes can be easily produced according to the necessity. The method includes preparing a mixed solution including a manganese salt and an oxidant, adding a pH controlling additive to the mixed solution and controlling a pH level of the mixed solution using the following equation, and heating the pH-controlled mixed solution at a temperature in a range of 50? to 200? for 1 hour to 10 days to cause a reaction to take place: Specific surface area (m2/g)=0.2 pH2+2.
    Type: Application
    Filed: April 17, 2012
    Publication date: November 8, 2012
    Inventor: Shin Jung CHOI
  • Publication number: 20120282512
    Abstract: Provided are a manganese oxide nanowire, specifically, a manganese oxide nanowire having an aspect ratio of 20 or more, which can be widely used in various fields, including batteries, oxygen generators, and redox catalysts, a rechargeable battery including the manganese oxide nanowire, and a method of producing manganese oxide. Since the manganese oxide nanowire having a large aspect ratio has an increased specific surface area, it can be effectively used in various fields. In addition, various kinds of manganese oxide nanowires can be simply manufactured.
    Type: Application
    Filed: April 12, 2012
    Publication date: November 8, 2012
    Inventor: Shin Jung CHOI
  • Patent number: 8303840
    Abstract: A primary battery includes a cathode having an acid-treated manganese dioxide, an anode, a separator between the cathode and the anode, and an alkaline electrolyte.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: November 6, 2012
    Assignee: The Gillette Company
    Inventors: Kirakodu S. Nanjundaswamy, Fan Zhang, Yichun Wang, James J. Cervera, Jennifer A. Nelson, Gary A. Miller, Rimma A. Sirotina
  • Patent number: 8216543
    Abstract: Methods of making unique water treatment compositions are provided. In one embodiment, a method of making a doped metal oxide or hydroxide for treating water comprises: disposing a metal precursor solution and a dopant precursor solution in a reaction vessel comprising water to form a slurry; and precipitating the doped metal oxide or hydroxide from the slurry.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: July 10, 2012
    Assignees: Inframat Corporation, University of Houston
    Inventors: Huimin Chen, Dennis A. Clifford, Meidong Wang, T. Danny Xiao
  • Publication number: 20120141361
    Abstract: An object of the present invention is to provide electrolytic manganese dioxide to be used as a cathode active material for an alkali-manganese dry cell, which has a high alkali potential and is provided with a high reactivity and packing efficiency as a cathode for the cell, and which is excellent in the middle rate discharge characteristic, and electrolytic manganese dioxide excellent in the high rate discharge characteristic and the middle rate discharge characteristic, which will not cause corrosion of metal materials, and a method for its production. In the present invention, electrolytic manganese dioxide having an alkali potential of at least 280 mV and less than 310 mV, and FWHM of at least 2.2° and at most 2.9°, is used. It is preferred that of the electrolytic manganese dioxide, the (110)/(021) peak intensity ratio in the X-ray diffraction peaks is at least 0.50 and at most 0.80, and the (110) interplanar spacing is at least 4.00 ? and at most 4.06 ?.
    Type: Application
    Filed: August 23, 2010
    Publication date: June 7, 2012
    Applicant: TOSOH CORPORATION
    Inventors: Kazumasa Suetsugu, Kenichi Takahashi, Akinori Eshita
  • Publication number: 20120114564
    Abstract: The present invention relates to the use of and method for using MnO nanoparticles as MRI T1 contrasting agents which reduces T1 of tissue. More specifically, the present invention is directed to MRI T1 contrasting agent comprising MnO nanoparticle coated with a biocompatible material bound to a biologically active material such as a targeting agent, for example tumor marker etc., and methods for diagnosis and treatment of tumor etc. using said MRI T1 contrasting agent, thereby obtaining more detailed images than the conventional MRI T1-weighted images. The MRI T1 contrasting agent of the present invention allows a high resolution anatomic imaging by emphasizing T1 contrast images between tissues based on the difference of accumulation of the contrasting agent in tissues. Also, the MRI T1 contrasting agent of the present invention enables to visualize cellular distribution due to its high intracellular uptake.
    Type: Application
    Filed: January 30, 2008
    Publication date: May 10, 2012
    Applicant: SEOUL NATIONAL UNIVERSITY INDUSTRY FOUNDATION
    Inventors: Taeghwan Hyeon, Kwangjin An, Hyon Bin Na, Junghee Lee
  • Patent number: 8114309
    Abstract: A lithium-manganese composite oxide for a lithium ion battery having a good cycle property at high-temperature and battery property of high capacity is provided. A spinel type lithium-manganese composite oxide for a lithium ion battery represented by a general formula: Li1+xMn2-yMyO4 (wherein M is one or more elements selected from Al, Mg, Si, Ca, Ti, Cu, Ba, W and Pb, and, ?0.1?x?0.2, and 0.06?y?0.3), and when D10, D50 and D90 are defined as a particle size at which point the cumulative frequency of volume reaches 10%, 50% and 90% respectively, d10 is not less than 2 ?m and not more than 5 ?M, d50 is not less than 6 ?m and not more than 9 ?m, and d90 is not less than 12 ?m and not more than 15 ?M, and BET specific surface area thereof is greater than 1.0 m2/g and not more than 2.0 m2/g, and the tap density thereof is not less than 0.5 g/cm3 and less than 1.0 g/cm3.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: February 14, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yoshio Kajiya, Hirohito Sato, Ryuichi Nagase
  • Publication number: 20110318249
    Abstract: Disclosed is a porous metal oxide obtained by subjecting metal alkoxide and/or a partially hydrolyzed condensate of the metal alkoxide to a sol-gel reaction in the presence of terminally branched copolymer particles represented by the following general formula (1) and having a number average molecular weight of not more than 2.
    Type: Application
    Filed: March 12, 2010
    Publication date: December 29, 2011
    Applicant: MITSUI CHEMICALS, INC.
    Inventors: Norio Nakayama, Toshihiko Takaki, Haruhiko Fukumoto, Kaori Matoishi, Shiro Nakatsuka, Naoshi Nagai, Eiichi Takahashi, Yukiko Enomoto
  • Patent number: 8066969
    Abstract: This invention relates, in general, to a method of producing magnetic oxide nanoparticles or metal oxide nanoparticles and, more particularly, to a method of producing magnetic or metal oxide nanoparticles, which comprises (1) adding a magnetic or metal precursor to a surfactant or a solvent containing the surfactant to produce a mixed solution, (2) heating the mixed solution to 50-6001 C to decompose the magnetic or metal precursor by heating so as to form the magnetic or metal oxide nanoparticles, and (3) separating the magnetic or metal oxide nanoparticles. Since the method is achieved through a simple process without using an oxidizing agent or a reducing agent, it is possible to simply mass-produce uniform magnetic or metal oxide nanoparticles having desired sizes compared to the conventional method.
    Type: Grant
    Filed: November 26, 2004
    Date of Patent: November 29, 2011
    Assignee: Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Jin-Woo Cheon, Jung-Wook Seo, Jae-Hyun Lee
  • Publication number: 20110280778
    Abstract: The present invention relates to a method of precipitation of metal ions. Mineral(s), oxide(s), hydroxide(s) of magnesium and/or calcium are adopted as raw materials, and the raw material(s) is processed through at least one step of calcination, slaking, or carbonization to produce aqueous solution(s) of magnesium bicarbonate and/or calcium bicarbonate, and then the solution(s) is used as precipitant(s) to deposit rare earth, such as nickel, cobalt, iron, aluminum, gallium, indium, manganese, cadmium, zirconium, hafnium, strontium, barium, copper and zinc ions. And at least one of metal carbonates, hydroxides or basic carbonates is obtained, or furthermore the obtained products are calcined to produce metal oxides. The invention takes the cheap calcium and/or magnesium minerals or their oxides, hydroxides with low purity as raw materials to instead common precipitants such as ammonium bicarbonate and sodium carbonate etc.
    Type: Application
    Filed: February 9, 2010
    Publication date: November 17, 2011
    Inventors: Xiaowei Huang, Zhiqi Long, Hongwei Li, Dali Cui, Xinlin Peng, Guilin Yang, Yongke Hou, Chunmei Wang, Shunli Zhang
  • Publication number: 20110268956
    Abstract: The invention relates to a process for obtaining ceramic coatings and ceramic coatings obtained. This process allows obtaining coatings of ceramic oxides, such as ZrO2, Al2O3, TiO2, Cr2O3, Y2O3, SiO2, CaO, MgO, CeO2, Sc2O3, MnO, and/or complex mixtures thereof, by means of a high frequency pulse detonation technique in which the relative movement between the combustion stream and the substrate or piece to be coated takes place at a speed that produces an overlap between the successive coating areas exceeding 60% of the surface of a coating area. The allows producing ceramic coatings with a thickness greater than 30 microns in a single pass.
    Type: Application
    Filed: May 12, 2006
    Publication date: November 3, 2011
    Applicant: FUNDACION INASMET
    Inventors: Inaki Fagoaga Altuna, Maria Parco Camacaro, Georgiy Barikyn, Carlos Vaquero Gonzalez
  • Patent number: 8048398
    Abstract: Process for preparing a mixed metal oxide powder, in which oxidizable starting materials are evaporated and oxidized, the reaction mixture is cooled after the reaction and the pulverulent solids are removed from gaseous substances, wherein as starting materials, at least one pulverulent metal and at least one metal compound, the metal and the metal component of the metal compound being different and the proportion of metal being at least 80% by weight based on the sum of metal and metal component from metal compound, together with one or more combustion gases, are fed to an evaporation zone of a reactor, where metal and metal compound are evaporated completely under nonoxidizing conditions, subsequently, the mixture flowing out of the evaporation zone is reacted in the oxidation zone of this reactor with a stream of a supplied oxygen-containing gas whose oxygen content is at least sufficient to oxidize the starting materials and combustion gases completely.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: November 1, 2011
    Assignee: Evonik Degussa GmbH
    Inventors: Stipan Katusic, Guido Zimmermann, Michael Kraemer, Peter Kress, Horst Miess
  • Publication number: 20110229366
    Abstract: The present invention relates to a method of recovering rhenium (Re) and other metals from Re-bearing materials.
    Type: Application
    Filed: March 8, 2011
    Publication date: September 22, 2011
    Inventors: Eberhard LUEDERITZ, Ulrich R. Schlegel, Peter T. Halpin, Dale L. Schneck
  • Publication number: 20110219607
    Abstract: A method of making a primary alkaline battery that includes a cathode including ?-MnO2 as an active material, an anode including zinc or zinc alloy as an active material, a separator between the cathode and anode, and an alkaline electrolyte contacting the anode and cathode having improved discharge performance. Methods of making high-purity, essentially lithium-free ?-MnO2 having high electrochemical activity from nominally stoichiometric lithium manganese oxide spinels are disclosed.
    Type: Application
    Filed: March 12, 2010
    Publication date: September 15, 2011
    Inventors: Kirakodu S. Nanjundaswamy, Fan Zhang, Jennifer A. Nelson, Paul A. Christian
  • Patent number: 8012450
    Abstract: A method for making the mesoporous material includes the following steps: dissolving a nanocrystal powder in an organic solvent, and achieving a solution A with concentration of 1-30 mg/ml; dissolving a surfactant in water, and achieving a solution B with an approximate concentration of 0.002-0.05 mol/ml; mixing the solution A and the solution B in a volume ratio of 1:(5-30), and achieving a mixture; stirring and emulsifying the mixture, until an emulsion C is achieved; removing the organic solvent from the emulsion C, and achieving a deposit; washing the deposit with deionized water, and achieving a colloid; and drying and calcining the colloid, and eventually achieving a mesoporous material. The mesoporous material has a large specific surface area, a high porosity, and a narrow diameter distribution.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: September 6, 2011
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Ya-Dong Li, Ding-Sheng Wang, Feng Bai, Zi-Yang Huo, Li-Ping Liu, Wei Chen
  • Patent number: 8007757
    Abstract: A method of synthesizing nanostructures. In one embodiment, the method includes the step of heating a reaction mixture at an elevated temperature, T, for a period of time effective to allow the growth of desired nanostructures. The reaction mixture contains an amount, P, of a carboxylate salt and an amount, L, of a fatty acid ligand, defining a molar ratio of the fatty acid ligand to the carboxylate salt, ?=L/P, and a hydrocarbon solvent. The reaction mixture is characterizable with a critical ligand protection, ?, associating with the chemical structure of the carboxylate salt such that when ?<?, the reaction mixture is in a limited ligand protection (LLP) domain, and when ?>?, the reaction mixture is in a sufficient ligand protection (SLP) domain.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: August 30, 2011
    Assignee: The Board of Trustees of the University of Arkansas
    Inventors: Xiaogang Peng, Arun Narayanaswamy, Narayan Pradhan
  • Publication number: 20110206996
    Abstract: A method for preparing treated electrolytic manganese dioxide and a battery including the treated electrolytic manganese dioxide as an electrode are provided. The method for treating the electrolytic manganese dioxide includes suspending milled electrolytic manganese dioxide in an aqueous solution heated to a temperature between ambient and boiling, and adjusting an acidity of the aqueous solution to a pH of less than 3.3. The method further includes agitating the suspended milled electrolytic manganese dioxide in the aqueous solution for a predetermined amount of time to dissolve metal-containing particulates in the milled electrolytic manganese dioxide.
    Type: Application
    Filed: February 24, 2011
    Publication date: August 25, 2011
    Applicant: ERACHEM COMILOG, INC.
    Inventors: John A. Teagle, Oliver Schilling, Mayra C. Sanchez
  • Publication number: 20110195142
    Abstract: A heat-reactive resist material of the invention is characterized in that the boiling point of the fluoride of the element is 200° C. or more. By this means, it is possible to achieve the heat-reactive resist material having high resistance to dry etching using fluorocarbons to form a pattern with the deep groove depth.
    Type: Application
    Filed: October 13, 2009
    Publication date: August 11, 2011
    Applicant: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Yoshimichi Mitamura, Kazuyuki Furuya, Norikiyo Nakagawa, Masatoshi Maeda
  • Patent number: 7993618
    Abstract: A method for making the metal oxide includes the following steps: mixing a metal nitrate with a solvent of octadecyl amine, and achieving a mixture; agitating and reacting the mixture at a reaction temperature for a reaction period; cooling the mixture to a cooling temperature, and achieving a deposit; and washing the deposit with an organic solvent, drying the deposit at a drying temperature and achieving a metal oxide nanocrystal. The present method for making a metal oxide nanocrystal is economical and timesaving, and has a low toxicity associated therewith. Thus, the method is suitable for industrial mass production. The metal oxide nanocrystal material made by the present method has a readily controllable size, a narrow size distribution, and good crystallinity.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: August 9, 2011
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Ya-Dong Li, Ding-Sheng Wang
  • Publication number: 20110147679
    Abstract: The present invention provides a method for recovering an oxide-containing battery material from a waste battery material. The recovery method includes steps (1) and (2) in this order: (1) a step of immersing a base taken out of the waste battery material and the base having an oxide-containing battery material, in a solvent that does not substantially dissolve the oxide, and stripping the battery material from the base thereby, and (2) a step of separating the battery material from the base.
    Type: Application
    Filed: June 30, 2009
    Publication date: June 23, 2011
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Hiroshi Inukai, Toshinori Isobe, Kenji Nakane
  • Patent number: 7951354
    Abstract: Ozonated manganese dioxide is prepared by an ozonation process and utilized as a cathode active material. An ozone containing gas stream contacts manganese dioxide and produces ozonated manganese dioxide with high efficiency. After preparation, ozonated manganese dioxide is stored for a limited time at a low temperature and incorporated into a cathode active material for alkaline batteries.
    Type: Grant
    Filed: April 2, 2008
    Date of Patent: May 31, 2011
    Assignee: The Gillette Company
    Inventors: Stuart M. Davis, Gary A. Miller
  • Publication number: 20110117004
    Abstract: A closed loop combustion system for the combustion of fuels using a molten metal oxide bed.
    Type: Application
    Filed: October 22, 2010
    Publication date: May 19, 2011
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: David C. LAMONT, James SEABA, Edward G. LATIMER, Alexandru PLATON
  • Publication number: 20110094577
    Abstract: Article comprising a substrate; and a conductive metal oxide film adjacent to a surface of the substrate, wherein the conductive metal oxide film has an electron mobility (cm2/V-s) of 35 or greater are described. Photovoltaic devices comprising conductive metal oxide films are also described.
    Type: Application
    Filed: September 22, 2010
    Publication date: April 28, 2011
    Inventors: Dilip Kumar Chatterjee, Curtis Robert Fekety, Lenwood Lynell Fields, Zhen Song, Lili Tian, Ji Wang
  • Patent number: 7919068
    Abstract: A method of producing porous complex oxides includes the steps of providing a mixture of a) precursor elements suitable to produce the complex oxide; or b) one or more precursor elements suitable to produce particles of the complex oxide and one or more metal oxide particles; and c) a particulate carbon-containing pore-forming material selected to provide pore sizes in the range of approximately 7 nm to 250 nm, and treating the mixture to (i) form the porous complex oxide in which two or more of the precursor elements from (a) above or one or more of the precursor elements and one or more of the metals in the metal oxide particles from (b) above are incorporated into a phase of the complex metal oxide and the complex metal oxide has grain sizes in the range of about 1 nm to 150 nm; and (ii) remove the pore-forming material under conditions such that the porous structure and composition of the complex oxide is substantially preserved. The method may be used to produce non-refractory metal oxides as well.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: April 5, 2011
    Assignee: Very Small Particle Company Limited
    Inventors: Geoffrey Alan Edwards, Peter Cade Talbot, Jose Antonio Alarco
  • Publication number: 20110044887
    Abstract: ?-Phase manganese dioxide, when in a mesoporous form, has useful properties enabling its use as electrodes, inter alia, in lithium batteries and supercapacitors.
    Type: Application
    Filed: March 25, 2009
    Publication date: February 24, 2011
    Inventors: Katherine Elizabeth Amos, Tobias James Gordon-Smith
  • Patent number: 7892447
    Abstract: Nanoplatelet forms of metal hydroxide and metal oxide are provided, as well as methods for preparing same. The nanoplatelets are suitable for use as fire retardants and as agents for chemical or biological decontamination.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: February 22, 2011
    Assignee: Aqua Resources Corporation
    Inventor: Orville Lee Maddan
  • Patent number: 7887778
    Abstract: Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves and methods of making the same are disclosed. A method for forming nanowires includes hydrothermally treating a chemical precursor composition in a hydrothermal treating solvent to form the nanowires, wherein the chemical precursor composition comprises a source of manganese cations and a source of counter cations, and wherein the nanowires comprise ordered porous manganese oxide-based octahedral molecular sieves.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: February 15, 2011
    Assignee: The University of Connecticut
    Inventors: Steven Lawrence Suib, Jikang Yuan
  • Publication number: 20110033368
    Abstract: Methods of forming a nanocrystal are provided. The nanocrystal may be a binary nanocrystal of general formula M1A or of general formula M1O, a ternary nanocrystal of general formula M1M2A, of general formula M1AB or of general formula M1M2O or a quaternary nanocrystal of general formula M1M2AB. M1 is a metal of Groups II-IV, Group VII or Group VIII of the PSE. A is an element of Group VI or Group V of the PSE. O is oxygen. A homogenous reaction mixture in a non-polar solvent of low boiling point is formed, that includes a metal precursor containing the metal M1 and, where applicable M2. For an oxygen containing nanocrystal the metal precursor contains an oxygen donor. Where applicable, A is also included in the homogenous reaction mixture. The homogenous reaction mixture is under elevated pressure brought to an elevated temperature that is suitable for forming a nanocrystal.
    Type: Application
    Filed: October 3, 2008
    Publication date: February 10, 2011
    Applicant: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Enyi Ye, Yin Win Khin, Mingyong Han
  • Publication number: 20110008245
    Abstract: Provided are methods for producing nanostructures and nanostructures obtained thereby. The methods include heating a certain point of a substrate dipped into a precursor solution of the nanostructures so that the nanostructures are grown in a liquid phase environment without evaporation of the precursor solution. The methods show excellent cost-effectiveness because of the lack of a need for precursor evaporation at high temperature. In addition, unlike the vapor-liquid-solid (VLS) process performed in a vapor phase, the method includes growing nanostructures in a liquid phase environment, and thus provides excellent safety and eco-friendly characteristics as well as cost-effectiveness. Further, the method includes locally heating a substrate dipped into a precursor solution merely at a point where the nanostructures are to be grown, so that the nanostructures are grown directly at a desired point of the substrate. Therefore, it is possible to grow and produce nanostructures directly in a device.
    Type: Application
    Filed: April 28, 2010
    Publication date: January 13, 2011
    Applicant: KAIST (Korea Advanced Institute of Science and Technology)
    Inventors: Inkyu PARK, Seung Hwan KO
  • Patent number: 7867471
    Abstract: A process of producing a ceramic powder including providing a plurality of precursor materials in solution, wherein each of the plurality of precursor materials in solution further comprises at least one constituent ionic species of a ceramic powder, combining the plurality of precursor materials in solution with an onium dicarboxylate precipitant solution to cause co-precipitation of the ceramic powder precursor in a combined solution; and separating the ceramic powder precursor from the combined solution. The process may further include calcining the ceramic powder precursor.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: January 11, 2011
    Assignee: SACHEM, Inc.
    Inventor: Wilfred Wayne Wilson
  • Publication number: 20110003085
    Abstract: A porous metal oxide is formed by creating a metal oxide material with a hydrolysis reaction in solution. The hydrolysis reaction or reaction products of a metal oxide precursor react simultaneously or in conjunction with a metal salt or a disassociation species of a metal salt. The metal oxide material is conditioned, and is refined to produce metal oxide particles having a porous structure containing crystallites.
    Type: Application
    Filed: September 7, 2010
    Publication date: January 6, 2011
    Applicant: CARRIER CORPORATION
    Inventors: Treese Hugener-Campbell, Thomas Henry Vanderspurt, Wayde R. Schmidt, Steven M. Zhitnik
  • Publication number: 20100327238
    Abstract: Disclosed are a sintered body and a thermoelectric conversion material. The sintered body comprises a manganese-based oxide as a main component and the sintered body has a relative density of 90% or more and an average of the size of particles constituting the sintered body is 3 ?m or less.
    Type: Application
    Filed: February 10, 2009
    Publication date: December 30, 2010
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Kazuo Sadaoka
  • Publication number: 20100327220
    Abstract: A manufacturing method of the present invention includes (a) a material preparation step of preparing a material containing lithium, manganese, and bismuth, and (b) a firing step of firing the material prepared by the material preparation step at a temperature of 830° C. to 1,000° C. In the material preparation step, the material is prepared such that the residual amount of bismuth in spinel-type lithium manganate yielded by the firing step is 0.01 mol % or less with respect to manganese.
    Type: Application
    Filed: June 1, 2010
    Publication date: December 30, 2010
    Applicant: NGK Insulators, Ltd.
    Inventors: Yukinobu YURA, Nobuyuki KOBAYASHI
  • Publication number: 20100278721
    Abstract: A method for making the mesoporous material includes the following steps: dissolving a nanocrystal powder in an organic solvent, and achieving a solution A with concentration of 1-30 mg/ml; dissolving a surfactant in water, and achieving a solution B with an approximate concentration of 0.002-0.05 mol/ml; mixing the solution A and the solution B in a volume ratio of 1: (5-30), and achieving a mixture; stirring and emulsifying the mixture, until an emulsion C is achieved; removing the organic solvent from the emulsion C, and achieving a deposit; washing the deposit with deionized water, and achieving a colloid; and drying and calcining the colloid, and eventually achieving a mesoporous material. The mesoporous material has a large specific surface area, a high porosity, and a narrow diameter distribution.
    Type: Application
    Filed: December 14, 2007
    Publication date: November 4, 2010
    Applicants: Tsinghua University, HON HAI Precision Industry CO., LTD.
    Inventors: Ya-Dong Li, Ding-Sheng Wang, Feng Bai, Zi-Yang Huo, Li-Ping Liu, Wei Chen
  • Patent number: 7820124
    Abstract: A material comprising a plurality of nanoparticles. Each of the plurality of nanoparticles includes at least one of a metal phosphate, a metal silicate, a metal oxide, a metal borate, a metal aluminate, and combinations thereof. The plurality of nanoparticles is substantially monodisperse. Also disclosed is a method of making a plurality of substantially monodisperse nanoparticles. The method includes providing a slurry of at least one metal precursor, maintaining the pH of the slurry at a predetermined value, mechanically milling the slurry, drying the slurry to form a powder; and calcining the powder at a predetermined temperature to form the plurality of nanoparticles.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: October 26, 2010
    Assignee: General Electric Company
    Inventors: Kalaga Murali Krishna, Sergio Paulo Martins Loureiro, Mohan Manoharan, Geetha Karavoor, Shweta Saraswat
  • Publication number: 20100266485
    Abstract: A process comprises (a) combining (1) at least one base and (2) at least one metal carboxylate salt comprising (i) a metal cation selected from metal cations that form amphoteric metal oxides or oxyhydroxides and (ii) a lactate or thiolactate anion, or metal carboxylate salt precursors comprising (i) at least one metal salt comprising the metal cation and a non-interfering anion and (ii) lactic or thiolactic acid, a lactate or thiolactate salt of a non-interfering, non-metal cation, or a mixture thereof; and (b) allowing the base and the metal carboxylate salt or metal carboxylate salt precursors to react.
    Type: Application
    Filed: December 16, 2008
    Publication date: October 21, 2010
    Inventor: Timothy D. Dunbar
  • Publication number: 20100254875
    Abstract: A material comprising a plurality of nanoparticles. Each of the plurality of nanoparticles includes at least one of a metal phosphate, a metal silicate, a metal oxide, a metal borate, a metal aluminate, and combinations thereof. The plurality of nanoparticles is substantially monodisperse. Also disclosed is a method of making a plurality of substantially monodisperse nanoparticles. The method includes providing a slurry of at least one metal precursor, maintaining the pH of the slurry at a predetermined value, mechanically milling the slurry, drying the slurry to form a powder; and calcining the powder at a predetermined temperature to form the plurality of nanoparticles.
    Type: Application
    Filed: October 5, 2006
    Publication date: October 7, 2010
    Inventors: Kalaga Murali Krishna, Sergio Paulo Martins Loureiro, Mohan Manoharan, Geetha Karavoor, Shweta Saraswat
  • Patent number: 7803347
    Abstract: A technique for bonding an organic group with the surface of fine particles such as nanoparticles through strong linkage is provided, whereas such fine particles are attracting attention as materials essential for development of high-tech products because of various unique excellent characteristics and functions thereof. Organically modified metal oxide fine particles can be obtained by adapting high-temperature, high-pressure water as a reaction field to bond an organic matter with the surface of metal oxide fine particles through strong linkage. The use of the same condition enables not only the formation of metal oxide fine particles but also the organic modification of the formed fine particles. The resulting organically modified metal oxide fine particles exhibit excellent properties, characteristics and functions.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: September 28, 2010
    Assignee: Tohoku Techno Arch Co., Ltd.
    Inventor: Tadafumi Ajiri
  • Publication number: 20100196746
    Abstract: Provided is a catalyst material comprising aggregates of nanoneedles of mainly R-type manganese dioxide and having a mesoporous structure. With this, water can be oxidatively decomposed under visible light at room temperature to produce oxygen gas, proton and electron. Also provided is a catalyst material comprising aggregates of nanoparticles of mainly hydrogenated manganese dioxide. With this, acetic acid or an inorganic substance can be synthesized from carbon dioxide gas.
    Type: Application
    Filed: March 25, 2008
    Publication date: August 5, 2010
    Inventor: Hideki Koyanaka
  • Patent number: 7723261
    Abstract: The present invention refers to a catalyst for the manufacture of methyl mercaptan from carbon oxides comprising Mo and K compounds and oxides or sulfides of metals chosen from the manganese group. The improvement of the present process consists of the fact that carbon dioxide can be converted with higher conversions and selectivities to methyl mercaptan as compared to state-of-the-art technologies, with only minor amounts of carbon monoxide being formed as side product. Simultaneously, carbon monoxide can be easily converted into carbon dioxide and hydrogen by reaction with water using established water-gas-shift-technologies thus increasing the overall selectivity to methyl mercaptan.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: May 25, 2010
    Assignee: Evonik Degussa GmbH
    Inventors: Jan-Olaf Barth, Hubert Redlingshöfer, Christoph Weckbecker, Klaus Huthmacher, Horst-Werner Zanthoff, Ralf Mayer
  • Patent number: 7713660
    Abstract: The present invention relates to methods for manufacturing manganese oxide nanotubes/nanorods using an anodic aluminum oxide (AAO) template. In the inventive methods, the manganese oxide nanotubes/nanorods are manufactured in mild conditions using only a manganese oxide precursor and an anodic aluminum oxide template without using any solvent. The nanotubes/nanorods having uniform size can be easily obtained by adsorbing the manganese oxide precursor onto the surface of the anodic aluminum oxide template by a vacuum forming process using a vacuum filtration apparatus so as to maintain the shape of nanotubes/nanorods and drying the manganese oxide nanotubes. The manganese oxide nanotubes/nanorods made according to the inventive methods can be used as economic hydrogen reservoirs, the electrode of lithium secondary batteries, or the energy reservoirs of vehicles or other transport means.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: May 11, 2010
    Assignee: Korea Basic Science Institute
    Inventors: Hae Jin Kim, Jin Bae Lee
  • Publication number: 20100055016
    Abstract: Provided is a method of manufacturing oxide-based nano-structured materials using a chemical wet process, and thus, the method can be employed to manufacture oxide-based nano-structured materials having uniform composition and good electrical characteristics in large quantities, the method having a relatively simple process which does not use large growing equipment. The method includes preparing a first organic solution that comprises a metal, mixing the first organic solution with a second organic solution that contains hydroxyl radicals (—OH), filtering the mixed solution using a filter in order to extract oxide-based nano-structured materials formed in the mixed solution, drying the extracted oxide-based nano-structured materials to remove any remaining organic solution, and heat treating the dried oxide-based nano-structured materials.
    Type: Application
    Filed: February 1, 2008
    Publication date: March 4, 2010
    Inventors: Sang-Hyeob Kim, Hye-Jin Myoung, Sung-Lyul Maeng, G.A.J. Amaratunga, Sunyoung Lee
  • Publication number: 20100003203
    Abstract: The present invention relates to methods of producing surface-modified nanoparticulate particles at least of one metal oxide, metal hydroxide and/or metal oxide hydroxide, and aqueous suspensions of these particles. The invention further relates to the surface-modified nanoparticulate particles, obtainable by these methods, at least of one metal oxide, metal hydroxide and/or metal oxide hydroxide and aqueous suspensions of these particles, and to their use for cosmetic sunscreen preparations, as stabilizer in plastics and as antimicrobial active ingredient.
    Type: Application
    Filed: October 10, 2007
    Publication date: January 7, 2010
    Applicant: BASF SE
    Inventors: Andrey Karpov, Hartmut Hibst, Jutta Kissel, Bernd Bechtloff, Hartwig Voss, Kerstin Schierle-Arndt, Valerie Andre
  • Patent number: 7618609
    Abstract: Increased lithium capacity of defective oxide materials and methods for preparation are described herein. Point defects may be introduced into a metal oxide to increase its lithium ion capacity. Defective metal oxides can be prepared by heating the metal oxide under O2/H2O at elevated temperatures. These increased lithium capacity metal oxides may be suitable for use as high specific energy cathodes in lithium metal and lithium ion batteries.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: November 17, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Karen Swider Lyons, Debra R. Rolison
  • Publication number: 20090249614
    Abstract: Ozonated manganese dioxide is prepared by an ozonation process and utilized as a cathode active material. An ozone containing gas stream contacts manganese dioxide and produces ozonated manganese dioxide with high efficiency. After preparation, ozonated manganese dioxide is stored for a limited time at a low temperature and incorporated into a cathode active material for alkaline batteries.
    Type: Application
    Filed: April 2, 2008
    Publication date: October 8, 2009
    Inventors: Stuart M. Davis, Gary A. Miller
  • Publication number: 20090202427
    Abstract: Process for preparing mixed metal oxide powders Abstract Process for preparing a mixed metal oxide powder, in which oxidizable starting materials are evaporated in an evaporation zone of a reactor and oxidized in the vaporous state in an oxidation zone of this reactor, the reaction mixture is cooled after the reaction and the pulverulent solids are removed from gaseous substances, wherein at least one pulverulent metal, together with one or more combustion gases, is fed to the evaporation zone, the metal is evaporated completely in the evaporation zone under nonoxidizing conditions, an oxygen-containing gas and at least one metal compound are fed, separately or together, in the oxidation zone to the mixture flowing out of the evaporation zone, the oxygen content of the oxygen-containing gas being at least sufficient to oxidize the metal, the metal compound and the combustion gas completely.
    Type: Application
    Filed: May 16, 2007
    Publication date: August 13, 2009
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: Stipan Katusic, Guido Zimmermann, Michael Krämer, Horst Miess, Edwin Staab
  • Patent number: 7566438
    Abstract: An object of the present invention is to provide an oxygen reduction electrode having excellent oxygen reduction properties (oxygen reduction catalyst abilities). The present invention encompasses: (1) A method for manufacturing a nanostructured manganese oxide having a dendritic structure formed from an agglomeration of primary particles, wherein the method comprises the steps of: removing components from a target plate that comprises one or more kinds of manganese oxides by irradiating the target plate with laser light in an atmosphere comprising a mixed gas of inert gas and oxygen gas, the content of the oxygen gas in the mixed gas being no less than 0.05% but no more than 0.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: July 28, 2009
    Assignee: Panasonic Corporation
    Inventors: Nobuyasu Suzuki, Yasunori Morinaga, Hidehiro Sasaki, Yuka Yamada
  • Publication number: 20090142666
    Abstract: The present invention relates to methods for manufacturing manganese oxide nanotubes/nanorods using an anodic aluminum oxide (AAO) template. In the inventive methods, the manganese oxide nanotubes/nanorods are manufactured in mild conditions using only a manganese oxide precursor and an anodic aluminum oxide template without using any solvent. The nanotubes/nanorods having uniform size can be easily obtained by adsorbing the manganese oxide precursor onto the surface of the anodic aluminum oxide template by a vacuum forming process using a vacuum filtration apparatus so as to maintain the shape of nanotubes/nanorods and drying the manganese oxide nanotubes. The manganese oxide nanotubes/nanorods made according to the inventive methods can be used as economic hydrogen reservoirs, the electrode of lithium secondary batteries, or the energy reservoirs of vehicles or other transport means.
    Type: Application
    Filed: October 20, 2006
    Publication date: June 4, 2009
    Inventors: Hae Jin Kim, Jin Bae Lee
  • Publication number: 20090123354
    Abstract: A solid material is presented for the partial oxidation of natural gas. The solid material includes a solid oxygen carrying agent and a hydrocarbon activation agent. The material precludes the need for gaseous oxygen for the partial oxidation and provides better control over the reaction.
    Type: Application
    Filed: November 14, 2007
    Publication date: May 14, 2009
    Inventors: Deng-Yang Jan, Joel T. Walenga, Kurt M. Vanden Bussche, Joseph A. Kocal, Lisa M. King