Utilizing Metal Oxide Catalyst Patents (Class 423/656)
-
Patent number: 12129174Abstract: The present disclosure provides a catalyst for a water gas shift reaction at middle temperature, the catalyst comprising a catalytically active component containing 40 to 80 mol % of copper (Cu), 15 to 50 mol % of zinc (Zn), and 1 to 13 mol % of aluminum (Al), relative to all metals of the catalyst, wherein an aluminum-rich layer is present in a surface layer of a particle of the catalyst. Furthermore, the present disclosure provides a preparation method of the catalyst, and a hydrogen preparation method using the same.Type: GrantFiled: October 15, 2019Date of Patent: October 29, 2024Assignees: Research Institute of Industrial Science & Technology, IUCF-HYU (Industry-University Cooperation Foundation Hanyang University)Inventors: Joon-Woo Kim, Young-Woong Suh, Dong-Jun Koh, Cheon-Woo Jeong
-
Patent number: 11097944Abstract: A method is described for revamping an ammonia production facility said ammonia production facility having a front end comprising one or more reformers fed with a hydrocarbon feedstock at a hydrocarbon feed stock feed rate and a high-temperature shift reactor fed with a reformed gas obtained from said one or more reformers and containing a fixed bed of iron-containing water-gas shift catalyst, said front end operating at a first steam-to-carbon ratio and a first pressure drop, said method comprising the steps of (i) replacing the iron-containing water-gas shift catalyst with a low-steam water-gas shift catalyst to form a modified front end, (ii) operating the modified front end at a second steam-to-carbon ratio and a second pressure drop, wherein the second steam-to-carbon ratio is at least 0.2 less than the first steam-to-carbon ratio and the second pressure drop is less than the first pressure drop, and (iii) increasing the hydrocarbon feed stock feed rate to said one or more reformers.Type: GrantFiled: February 6, 2017Date of Patent: August 24, 2021Assignee: Johnson Matthey Public Limited CompanyInventors: John David Pach, Colin William Park
-
Patent number: 10663163Abstract: Disclosed is a method for enhanced fuel combustion to maximize the capture of by-product carbon dioxide. According to various embodiments of the invention, a method for combusting fuel in a two-stage process is provided, which includes in-situ oxygen generation. In-situ oxygen generation allows for the operation of a second oxidation stage to further combust fuel, thus maximizing fuel conversion efficiency. The integrated oxygen generation also provides an increased secondary reactor temperature, thereby improving the overall thermal efficiency of the process. The means of in-situ oxygen is not restricted to one particular embodiment, and can occur using an oxygen generation reactor, an ion transport membrane, or both. A system configured to the second stage combustion method is also disclosed.Type: GrantFiled: January 24, 2018Date of Patent: May 26, 2020Assignee: Saudi Arabian Oil CompanyInventors: Tidjani Niass, Mourad V. Younes
-
Patent number: 10283797Abstract: The invention relates to a method for storing electric energy, which comprises the steps a) production of methane from water and soot using electric energy, b) storage of the methane, c) dissociation of the methane into hydrogen and soot, with the hydrogen being used for energy generation, or energy generation by conversion of the methane into soot and water in a cyclic bromination-oxidation process, wherein the soot formed in the dissociation of methane or in the cyclic bromination-oxidation process in step c) is collected and, in a renewed pass through the method, is used for methane production in step a), so that a closed carbon circuit is formed, and also a system comprising a power-methane conversion plant in which electric power is converted together with soot and water into methane and also a methane-power conversion plant in which methane is converted into hydrogen with elimination of soot.Type: GrantFiled: September 29, 2014Date of Patent: May 7, 2019Inventor: Marek Fulde
-
Patent number: 10233078Abstract: The invention relates to a process for utilizing a hydrocarbon-comprising and/or carbon dioxide-comprising coproduct gas, accompanying gas and/or biogas, wherein hydrocarbon-comprising and/or carbon dioxide-comprising coproduct gas, accompanying gas and/or biogas is introduced into a reaction space and the multicomponent mixture comprised in the coproduct gas, accompanying gas and/or biogas is converted in a high-temperature zone at temperatures of more than 1000° C. and in the presence of a carrier into a product gas mixture which comprises more than 95% by volume of CO, CO2, H2, H2O, CH4 and N2 and optionally into a carbon-comprising solid which is deposited to an extent of at least 75% by weight, based on the total mass of the carbon-comprising solid, on the carrier where the flow velocity of the gas mixture of coproduct gas, accompanying gas and/or biogas in the reaction zone is less than 20 m/s.Type: GrantFiled: December 13, 2013Date of Patent: March 19, 2019Assignees: BASF SE, Linde AG, ThyssenKrupp Industrial Solutions AGInventors: Christian Schneider, Andreas Bode, Dirk Klingler, Otto Machhammer, Philipp Brueggemann, Matthias Kern, Wolfgang Alois Hormuth, Marcus Guzmann, Rene Koenig, Jens Bernnat, Grigorios Kolios, Volker Goeke, Hans-Juergen Maass, Karsten Bueker
-
Patent number: 9896339Abstract: Disclosed is a method of producing carbon monoxide (CO) and sulfur dioxide (SO2), the method comprising obtaining a reaction mixture comprising carbon dioxide gas (CO2(g)) and elemental sulfur gas (S(g)), and subjecting the reaction mixture to conditions sufficient to produce a product stream comprising CO(g) and SO2(g).Type: GrantFiled: October 14, 2015Date of Patent: February 20, 2018Assignee: SABIC Global Technologies B.V.Inventors: Lawrence D'Souza, Justin Johnson, Jessica Scaranto
-
Patent number: 9789470Abstract: The invention provides a method for the production of a supported nickel catalyst, in which an aqueous mixture comprising an alkali metal salt plus other metal salts is sintered to form a support material. A supported nickel catalyst comprising potassium ?-alumina is also provided.Type: GrantFiled: September 11, 2013Date of Patent: October 17, 2017Assignee: Haldor Topsoe A/SInventors: Joachim Harteg Jacobsen, Charlotte Vinding Ovesen, Christian Daugaard
-
Patent number: 9499403Abstract: The invention relates to a four-component catalyst and a seven-component catalyst and refractory supports for use in the thermoneutral reforming of petroleum-based liquid hydrocarbon fuels.Type: GrantFiled: July 10, 2013Date of Patent: November 22, 2016Assignees: Saudi Arabian Oil Company, King Fahd University of Petroleum and Minerals, Petroleo Brasileiro S.A.Inventors: Fahad Ibrahim Al-Muhaish, Shakeel Ahmed, Roberto Carlos Pontes Bittencourt, Mauri Jose Baldini Cardoso, Vivian Passos de Souza
-
Patent number: 9353322Abstract: The present invention relates to processes for hydromethanating a carbonaceous feedstock to a methane-enriched synthesis gas, where an oxygen-rich gas stream and the carbonaceous feedstock are fed into a fluidized-bed hydromethanation reactor at a specified zone in order to assist in heat management within the hydromethanation reactor.Type: GrantFiled: October 28, 2011Date of Patent: May 31, 2016Assignee: GreatPoint Energy, Inc.Inventors: Pattabhi K. Raman, Veeraya Jiradilok, Earl T. Robinson, Avinash Sirdeshpande
-
Patent number: 9340735Abstract: The invention refers to a process to produce H2 from biomass containing carbon. The biomass is gasified to obtain a gaseous flow essentially containing molecules of carbon monoxide (CO) and molecules of molecular hydrogen (H2). These molecules (CO) and (H2) are then oxidized by oxygen holders in oxidized state (MeO) to obtain a gaseous flow essentially containing CO2 and water steam (H2Osteam) and oxygen holders in reduced state (Me). The oxygen holders are then oxidized by water steam. That oxidation produces oxidized oxygen holders and a gaseous flow essentially containing di-hydrogen (H2). The invention also refers to a system containing the means to perform the steps of such a process.Type: GrantFiled: January 17, 2011Date of Patent: May 17, 2016Assignee: SEE—Soluções, Energia e Meio Ambiente Ltda.Inventors: Ammar Bensakhria, Raymond François Guyomarc'h
-
Patent number: 9034282Abstract: The invention relates to a catalytic reactor including: at least one first architecture/microstructure including a ceramic and/or metal cellular architecture having a pore size of 2 to 80 ppi and a macroporosity of more than 85%, and a microstructure having a grain size of 100 nm to 5 microns, and skeleton densification of more than 95%, and a catalytic layer; and at least one second architecture/microstructure including a spherical or cylindrical architecture having a pore size of 0.1 to 100 ?m and a macroporosity of less than 60%, and a microstructure having a grain size of 20 nm to 10 ?m and a skeleton densification of 20% to 90%, and a catalytic layer; the first and second architecture/microstructure being stacked inside said reactor.Type: GrantFiled: November 24, 2010Date of Patent: May 19, 2015Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges ClaudeInventors: Pascal Del-Gallo, Daniel Gary, Mathieu Cornillac, Aude Cuni
-
Patent number: 8992871Abstract: A CO shift catalyst according to the present invention reforms carbon monoxide (CO) contained in gas. The CO shift catalyst is prepared from one or both of molybdenum (Mo) and cobalt (Co) as an active ingredient and an oxide of one of, or a mixture or a compound of, titanium (Ti), silicon (Si), zirconium (Zr), and cerium (Ce) as a carrier for supporting the active ingredient. The CO shift catalyst can be used in a halogen-resistant CO shift reactor (15) that converts CO contained in gasified gas (12) generated in a gasifier (11) into CO2.Type: GrantFiled: April 10, 2009Date of Patent: March 31, 2015Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Toshinobu Yasutake, Tetsuya Imai, Masanao Yonemura, Susumu Okino, Keiji Fujikawa, Shinya Tachibana
-
Patent number: 8980211Abstract: An energy conversion process that exports by-product CO2 at elevated pressure where a fuel gas feed stream is mixed with a reactant stream and additional CO2 is added to at least part of, the fuel gas feed stream, the reactant stream or both through desorption by contacting with a CO2-rich solvent stream in a first stage contactor to produce a mixed feed gas stream and a CO2-lean solvent stream; passing said mixed feed gas stream to a chemical conversion step, where further CO2 is produced; chilling at least part of the products of said chemical conversion step and thereby produce a CO2-lean gas stream; and passing at least part of said CO2-lean gas stream said to a second stage contactor where further CO2 is removed, by absorption, to produce a product gas stream and a solvent stream rich in CO2 from which said CO2-rich solvent stream is subsequently derived.Type: GrantFiled: February 24, 2009Date of Patent: March 17, 2015Inventors: Bryan Christopher Timmins, Jacqueline Anne Fisher
-
Patent number: 8940660Abstract: The present invention involves both separated beds (or physical mixture) and a process for treating a fuel gas comprising sending the fuel gas to a separated bed (or physical mixture), in which the separated beds comprise a first bed of a sulfur sorbent and a second bed of a water gas shift catalyst (a physical mixture of a sulfur sorbent and a water gas shift catalyst). The process comprises first sending the fuel gas to the first bed to remove sulfur compounds from said fuel gas and then the fuel gas goes to the second bed to undergo a water gas shift reaction in which carbon monoxide is converted to carbon dioxide and water is converted to hydrogen. (or sending the fuel gas simultaneously to the physical mixture to remove simultaneously the sulfur compounds and to react CO with water to CO2 and hydrogen).Type: GrantFiled: December 4, 2008Date of Patent: January 27, 2015Assignee: UOP LLCInventors: Manuela Serban, Kurt M. Vanden Bussche, Alakananda Bhattacharyya
-
Patent number: 8864857Abstract: An apparatus for generating hydrogen gas from a replaceable aluminum pack comprising an aluminum and hydride mixture encased in a breathable membrane that is raised and lowered into a fluid contained within an enclosed tank wherein contact with the fluid releases hydrogen gas from the aluminum. A pressure transducer and microprocessor chip are provided for monitoring and regulating the rate of hydrogen production by engaging and disengaging a reversible motor that raises and lowers an inner tray on which the aluminum pack resides accordingly.Type: GrantFiled: July 26, 2011Date of Patent: October 21, 2014Inventor: Harlo Mayne
-
Patent number: 8834835Abstract: A catalytic water gas shift process at temperatures above about 450° C. up to about 900° C. or so wherein the catalyst includes rhenium deposited on a support, preferably without a precious metal, wherein the support is prepared from a high surface area material, such as a mixed metal oxide, particularly a mixture of zirconia and ceria, to which may be added one or more of a high surface area transitional alumina, an alkali or alkaline earth metal dopant and/or an additional dopant selected from Ga, Nd, Pr, W, Ge, Fe, oxides thereof and mixtures thereof.Type: GrantFiled: January 28, 2013Date of Patent: September 16, 2014Assignees: Clariant Corporation, L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges ClaudeInventors: Jon P. Wagner, Michael W. Balakos, Chandra Ratnasamy
-
Patent number: 8828339Abstract: A CO shift catalyst according to the present invention is one that reforms carbon monoxide (CO) in gas. The CO shift catalyst includes: active ingredients including one of molybdenum (Mo) and iron (Fe) as a main ingredient and one of nickel (Ni) and ruthenium (Ru) as an accessory ingredient; and one or at least two oxides of titanium (Ti), zirconium (Zr), and cerium (Ce) as a carrier supporting the active ingredients. The CO shift catalyst can be used for a CO shift reactor 20 that converts CO in gasified gas 12 produced in a gasifier 11 into CO2.Type: GrantFiled: February 24, 2011Date of Patent: September 9, 2014Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Toshinobu Yasutake, Masanao Yonemura, Tetsuya Imai
-
Patent number: 8802052Abstract: The method in accordance with the present invention has steps of: preparing a hydrogen producing device with a high gravitational rotating packed bed, initiating the device, adjusting the temperature of the device, inputting a reagent gas and a liquid vaporized for mixing with the reagent gas into a reagent mixture, and passing the reagent mixture through the device to obtain hydrogen.Type: GrantFiled: March 21, 2011Date of Patent: August 12, 2014Inventors: Wei-Hsin Chen, Yu-Jhih Syu
-
Patent number: 8679450Abstract: Process to prepare a hydrogen rich gas mixture from a halogen containing gas mixture comprising hydrogen and at least 50 vol. % carbon monoxide, on a dry basis, by contacting the halogen containing gas mixture with water having a temperature of between 150 and 250° C. to obtain a gas mixture poor in halogen and having a steam to carbon monoxide molar ratio of between 0.2:1 and 0.9:1 and subjecting said gas mixture poor in halogen to a water gas shift reaction wherein part or all of the carbon monoxide is converted with the steam to hydrogen and carbon dioxide in the presence of a catalyst as present in one fixed bed reactor or in a series of more than one fixed bed reactors and wherein the temperature of the gas mixture as it enters the reactor or reactors is between 190 and 230° C.Type: GrantFiled: March 18, 2010Date of Patent: March 25, 2014Assignee: Shell Oil CompanyInventors: Robert Van Den Berg, Mark Jan Prins, Matthieu Simon Henrl Fleys
-
Patent number: 8663566Abstract: Disclosed are a fluidized bed water gas shift membrane reactor and a method for separating carbon dioxide using the same. More specifically, disclosed are a fluidized bed water gas shift membrane reactor provided on the back of a gasification reactor to produce a synthetic gas consisting of hydrogen and carbon monoxide by reaction of a solid hydrocarbon with water or oxygen, wherein the carbon monoxide present in an amount of 40 to 70 vol % in the synthesis gas reacts with steam in the presence of a catalyst to produce a mix gas of hydrogen and carbon dioxide, and the hydrogen is selectively isolated from the mix gas through a Pb—Cu shift membrane to increase the concentration of carbon dioxide present in the mix gas and separate the carbon dioxide, and a method for separating carbon dioxide using the same.Type: GrantFiled: July 19, 2010Date of Patent: March 4, 2014Assignee: Korea Institute of Energy ResearchInventors: See Hoon Lee, II Hyun Baek, Won Hyun Eom, Jeong Nam Kim
-
Patent number: 8658554Abstract: A catalyst support which may be used to support various catalysts for use in reactions for hydrogenation of carbon dioxide including a catalyst support material and an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction associated with the catalyst support material. A catalyst for hydrogenation of carbon dioxide may be supported on the catalyst support. A method for making a catalyst for use in hydrogenation of carbon dioxide including application of an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction to a catalyst support material, the coated catalyst support material is optionally calcined, and a catalyst for the hydrogenation of carbon dioxide is deposited on the coated catalyst support material. A process for hydrogenation of carbon dioxide and for making syngas comprising a hydrocarbon, esp. methane, reforming step and a RWGS step which employs the catalyst composition of the present invention and products thereof.Type: GrantFiled: October 28, 2010Date of Patent: February 25, 2014Assignee: The United States of America, as represented by the Secretary of the NavyInventors: Robert W. Dorner, Heather D. Willauer, Dennis R Hardy
-
Patent number: 8652436Abstract: A material for water gas contains polyhydric alcohol, and hydroxycarboxylic acid.Type: GrantFiled: November 16, 2009Date of Patent: February 18, 2014Assignee: Kao CorporationInventors: Yasuo Amishige, Takeshi Shirasawa
-
Patent number: 8642004Abstract: Using the process described in the present invention, a gas is produced that is rich in methane and hydrogen and has a content of olefins below 1% v/v, which fully meets the necessary requirements for raw materials used for large-scale production of hydrogen or synthesis gas, in steam reforming units that already exist in a great many oil refineries and petrochemical units. Starting from ethanol, steam, nickel-based catalysts and the use of appropriate conditions of temperature, and H2O/ethanol and H2/ethanol molar ratios, the invention teaches the production of hydrogen and synthesis gas from biomass, stably for long periods without loss of catalyst performance over time, permitting its industrial application in new units or in existing units. As a solution for the production of ethanol, the present invention claims the replacement of the ZnO-based and hydrofining catalysts of the feed pre-treatment section, with nickel-based catalysts and process conditions in accordance with the present invention.Type: GrantFiled: August 18, 2011Date of Patent: February 4, 2014Assignee: Petroleo Brasileiro S.A.—PetrobrasInventor: Roberto Carlos Pontes Bittencourt
-
Patent number: 8617511Abstract: The invention is directed to a process for producing hydrogen from methanol, comprising providing at least one flow of methanol and (1) catalytically converting part of the methanol or a fuel gas with air oxygen to carbon dioxide and water, while generating heat and (2) catalytically converting the methanol or the remaining part of the methanol at elevated temperature to hydrogen and carbon monoxide, followed by conversion of the carbon monoxide with water to hydrogen and carbon dioxide, wherein the heat generated in step (1) is sufficient to produce the elevated temperature required in step (2), wherein both steps (1) and (2) are carried out in a bed of sintered metal particles, the bed of sintered metal in step (2) having a surface that is catalytically active for the conversion of methanol to hydrogen, and wherein the beds of sintered metal particles are in heat exchanging relationship.Type: GrantFiled: February 25, 2010Date of Patent: December 31, 2013Assignee: K.M.W.E. Management B.V.Inventors: John Wilhelm Geus, Marinus Franciscus Johannes Evers
-
Publication number: 20130309165Abstract: Provided are a metal structure catalyst and a method of preparing the same. Particularly, the method includes forming a metal precipitate on a metal support by contact of a mixed solution including a precursor of a metal catalyst and a precipitating agent with the metal support, and forming metal particles by thermally treating and reducing the metal precipitate formed on the metal support. The metal structure catalyst includes a metal support, a metal oxide layer formed on the metal support, and metal nanoparticles formed on the metal oxide layer. In addition, the metal nanoparticles are uniform and have enhanced binding strength.Type: ApplicationFiled: July 25, 2012Publication date: November 21, 2013Inventors: Kee Young Koo, Wang Lai Yoon, Un Ho Jung, Sang Ho Park, Young Jae Hwang
-
Patent number: 8496909Abstract: A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO3, CaS and CaX2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO2, in the presence of synthesis gas, in the presence of H2 and O2, under partial vacuum, and combinations thereof.Type: GrantFiled: October 13, 2009Date of Patent: July 30, 2013Assignee: The Ohio State University Research FoundationInventors: Shwetha Ramkumar, Liang-Shih Fan
-
Publication number: 20130045865Abstract: A catalyst composition contains an active metal on a support including a high surface area substrate and an interstitial compound, for example molybdenum carbide. Pt—Mo2C/Al2O3 catalysts are described. The catalyst systems and compositions are useful for carrying out reactions generally related to the water gas shift reaction (WGS) and to the Fischer-Tropsch Synthesis (FTS) process.Type: ApplicationFiled: January 31, 2012Publication date: February 21, 2013Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Levi T. Thompson, Neil Schweitzer, Joshua Schaidle
-
Patent number: 8354564Abstract: A process for producing dry alcohol (including ethanol) that comprises at least one stage wherein a gaseous feedstock, which includes alcohol and water, is contacted with carbon monoxide in the presence of a water-gas shift catalyst, at a temperature sufficiently high so that carbon monoxide and water are consumed and carbon dioxide and hydrogen are produced, thereby removing a portion of the water. The process may include multiple stages; the dry alcohol produced contains 99.5 wt. % or greater of alcohol and 0.5 wt. % or less of water.Type: GrantFiled: April 5, 2007Date of Patent: January 15, 2013Assignee: BHS Technology LLCInventors: Christopher J. Brown, Marian Simo, Vladimir Hlavacek
-
Patent number: 8349290Abstract: A multi-fluidized bed water-gas shift reactor wherein a specific syngas containing a high concentration of carbon monoxide produced by gasification of a heavy carbon source such as coal, vacuum residue, glycerin, etc., is in contact with water under a catalyst so as to produce hydrogen and, in addition, a method for production of hydrogen using the foregoing reactor are disclosed. In other words, the disclosure describes a multi-fluidized bed water-gas shift reactor containing low and high temperature catalysts as well as steam and a method for production of hydrogen using the same, wherein 30 to 70% carbon monoxide in the syngas as a gas mixture containing hydrogen, carbon monoxide, carbon dioxide, hydrogen sulfide, hydrogen monoxide, and the like, which are generated through partial oxidation and vapor gasification at 900 to 1,600° C., may be favorably converted into hydrogen without mixing both of the catalysts.Type: GrantFiled: November 10, 2009Date of Patent: January 8, 2013Assignee: Korea Institute of Energy ResearchInventors: See Hoon Lee, Jae Ho Kim, Jung Min Shon
-
Patent number: 8349280Abstract: Disclosed are a multi water-gas shift membrane reactor for producing high-concentration hydrogen and a method for producing hydrogen using the same. More specifically, disclosed are a multi water-gas shift membrane reactor wherein high-concentration carbon monoxide, obtained by dry-gasification performed by reacting dry bituminous coal with water and oxygen, reacts with water gas in the presence of catalysts in a single reactor, to produce hydrogen and carbon dioxide and separate highly pure hydrogen and carbon dioxide through a separation membrane arranged in a low region, and a method for producing hydrogen.Type: GrantFiled: March 1, 2010Date of Patent: January 8, 2013Assignee: Korea Institute of Energy ResearchInventors: Il Hyun Baek, See Hoon Lee, Jeong Nam Kim
-
Publication number: 20120202681Abstract: A carbon oxides conversion process includes reacting a carbon oxide containing process gas containing hydrogen and/or steam and containing at least one of hydrogen and carbon monoxide in the presence of a catalyst including shaped units formed from a reduced and passivated catalyst powder, the powder including copper in the range 10-80% by weight, zinc oxide in the range 20-90% by weight, alumina in the range 5-60% by weight and optionally one or more oxidic promoter compounds selected from compounds of Mg, Cr, Mn, V, Ti, Zr, Ta, Mo, W, Si and rare earths in the range 0.01-10% by weight, wherein said shaped units have a reduced to as-made mean horizontal crush strength ratio of ?0.5:1 and a copper surface area above 60 m2/g Cu.Type: ApplicationFiled: May 24, 2010Publication date: August 9, 2012Applicant: JOHNSON MATTHEY PLCInventors: Colin William Park, Brian Peter Williams, Graeme Douglas Campbell, David Allan Buckworth
-
Patent number: 8236264Abstract: Carbon monoxide is removed from material streams by adsorption to an adsorption composition comprising oxides of copper, zinc and aluminum, the copper-comprising fraction of which has a degree of reduction, expressed as weight ratio of metallic copper to the sum of metallic copper and copper oxides, calculated as CuO, of at most 60%.Type: GrantFiled: November 28, 2007Date of Patent: August 7, 2012Assignee: BASF SEInventors: Stephan Hatscher, Michael Hesse
-
Publication number: 20120121500Abstract: A water gas shift catalyst for use at temperatures above about 450° C. up to about 900° C. or so comprising rhenium deposited on a support, preferably without a precious metal, wherein the support is prepared from a high surface area material, such as a mixed metal oxide, particularly a mixture of zirconia and ceria, to which may be added one or more of a high surface area transitional alumina, an alkali or alkaline earth metal dopant and/or an additional dopant selected from Ga, Nd, Pr, W, Ge, Fe, oxides thereof and mixtures thereof.Type: ApplicationFiled: January 26, 2012Publication date: May 17, 2012Applicants: L'AIR LIQUIDE SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE, SUD-CHEMIE INC.Inventors: Jon P. Wagner, Michael W. Balakos, Chandra Ratnasamy
-
Publication number: 20120070367Abstract: Using the process described in the present invention, a gas is produced that is rich in methane and hydrogen and has a content of olefins below 1% v/v, which fully meets the necessary requirements for raw materials used for large-scale production of hydrogen or synthesis gas, in steam reforming units that already exist in a great many oil refineries and petrochemical units. Starting from ethanol, steam, nickel-based catalysts and the use of appropriate conditions of temperature, and H2O/ethanol and H2/ethanol molar ratios, the invention teaches the production of hydrogen and synthesis gas from biomass, stably for long periods without loss of catalyst performance over time, permitting its industrial application in new units or in existing units. As a solution for the production of ethanol, the present invention claims the replacement of the ZnO-based and hydrofining catalysts of the feed pre-treatment section, with nickel-based catalysts and process conditions in accordance with the present invention.Type: ApplicationFiled: August 18, 2011Publication date: March 22, 2012Applicant: PETROLEO BRASILEIRO S.A. - PETROBRASInventor: Roberto Carlos Pontes BITTENCOURT
-
Patent number: 8137627Abstract: A hydrogen generator includes a plurality of fuel sticks each of which includes a hydrogen release compound configured to generate hydrogen by a chemical reaction, a pressure-resistant container configured to store therein the plurality of fuel sticks, and a controller configured to carry out control in such a manner that hydrogen is generated selectively from the plurality of fuel sticks.Type: GrantFiled: March 4, 2010Date of Patent: March 20, 2012Assignee: Qinetiq LimitedInventors: Toshio Horiguchi, Robert W. Reeve, Darren P. Scattergood
-
Patent number: 8128902Abstract: A method for the synthesis of anhydrous hydrogen halide fluids from organic halide fluids, such as perfluorocarbon fluids and refrigerant fluids, and anhydrous carbon dioxide for the environmentally safe disposition thereof.Type: GrantFiled: May 4, 2011Date of Patent: March 6, 2012Assignee: Midwest Refrigerants, LLCInventor: Gregorio Tarancon, III
-
Patent number: 8119099Abstract: Catalyst for use in the high temperature shift reaction comprising in its active form a mixture of zinc alumina spinel and zinc oxide in combination with an alkali metal selected from the group consisting of Na, K, Rb, Cs and mixtures thereof.Type: GrantFiled: December 1, 2010Date of Patent: February 21, 2012Assignee: Haldor Topsoe A/SInventor: Niels Christian Schiødt
-
Publication number: 20120020874Abstract: The invention is directed to a process for producing hydrogen from methanol, comprising providing at least one flow of methanol and (1) catalytically converting part of the methanol or a fuel gas with air oxygen to carbon dioxide and water, while generating heat and (2) catalytically converting the methanol or the remaining part of the methanol at elevated temperature to hydrogen and carbon monoxide, followed by conversion of the carbon monoxide with water to hydrogen and carbon dioxide, wherein the heat generated in step (1) is sufficient to produce the elevated temperature required in step (2), wherein both steps (1) and (2) are carried out in a bed of sintered metal particles, the bed of sintered metal in step (2) having a surface that is catalytically active for the conversion of methanol to hydrogen, and wherein the beds of sintered metal particles are in heat exchanging relationship.Type: ApplicationFiled: February 25, 2010Publication date: January 26, 2012Inventors: John Wilhelm Geus, Marinus Franciscus Johannes Evers
-
Patent number: 8088708Abstract: The present invention provides a catalyst precursor substance containing copper, zinc, and aluminum and exhibiting an X-ray diffraction pattern having a broad peak at a specific interplanar spacing d (?). The present invention also provides a method for producing the catalyst precursor substance by mixing a solution containing a copper salt, a zinc salt, and an aluminum salt with a solution containing an alkali metal hydroxide or an alkaline earth metal hydroxide, thereby forming a precipitate. In the present invention, a catalyst is prepared through calcining of the catalyst precursor; the catalyst is employed for water gas shift reaction; and carbon monoxide conversion is carried out by use of the catalyst.Type: GrantFiled: April 2, 2008Date of Patent: January 3, 2012Assignee: Idemitsu Kosan Co., Ltd.Inventors: Kozo Takatsu, Yoshimi Kawashima, Satoshi Nakai
-
Patent number: 8017545Abstract: The present invention relates to a method of making a chemical compound comprising nickel, aluminum, oxygen and sulfur having a general formula Ni2xAl2O2x+3?zSz, wherein 0.5?x?3 and 0?z?2x. The material is effective for the removal of S-compounds from gaseous streams, effective for catalyzing a water gas shift reaction and suppresses the formation of carbon monoxide and hydrogen under conditions where a water gas shift reaction is catalyzed.Type: GrantFiled: December 4, 2008Date of Patent: September 13, 2011Assignee: UOP LLCInventors: Alakananda Bhattacharyya, Manuela Serban, Kurt M. Vanden Bussche, Lisa M. King
-
Publication number: 20110207006Abstract: A method of generating hydrogen, the method including: reducing carbon dioxide to generate carbon monoxide and oxygen; separating the oxygen from the carbon monoxide; generating carbon dioxide and hydrogen by a water-gas shift reaction between water and the carbon monoxide remaining after the separating the oxygen from the carbon monoxide; and separating the generated carbon dioxide and hydrogen.Type: ApplicationFiled: February 17, 2011Publication date: August 25, 2011Applicant: SAMSUNG ELECTRONICS CO., LTD.Inventors: Hyun-chul LEE, Doo-hwan LEE, Sang-min JI
-
Publication number: 20110200520Abstract: A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO3, CaS and CaX2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO2, in the presence of synthesis gas, in the presence of H2 and O2, under partial vacuum, and combinations thereof.Type: ApplicationFiled: October 13, 2009Publication date: August 18, 2011Applicant: THE OHIO STATE UNIVERSITY RESEARCH FOUNDATIONInventors: Shwetha Ramkumar, Liang-Shih Fan
-
Patent number: 7972585Abstract: In operating the carbon monoxide removal reactor or the fuel reforming system, there is provided a technique for removing carbon monoxide in a stable manner for an extended period of time. In a method of removing carbon monoxide including an introducing step of introducing a reactant gas including mixture gas and an oxidizer added thereto to a carbon monoxide removal reactor forming in its casing a catalyst layer comprising a carbon monoxide removal catalyst for removing carbon monoxide contained in the mixture gas and a removing step of removing the carbon monoxide by causing the oxidizer to react with the mixture gas on the carbon monoxide removal catalyst, in said introducing step, the reactant gas of 100° C. or lower is introduced to the carbon monoxide removal reactor.Type: GrantFiled: January 14, 2008Date of Patent: July 5, 2011Assignee: Osaka Gas Co., Ltd.Inventors: Mitsuaki Echigo, Takeshi Tabata, Osamu Yamazaki
-
Patent number: 7972394Abstract: A method of operating a methanation reactor to reduce carbon monoxide concentration in a reformate stream in a fuel cell reformer. The reactor includes a flowpath with a noble metal catalyst supported by a ceramic support such that the reactor preferentially converts carbon monoxide via methanation over that of carbon dioxide. The reduced level of carbon monoxide present in the reformate stream after passing through the methanation reactor reduces the likelihood of poisoning of the catalyst used on the fuel cell anode.Type: GrantFiled: August 11, 2006Date of Patent: July 5, 2011Assignee: GM Global Technology Operations LLCInventors: Mark Robert Feaviour, Julia Margaret Rowe
-
Publication number: 20110081291Abstract: Disclosed are a multi water-gas shift membrane reactor for producing high-concentration hydrogen and a method for producing hydrogen using the same. More specifically, disclosed are a multi water-gas shift membrane reactor wherein high-concentration carbon monoxide, obtained by dry-gasification performed by reacting dry bituminous coal with water and oxygen, reacts with water gas in the presence of catalysts in a single reactor, to produce hydrogen and carbon dioxide and separate highly pure hydrogen and carbon dioxide through a separation membrane arranged in a low region, and a method for producing hydrogen.Type: ApplicationFiled: March 1, 2010Publication date: April 7, 2011Applicant: KOREA INSTITUTE OF ENERGY RESEARCHInventors: Il Hyun BAEK, See Hoon LEE, Jeong Nam KIM
-
Patent number: 7906098Abstract: The present invention relates to a method for oxidizing CO, comprising: passing a first feed comprising CO and a second feed comprising oxygen, in an oxidation zone, over a catalyst comprising highly dispersed gold on sulfated zirconia, at oxidation conditions, to produce an effluent comprising a lower level of CO than in the first feed.Type: GrantFiled: February 5, 2010Date of Patent: March 15, 2011Assignee: Chevron U.S.A. Inc.Inventors: Alexander E. Kuperman, Michael E. Moir
-
Patent number: 7871957Abstract: A durable catalyst support/catalyst is capable of extended water gas shift operation under conditions of high temperature, pressure, and sulfur levels. The support is a homogeneous, nanocrystalline, mixed metal oxide of at least three metals, the first being cerium, the second being Zr, and/or Hf, and the third importantly being Ti, the three metals comprising at least 80% of the metal constituents of the mixed metal oxide and the Ti being present in a range of 5% to 45% by metals-only atomic percent of the mixed metal oxide. The mixed metal oxide has an average crystallite size less than 6 nm and forms a skeletal structure with pores whose diameters are in the range of 4-9 nm and normally greater than the average crystallite size. The surface area of the skeletal structure per volume of the material of the structure is greater than about 240 m2/cm3. The method of making and use are also described.Type: GrantFiled: May 15, 2007Date of Patent: January 18, 2011Assignee: UTC Power CorporationInventors: Rhonda R. Willigan, Thomas Henry Vanderspurt, Sonia Tulyani, Rakesh Radhakrishnan, Susanne Marie Opalka, Sean C. Emerson
-
Patent number: 7846413Abstract: A process and a system are provided for producing and separating hydrogen and carbon dioxide from a hydrocarbon and steam. A hydrocarbon and steam are steam reformed and the reformed gas is shift reacted to produce a shift gas. Hydrogen is removed from the shift gas, and the hydrogen-depleted gas is reformed and shift reacted again to produce more hydrogen and carbon dioxide. The hydrogen and carbon dioxide are then separated.Type: GrantFiled: November 28, 2007Date of Patent: December 7, 2010Assignee: Shell Oil CompanyInventors: Lloyd Anthony Clomburg, Jr., Andreas Nicholas Matzakos, Peter Veenstra, Scott Lee Wellington
-
Patent number: 7837975Abstract: A process for producing hydrogen, comprising the steps of: (a) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam and sulfur and halide contaminants in the form of H2S, COS and HX, where X is a halide; (b) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO3, CaS and CaX2; (c) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (d) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO2, in the presence of synthesis gas, in the presence of H2 and O2, under partial vacuum, and combinations thereof. The CaO may have a surface area of at least 12.0 m2/g and a pore volume of at least 0.Type: GrantFiled: March 24, 2009Date of Patent: November 23, 2010Assignee: The Ohio State UniversityInventors: Mahesh V. Iyer, Liang-Shih Fan, Shwetha Ramkumar
-
Patent number: 7824656Abstract: The present invention relates to catalysts for the production of hydrogen using the water gas shift reaction and the carbon dioxide reforming of hydrocarbon-containing fuels. The catalysts nickel and/or copper on a ceria/zirconia support, where the support is prepared using a surfactant templating method. The invention also includes processes for producing hydrogen, reactors and hydrogen production systems utilizing these catalysts.Type: GrantFiled: March 14, 2006Date of Patent: November 2, 2010Assignee: University of ReginaInventors: Raphael Oyom Idem, Prashant Kumar, Yanping Sun