By Reacting Water With Carbon Monoxide Patents (Class 423/655)
-
Patent number: 12006847Abstract: An energy system having a) one or more catalyst sources which store a catalyst; b) one or more water sources which store water; c) one or more heat sources which store a heat storage medium; d) one or more reaction chambers into which the water, the catalyst, and the heat storage medium are introduced, which are configured for an exothermic reaction between the catalyst and the water to take place while in the presence of the heat storage medium, and in which steam is generated from the exothermic reaction; and f) one or more turbines downstream of the one or more reaction chambers which are adapted to be driven by the steam generated within the one or more reaction chambers.Type: GrantFiled: September 24, 2019Date of Patent: June 11, 2024Assignee: ADVANTRON TECHNOLOGIES, LLCInventor: Matthew Lebenbom
-
Patent number: 11999619Abstract: A system and method for producing hydrogen, including providing hydrocarbon and steam into a vessel to a region external to a tubular membrane in the vessel. The method includes steam reforming the hydrocarbon in the vessel via reforming catalyst to generate hydrogen and carbon dioxide. The method includes diffusing the hydrogen through the tubular membrane into a bore of the tubular membrane, wherein the tubular membrane is hydrogen selective.Type: GrantFiled: June 18, 2020Date of Patent: June 4, 2024Assignee: Saudi Arabian Oil CompanyInventors: Stephen N. Paglieri, Aadesh Harale
-
Patent number: 11912576Abstract: An integrated process for producing a purified and converted synthesis gas and a corresponding plant including initially converting in a synthesis gas generation stage a carbon-containing input material into a raw synthesis gas which in a subsequent CO conversion zone is altered in respect of its H2/CO ratio and finally sent to a gas scrubbing zone operating according to a physical gas scrubbing process with methanol as the absorption medium in which the content of unwanted gas constituents, in particular of acidic gas constituents, in the synthesis gas is reduced.Type: GrantFiled: October 30, 2019Date of Patent: February 27, 2024Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges ClaudeInventor: Stefan Walter
-
Patent number: 11753298Abstract: The invention relates to a process for producing hydrogen from a light hydrocarbon source, in which a synthesis gas is generated by steam methane reforming after desulfurization and optionally pre-reforming of the feedstock. The synthesis gas is enriched with hydrogen by steam conversion of carbon monoxide, and is subsequently purified in a pressure swing adsorption unit to give a pure H2 product and a residual gas mixture containing CH4, CO, H2 and CO2; in accordance with the invention, the conversion step is performed in a cooled reactor in which the heat of the conversion reaction is transferred to a fluid which feeds the burners of the reformer, or to the gas for reforming.Type: GrantFiled: November 26, 2019Date of Patent: September 12, 2023Assignee: L'Air Liquide, Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges ClaudeInventors: Marie Basin, Daniel Gary, Jean-Philippe Tadiello
-
Patent number: 11702336Abstract: The invention relates to a process and a plant for producing pure hydrogen from an input gas containing hydrogen and hydrocarbons, in particular from a hydrogen-containing refinery off-gas, by steam reforming in a steam reforming stage and multi-stage hydrogen enrichment. According to the invention the input gas containing hydrogen and hydrocarbons is separated in a first hydrogen enrichment stage into a hydrogen-enriched substream and a hydrogen-depleted substream, wherein at least a portion of the hydrogen-enriched substream is supplied to a second hydrogen enrichment stage or introduced into the pure hydrogen product stream and at least a portion of the hydrogen-depleted substream is supplied to the steam reforming stage as a reforming feed stream or as part thereof and/or to the burners as a fuel gas stream.Type: GrantFiled: November 24, 2020Date of Patent: July 18, 2023Assignee: L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges ClaudeInventors: Swatantra Kumar Shrivastava, Mirko Huebel, Mrityunjoy Samaddar
-
Patent number: 11691115Abstract: The present invention relates to a process for conducting endothermic gas phase or gas-solid reactions, wherein the endothermic reaction is conducted in a production phase in a first reactor zone, the production zone, which is at least partly filled with solid particles, where the solid particles are in the form of a fixed bed, of a moving bed and in sections/or in the form of a fluidized bed, and the product-containing gas stream is drawn off from the production zone in the region of the highest temperature level plus/minus 200 K and the product-containing gas stream is guided through a second reactor zone, the heat recycling zone, which at least partly comprises a fixed bed, where the heat from the product-containing gas stream is stored in the fixed bed, and, in the subsequent purge step, a purge gas is guided through the production zone and the heat recycling zone in the same flow direction, and, in a heating zone disposed between the production zone and the heat recycling zone, the heat required for theType: GrantFiled: October 26, 2017Date of Patent: July 4, 2023Assignee: BASF SEInventors: Grigorios Kolios, Bernd Zoels, Matthias Kern, Jens Bernnat, Rene Koenig, Friedrich Glenk, Achim Wechsung
-
Patent number: 11673106Abstract: A fixed bed arrangement formed as an insert for a reactor for catalytic conversion of reaction media, in particular for catalytic methanation of a gas mixture including hydrogen and carbon dioxide, having a receiving chamber, which extends axially within an outer sleeve, and through which reaction media flows during the reactor operation for receiving a catalyst material, and a heat exchanger arrangement having a fluid flow path for a temperature control fluid, which fluid flow path is spatially separated from the receiving chamber, for removing and supplying heat from/to the process. The outer sleeve is formed by the heat exchanger arrangement, at least in regions. The fixed bed arrangement includes a reactor for the catalytic reaction of reaction media having a pressure chamber for receiving reaction media, and such a fixed bed arrangement inserted into the pressure chamber.Type: GrantFiled: September 26, 2019Date of Patent: June 13, 2023Assignee: HITACHI ZOSEN INOVA AGInventors: Freimut Marold, Christoph Hütter, Wolfgang Beez, Adrian Schneider
-
Patent number: 11666894Abstract: Provided are a structured catalyst for CO shift or reverse shift that can realize a long life time by suppressing the decline in function, a method for producing the same, a CO shift or reverse shift reactor, a method for producing carbon dioxide and hydrogen, and a method for producing carbon monoxide and water. The structured catalyst for CO shift or reverse shift (1) includes a support (10) of a porous structure composed of a zeolite-type compound, and at least one CO shift or reverse shift catalytic substance (20) present in the support (10), the support (10) has channels (11) connecting with each other, and the CO shift or reverse shift catalytic substance (20) is present at least in the channels (11) of the support (10).Type: GrantFiled: November 27, 2019Date of Patent: June 6, 2023Assignee: FURUKAWA ELECTRIC CO., LTD.Inventors: Takao Masuda, Yuta Nakasaka, Takuya Yoshikawa, Sadahiro Kato, Masayuki Fukushima, Hiroko Takahashi, Yuichiro Banba, Kaori Sekine
-
Patent number: 11524903Abstract: A sparsely pillared organic-inorganic hybrid compound is provided. The sparsely pillared organic-inorganic hybrid compound includes: two inorganic material layers, each extending in one direction and facing each other; and an organic material layer disposed between the two inorganic material layers, wherein each of the inorganic material layers has a gibbsite structure in which a divalent metal cation is doped to an octahedral site, and the organic material layer includes a plurality of pillar portions, each of which is chemically bound to each of the two inorganic material layers such that the two inorganic material layers are connected to each other.Type: GrantFiled: June 25, 2020Date of Patent: December 13, 2022Assignee: Inoonep Inc.Inventors: Jisoon Ihm, Seok Hwan Park
-
Patent number: 11505462Abstract: In a hydrocarbon-fed steam methane reformer hydrogen-production process and system, carbon dioxide is recovered in a pre-combustion context, and optionally additional amounts of carbon dioxide are recovered in a post-combustion carbon dioxide removal, to provide the improved carbon dioxide recovery or capture disclosed herein.Type: GrantFiled: February 15, 2021Date of Patent: November 22, 2022Assignee: Fluor Technologies CorporationInventors: Ravi Ravikumar, Sunil Singhal
-
Patent number: 11434133Abstract: Disclosed is a reforming system using an off gas as a cooling medium, which includes: a compressor configured to compress a feed gas; a cooling system a heat exchanger connected to the compressor and configured to cool the feed gas, the temperature of which has been raised in a compression process, by a cooling medium including cooling water; a reformer configured to generate a synthesis gas including hydrogen by reacting the feed gas, which passed through the heat exchanger, with water; a pressure swing adsorption (PSA) unit configured to separate hydrogen from the synthesis gas generated by the reformer and discharge the off gas; and an off gas line configured to feed the off gas discharged from the PSA unit to the heat exchanger such that the heat exchanger utilizes the off gas as the cooling medium.Type: GrantFiled: June 17, 2020Date of Patent: September 6, 2022Assignees: HYUNDAI MOTOR COMPANY, KIA MOTORS CORPORATIONInventors: Han Eol Song, Dong Seok Ko
-
Patent number: 11371394Abstract: An integrated chemical looping combustion (CLC) electrical power generation system and method for diesel fuel combining four primary units including: gasification of diesel to ensure complete conversion of fuel, chemical looping combustion with supported nickel-based oxygen carrier on alumina, gas turbine-based power generation and steam turbine-based power generation is described. An external combustion and a heat recovery steam generator (HRSG) are employed to maximize the efficiency of a gas turbine generator and steam turbine generator. The integrated CLC system provides a clean and efficient diesel fueled power generation plant with high CO2 recovery.Type: GrantFiled: July 3, 2019Date of Patent: June 28, 2022Assignee: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALSInventors: Mohammad Mozahar Hossain, Muflih Arisa Adnan, Iswan Pradiptya
-
Patent number: 10513435Abstract: This is a system for generating hydrogen on-board the vehicle from compressed natural gas (CNG) in select ratios to create hydrogen-enriched CNG (HCNG) fuel for use in internal combustion engines. The on-board generation of hydrogen is comprised of a reforming system of CNG fuel with direct contact with exhaust gases. The reforming system controls for production of HCNG fuel mixtures is based on specific engine operating conditions. The vehicle's engine controls and operating parameters are modified for combustion of selective ratios of HCNG fuel mixtures throughout engine operating cycle. The reforming system controls and engine controls modifications are also used to minimize combustion emissions and optimize engine performance.Type: GrantFiled: October 17, 2016Date of Patent: December 24, 2019Assignee: NKE H2 Engines LLCInventor: Nick K. Edalati
-
Patent number: 10400178Abstract: Systems, apparatuses and methods of utilizing a Fischer-Tropsch (“FT”) tail gas purge stream for recycling are disclosed. One or more methods include removing an FT tail gas purge stream from an FT tail gas produced by an FT reactor, treating the FT tail gas purge stream with steam in a water gas shift (“WGS”) reactor, having a WGS catalyst, to produce a shifted FT purge stream including carbon dioxide and hydrogen, and removing at least a portion of the carbon dioxide from the shifted FT purge stream, producing a carbon dioxide stream and a treated purge stream. Other embodiments are also disclosed.Type: GrantFiled: November 7, 2018Date of Patent: September 3, 2019Assignee: SGCE LLCInventors: Bruce Allen Logue, II, Scot Golczynski
-
Patent number: 10228131Abstract: Method for the production of ammonia, and optionally urea, from a flue gas effluent from an oxy-fired process, wherein the production of ammonia and optionally urea includes a net power production. Also provided is a method to effect cooling in an oxy-fired process with air separation unit exit gases utilizing either closed or open cooling loop cycles.Type: GrantFiled: July 21, 2016Date of Patent: March 12, 2019Assignee: Grannus LLCInventor: James Kelly Merritt, Jr.
-
Patent number: 9982198Abstract: Processes for pyrolyzing biomass. A catalyst is used to both pyrolyze and deoxygenate the biomass within the pyrolysis zone. A source of carbon monoxide is also passed to the pyrolysis reactor. The source of carbon monoxide may comprise a stream of gas that includes carbon monoxide, or a material capable of generating or being converted in carbon monoxide within the pyrolysis zone. The carbon monoxide may be used as a reactant for a water gas shift reaction or as a reducing agent to remove oxygen from oxygenated hydrocarbons. The catalyst preferably comprises iron (III) oxide.Type: GrantFiled: September 30, 2016Date of Patent: May 29, 2018Assignee: UOP LLCInventors: Kanchan Dutta, Anjan Ray, Krishna Mani, Avnish Kumar
-
Patent number: 9206044Abstract: Process for increasing the hydrogen content of a synthesis gas containing one or more sulphur compounds, the synthesis gas including hydrogen, carbon oxides and steam, and having a ratio defined as R?(H2—C02)/(CO+C02)?0.6 and a steam to carbon monoxide ratio ?1.8, includes the steps of (i) adjusting the temperature of the synthesis gas; (ii) passing at least a portion of the heated synthesis gas adiabatically through a first bed of sulphur-tolerant water-gas shift catalyst disposed in a first shift vessel at a space velocity ?12,500 hour?1 to form a pre-shifted gas stream; and (iii) forming a shifted gas stream by subjecting at least a portion of the pre-shifted gas stream to a second stage of water-gas shift in a second shift vessel containing a second bed of sulphur-tolerant water-gas shift catalyst that is cooled in heat exchange with a gas stream including the synthesis gas.Type: GrantFiled: October 10, 2012Date of Patent: December 8, 2015Assignee: JOHNSON MATTHEY PUBLIC LIMITED COMPANYInventors: Peter Edward James Abbott, Gary Bevan Combes, Richard James Beavis
-
Patent number: 9168500Abstract: A method of producing synthesis gas by introducing a feed material to be gasified into a gasification apparatus comprising at least one fluidized component operable as a fluidized bed, wherein the gasification apparatus is configured to convert at least a portion of the feed material into a gasifier product gas comprising synthesis gas; and maintaining fluidization of the at least one fluidized component by introducing a fluidization gas thereto, wherein the fluidization gas comprises at least one component other than steam. A system for producing synthesis gas is also provided.Type: GrantFiled: October 15, 2012Date of Patent: October 27, 2015Assignee: RES USA, LLCInventors: Weibin Jiang, Bruce E. McComish, Bryan C. Borum, Benjamin H. Carryer, Mark D. Ibsen, Mark K. Robertson, Eric R. Elrod, Sim Weeks, Harold A. Wright
-
Patent number: 9150807Abstract: A method and system for processing an input fuel gas and steam to produce separate CO2 and output fuel gas streams. The method comprises the steps of using a decarbonizer segment for reacting at least a solid sorbent with the fuel gas and steam to remove carbon from the input fuel gas and to produce the output fuel gas stream in an exhaust gas from the decarbonizer; using a calciner segment for reacting the solid sorbent from the decarbonizer segment therein to release the CO2 into the CO2 gas stream; wherein CO2 partial pressures and temperatures in the decarbonizer and calciner segments respectively are controlled such that the temperature in the decarbonizer segment is higher than the temperature in the calciner.Type: GrantFiled: August 25, 2010Date of Patent: October 6, 2015Assignee: Calix LimitedInventors: Mark Geoffrey Sceats, Julian Westley Dinsdale
-
Patent number: 9112201Abstract: There are provided a hydrogen production apparatus, a fuel cell system and operation method thereof, which can more reliably suppress degradation due to oxidation of a catalyst in a hydrogen production apparatus even when start-ups and shutdowns are repeated without a purge operation during the shutdowns. The hydrogen production apparatus includes a reforming part, a shift reaction part, and a selective oxidation reaction part having a selective oxidation catalyst bed packed with a selective oxidation catalyst, wherein the hydrogen production apparatus has an oxygen absorbent bed packed with an oxygen absorbent capable of absorbing oxygen and capable of being regenerated by a reducing gas, and the oxygen absorbent bed and the selective oxidation catalyst bed are stacked with the oxygen absorbent bed on the downstream side, and the hydrogen production apparatus has means for opening the downstream of the oxygen absorbent bed to the atmosphere. The fuel cell system has this hydrogen production apparatus.Type: GrantFiled: February 26, 2007Date of Patent: August 18, 2015Assignee: JX NIPPON OIL & ENERGY CORPORATIONInventors: Yasushi Sato, Akira Goto, Ken Samura, Akira Fuju, Masataka Kadowaki
-
Patent number: 9017642Abstract: A process for reducing free oxygen in a hydrocarbon gas stream comprises the steps of (i) forming a gas mixture containing hydrogen from a hydrocarbon, (ii) mixing the hydrogen gas mixture with a gaseous hydrocarbon stream containing free oxygen, and (iii) passing the resulting hydrocarbon gas mixture over a conversion catalyst that converts at least a portion of the free oxygen present in the gaseous hydrocarbon to steam.Type: GrantFiled: March 5, 2007Date of Patent: April 28, 2015Assignee: Johnson Matthey PLCInventors: Peter John Herbert Carnell, Martin Fowles, Raymond Anthony Hadden, Suzanne Rose Ellis
-
Patent number: 9011723Abstract: In a method for treating alternative, carbon-containing, low-caloric waste materials for use in furnace systems, in particular rotary tubular kilns for the production of clinker, the carbon-containing, alternative fuels are subjected to high-temperature gasification under anoxic conditions at temperatures above 1000° C., wherein water, water vapor or CO2 is injected to ensure a reaction forming CO and H2. The waste heat from a clinker cooler is used for the high-temperature gasification.Type: GrantFiled: August 10, 2009Date of Patent: April 21, 2015Assignee: Holcim Technology Ltd.Inventors: Frank Ernst, Albert Obrist
-
Patent number: 8980211Abstract: An energy conversion process that exports by-product CO2 at elevated pressure where a fuel gas feed stream is mixed with a reactant stream and additional CO2 is added to at least part of, the fuel gas feed stream, the reactant stream or both through desorption by contacting with a CO2-rich solvent stream in a first stage contactor to produce a mixed feed gas stream and a CO2-lean solvent stream; passing said mixed feed gas stream to a chemical conversion step, where further CO2 is produced; chilling at least part of the products of said chemical conversion step and thereby produce a CO2-lean gas stream; and passing at least part of said CO2-lean gas stream said to a second stage contactor where further CO2 is removed, by absorption, to produce a product gas stream and a solvent stream rich in CO2 from which said CO2-rich solvent stream is subsequently derived.Type: GrantFiled: February 24, 2009Date of Patent: March 17, 2015Inventors: Bryan Christopher Timmins, Jacqueline Anne Fisher
-
Publication number: 20150068110Abstract: Techniques, systems and material are disclosed for transport of energy and/or materials. In one aspect, a method includes generating gaseous fuel (e.g., from biomass dissociation) at a first location of a low elevation. The gaseous fuel can be self-transported in a pipeline to a second location at a higher elevation than the first location by traveling from the first location to the second location without adding energy of pressure. A liquid fuel can be generated at the second location of higher elevation by reacting the gaseous fuel with at least one of a carbon donor, a nitrogen donor, and an oxygen donor harvested from industrial waste. The liquid fuel can be delivered to a third location of a lower elevation than the second location while providing pressure or kinetic energy.Type: ApplicationFiled: August 13, 2014Publication date: March 12, 2015Inventor: Roy Edward McAlister
-
Patent number: 8940660Abstract: The present invention involves both separated beds (or physical mixture) and a process for treating a fuel gas comprising sending the fuel gas to a separated bed (or physical mixture), in which the separated beds comprise a first bed of a sulfur sorbent and a second bed of a water gas shift catalyst (a physical mixture of a sulfur sorbent and a water gas shift catalyst). The process comprises first sending the fuel gas to the first bed to remove sulfur compounds from said fuel gas and then the fuel gas goes to the second bed to undergo a water gas shift reaction in which carbon monoxide is converted to carbon dioxide and water is converted to hydrogen. (or sending the fuel gas simultaneously to the physical mixture to remove simultaneously the sulfur compounds and to react CO with water to CO2 and hydrogen).Type: GrantFiled: December 4, 2008Date of Patent: January 27, 2015Assignee: UOP LLCInventors: Manuela Serban, Kurt M. Vanden Bussche, Alakananda Bhattacharyya
-
Patent number: 8900546Abstract: Process to prepare a diluted hydrogen gas mixture starting from a gas mixture comprising hydrogen and carbon monoxide by (i) converting part of the carbon monoxide in said gas mixture to hydrogen and carbon dioxide by means of a catalysed water gas shift reaction to obtain a shifted gas and (ii) separating hydrogen from said shifted gas by means of a membrane to obtain the hydrogen comprising gas at the permeate side of the membrane and a carbon dioxide comprising gas at the retentate side of the membrane, wherein at the permeate side of the membrane a sweep gas is provided; (iii) cooling the carbon dioxide comprising gas to obtain liquid carbon dioxide and a gas mixture of non-condensable gasses and (iv) separating the liquid carbon dioxide from the non-condensable gasses; wherein the non-condensable gasses are fed into the hydrogen comprising gas.Type: GrantFiled: September 3, 2010Date of Patent: December 2, 2014Assignee: Shell Oil CompanyInventors: Wouter David Van De Graaf, Mark Jan Prins
-
Patent number: 8864857Abstract: An apparatus for generating hydrogen gas from a replaceable aluminum pack comprising an aluminum and hydride mixture encased in a breathable membrane that is raised and lowered into a fluid contained within an enclosed tank wherein contact with the fluid releases hydrogen gas from the aluminum. A pressure transducer and microprocessor chip are provided for monitoring and regulating the rate of hydrogen production by engaging and disengaging a reversible motor that raises and lowers an inner tray on which the aluminum pack resides accordingly.Type: GrantFiled: July 26, 2011Date of Patent: October 21, 2014Inventor: Harlo Mayne
-
Patent number: 8852537Abstract: A method of adapting an axial flow reaction vessel having opposed ports to an opposed axial flow reaction vessel includes installing a process fluid collection system within the body of the vessel in fluid communication with one or more of the ports; providing the vessel with a bed of particulate catalyst or sorbent containing a layer of inert particulate material around the process fluid collection system; and adapting the feed to the vessel through one or more of the ports such that a process fluid fed to the vessel is passed axially and in the opposite direction through the fixed bed of catalyst or sorbent and is collected by the process fluid collection system disposed centrally within the bed and in fluid communication with one or more of the ports.Type: GrantFiled: September 26, 2011Date of Patent: October 7, 2014Assignee: Johnson Matthey PLCInventors: Charles William Hooper, Michael Peter Roberts
-
Patent number: 8834835Abstract: A catalytic water gas shift process at temperatures above about 450° C. up to about 900° C. or so wherein the catalyst includes rhenium deposited on a support, preferably without a precious metal, wherein the support is prepared from a high surface area material, such as a mixed metal oxide, particularly a mixture of zirconia and ceria, to which may be added one or more of a high surface area transitional alumina, an alkali or alkaline earth metal dopant and/or an additional dopant selected from Ga, Nd, Pr, W, Ge, Fe, oxides thereof and mixtures thereof.Type: GrantFiled: January 28, 2013Date of Patent: September 16, 2014Assignees: Clariant Corporation, L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges ClaudeInventors: Jon P. Wagner, Michael W. Balakos, Chandra Ratnasamy
-
Patent number: 8828339Abstract: A CO shift catalyst according to the present invention is one that reforms carbon monoxide (CO) in gas. The CO shift catalyst includes: active ingredients including one of molybdenum (Mo) and iron (Fe) as a main ingredient and one of nickel (Ni) and ruthenium (Ru) as an accessory ingredient; and one or at least two oxides of titanium (Ti), zirconium (Zr), and cerium (Ce) as a carrier supporting the active ingredients. The CO shift catalyst can be used for a CO shift reactor 20 that converts CO in gasified gas 12 produced in a gasifier 11 into CO2.Type: GrantFiled: February 24, 2011Date of Patent: September 9, 2014Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Toshinobu Yasutake, Masanao Yonemura, Tetsuya Imai
-
Patent number: 8802052Abstract: The method in accordance with the present invention has steps of: preparing a hydrogen producing device with a high gravitational rotating packed bed, initiating the device, adjusting the temperature of the device, inputting a reagent gas and a liquid vaporized for mixing with the reagent gas into a reagent mixture, and passing the reagent mixture through the device to obtain hydrogen.Type: GrantFiled: March 21, 2011Date of Patent: August 12, 2014Inventors: Wei-Hsin Chen, Yu-Jhih Syu
-
Patent number: 8702823Abstract: A method of shutting down a hydrogen generation apparatus for limiting degradation in a catalyst due to dew condensation at the time of shutdown is provided. The method of shutting down the hydrogen generation apparatus comprising, a combustor which supplies heat necessary to a reforming device, a first air supplier which supplies air to the combustor, a combustion exhaust gas path formed such that the combustion exhaust gas produced in the combustor makes heat exchange with the reforming device and then with a CO reducing device, and a controller which operates the first air supplier so that the temperature of the gas in the CO reducing device does not become equal to or lower than a dew point after shutdown of the combustion operation of the combustor and before a start of a purging operation to purge the interiors of the reforming device and the CO reducing device with a replacement gas.Type: GrantFiled: January 19, 2010Date of Patent: April 22, 2014Assignee: Panasonic CorporationInventors: Yukimune Kani, Seiji Fujihara
-
Patent number: 8703094Abstract: The invention is directed to a process to prepare a hydrogen rich gas mixture from a solid sulphur- and halogen-containing carbonaceous feedstock. The process involves the following steps. Step (a): gasification of the solid carbonaceous feedstock with an oxygen-containing gas to obtain a gas mixture comprising halogen compounds, sulphur compounds, hydrogen and at least 50 vol. % carbon monoxide, on a dry basis. Step (b): contacting the gas mixture with a quench gas or quench liquid to reduce the temperature of the gas mixture to below 900° C. Step (c) contacting the gas mixture with water having a temperature of between 150 and 250° C. to obtain a gas mixture comprising between 50 and 1000 ppm halogen and having a steam to carbon monoxide molar ratio of between 0.2:1 and 0.9:1.Type: GrantFiled: June 28, 2010Date of Patent: April 22, 2014Assignee: Shell Oil CompanyInventors: Robert Van Den Berg, Matthieu Simon Henri Fleys, Frank Haiko Geuzebroek, Mark Jan Prins
-
Publication number: 20140103260Abstract: Disclosed is a process for the production of a syngas mixture by catalytic partial oxidation. The syngas mixture is suitable as an intermediate in the production of hydrogen. According to the invention, the syngas is cooled, prior to a water gas shift reaction, with liquid water. This has the advantage of avoiding the problem of metal dusting, and it presents a gas mixture comprising water vapor that is particularly suitable for a water gas shift reaction in the production of hydrogen.Type: ApplicationFiled: June 25, 2012Publication date: April 17, 2014Applicant: STAMICARBON B.V. ACTING UNDER THE NAME OF MT INNOVATION CENTERInventors: Gaetano Iaquaniello, Barbara Cucchiella, Elena Antonetti
-
Publication number: 20140105814Abstract: The present invention relates to a method for hydrogen production and to a method of hydrogen and/or carbon dioxide production from syngas. The method comprises the steps of: (i) providing a gas stream comprising hydrogen and carbon monoxide, (ii) separating at least part of hydrogen from the stream yielding a hydrogen-depleted stream, (iii) subjecting the hydrogen-depleted stream to a water-gas shift reaction, and (iv) separating hydrogen from the stream resulting from step (iii). The method according to the invention improves the conversion of carbon monoxide in the water gas shift reaction and allows to increase the hydrogen production by 10-15% and to increase the overall energy efficiency of the system by 5-7%. The invention further relates to a plant for hydrogen and/or carbon dioxide production suitable for the method of the invention.Type: ApplicationFiled: June 15, 2012Publication date: April 17, 2014Inventors: Gaetano Iaquaniello, Barbara Cucchiella, Elena Antonetti
-
Patent number: 8679450Abstract: Process to prepare a hydrogen rich gas mixture from a halogen containing gas mixture comprising hydrogen and at least 50 vol. % carbon monoxide, on a dry basis, by contacting the halogen containing gas mixture with water having a temperature of between 150 and 250° C. to obtain a gas mixture poor in halogen and having a steam to carbon monoxide molar ratio of between 0.2:1 and 0.9:1 and subjecting said gas mixture poor in halogen to a water gas shift reaction wherein part or all of the carbon monoxide is converted with the steam to hydrogen and carbon dioxide in the presence of a catalyst as present in one fixed bed reactor or in a series of more than one fixed bed reactors and wherein the temperature of the gas mixture as it enters the reactor or reactors is between 190 and 230° C.Type: GrantFiled: March 18, 2010Date of Patent: March 25, 2014Assignee: Shell Oil CompanyInventors: Robert Van Den Berg, Mark Jan Prins, Matthieu Simon Henrl Fleys
-
Patent number: 8658554Abstract: A catalyst support which may be used to support various catalysts for use in reactions for hydrogenation of carbon dioxide including a catalyst support material and an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction associated with the catalyst support material. A catalyst for hydrogenation of carbon dioxide may be supported on the catalyst support. A method for making a catalyst for use in hydrogenation of carbon dioxide including application of an active material capable of catalyzing a reverse water-gas shift (RWGS) reaction to a catalyst support material, the coated catalyst support material is optionally calcined, and a catalyst for the hydrogenation of carbon dioxide is deposited on the coated catalyst support material. A process for hydrogenation of carbon dioxide and for making syngas comprising a hydrocarbon, esp. methane, reforming step and a RWGS step which employs the catalyst composition of the present invention and products thereof.Type: GrantFiled: October 28, 2010Date of Patent: February 25, 2014Assignee: The United States of America, as represented by the Secretary of the NavyInventors: Robert W. Dorner, Heather D. Willauer, Dennis R Hardy
-
Patent number: 8652436Abstract: A material for water gas contains polyhydric alcohol, and hydroxycarboxylic acid.Type: GrantFiled: November 16, 2009Date of Patent: February 18, 2014Assignee: Kao CorporationInventors: Yasuo Amishige, Takeshi Shirasawa
-
Publication number: 20140034878Abstract: The invention relates to a method and a device for recovering a first gas product (13) consisting essentially of hydrogen and a second gas product (12) containing hydrogen and carbon monoxide, wherein a synthesis gas (4) generated by partial oxidation (POX) from a production substance (3) containing a coal and/or heavy oil is transformed by conversion (S) and subsequent drying and the removal of acid gases (A) into a hydrogen-rich gas mixture (6), which in turn is decomposed into a hydrogen fraction (7) of product purity and a residue gas (8) containing hydrogen and carbon monoxide. According to the invention, at least a part (10) of the residue gas (8) containing hydrogen and carbon monoxide is used to recover the second gas product (12).Type: ApplicationFiled: April 5, 2012Publication date: February 6, 2014Applicant: LINDE AKTIENGESELLSCHAFTInventor: Jurgen Glaser
-
Patent number: 8642667Abstract: A process for increasing the hydrogen content of a synthesis gas containing one or more sulphur compounds is described, comprising the steps of (i) heating the synthesis gas and (ii) passing at least part of the heated synthesis gas and steam through a reactor containing a sour shift catalyst, wherein the synthesis gas is heated by passing it through a plurality of tubes disposed within said catalyst in a direction co-current to the flow of said synthesis gas through the catalyst. The resulting synthesis gas may be passed to one or more additional reactors containing sour shift catalyst to maximize the yield of hydrogen production, or used for methanol production, for the Fischer-Tropsch synthesis of liquid hydrocarbons or for the production of synthetic natural gas.Type: GrantFiled: July 10, 2009Date of Patent: February 4, 2014Assignee: Johnson Matthey PLCInventor: Peter Edward James Abbott
-
Patent number: 8628744Abstract: A method for oxidizing carbon monoxide by a water-gas shift (WGS) reaction and a method for reducing carbon dioxide by a reverse water-gas shift (RWGS) reaction, both using a catalyst of the formula xMZLn2O2SOy, in which M, Ln, x, and y are as defined herein. Also disclosed are novel compositions for use as catalysts for both the WGS and RWGS reactions.Type: GrantFiled: November 9, 2010Date of Patent: January 14, 2014Assignee: Tufts UniversityInventors: Maria Flytzani-Stephanopoulos, Ioannis Valsamakis
-
Patent number: 8617512Abstract: The invention provides a water gas shift process comprising a reaction stage. The reaction stage comprises (a) providing a gas mixture comprising CO, H2O and an acid gas component to a reactor containing an adsorbent, and (b) subjecting the gas mixture to water gas shift reaction conditions to perform the water gas shift reaction. The adsorbent comprises an alkali promoted alumina based material. The acid gas component comprises H2S.Type: GrantFiled: May 20, 2011Date of Patent: December 31, 2013Assignee: Stichting Energieonderzoek Centrum NederlandInventors: Paul Dean Cobden, Stéphane Walspurger, Rudolf Willem Van Den Brink, Hendricus Adrianus Johannes Van Dijk
-
Patent number: 8518151Abstract: A dense hydrogen-permeable layer, such as palladium or palladium alloy, is deposited on a porous hollow fiber. A porous hollow fiber is defined as having an inner diameter of approximately 30 microns to approximately 1500 microns and an outer diameter of approximately 100 microns to approximately 2000 microns. This allows an order-of-magnitude increase in the surface per volume ratio in a hydrogen separation or purification module, or a membrane reformer or reactor.Type: GrantFiled: March 22, 2011Date of Patent: August 27, 2013Assignee: L'Air Liquide Societe Anonyme pour l'Etude el l'Exploitation des Procedes Georges ClaudeInventors: Pascal Tessier, Edgar S. Sanders, Jr., Pascal J. Tromeur
-
Patent number: 8496909Abstract: A process for producing hydrogen comprising the steps of: (i) gasifying a fuel into a raw synthesis gas comprising CO, hydrogen, steam, sulfur and halide contaminants in the form of H2S, COS, and HX, wherein X is a halide; (ii) passing the raw synthesis gas through a water gas shift reactor (WGSR) into which CaO and steam are injected, the CaO reacting with the shifted gas to remove CO2, sulfur and halides in a solid-phase calcium-containing product comprising CaCO3, CaS and CaX2; (iii) separating the solid-phase calcium-containing product from an enriched gaseous hydrogen product; and (iv) regenerating the CaO by calcining the solid-phase calcium-containing product at a condition selected from the group consisting of: in the presence of steam, in the presence of CO2, in the presence of synthesis gas, in the presence of H2 and O2, under partial vacuum, and combinations thereof.Type: GrantFiled: October 13, 2009Date of Patent: July 30, 2013Assignee: The Ohio State University Research FoundationInventors: Shwetha Ramkumar, Liang-Shih Fan
-
Publication number: 20130129610Abstract: The present invention relates to a compact, concentric auto thermal hydrogen/syngas generator for production of hydrogen/syngas without any external heating. Further, the auto thermal hydrogen/syngas generator of the present invention involves combination of reactions such as partial oxidation, steam reforming, dry reforming, auto thermal reforming, dry autothermal reforming, water gas shift, preferential oxidation or methanation that takes place without external heating, for converting air, steam and fuel into a reformate mainly containing CO, CO2, N2, CH4 and H2O which is subsequently converted to hydrogen/syngas as a feed for fuel cell or syngas applications.Type: ApplicationFiled: March 31, 2011Publication date: May 23, 2013Applicant: COUNCIL OF SCIENTIFIC & INDUSTRIAL RESEARCHInventor: Ganesh Ravindra Kale
-
Publication number: 20130122384Abstract: The invention discloses a hydrogen generator (100A) comprising: a reformer (1) having a reforming catalyst (1a); a material gas supply device (13); an evaporator (3); a water supply device; and a controller (10) which controls the material gas supply device (13) and the water supply device to stop supplying of a material gas to the reformer (1) and supplying of water to the evaporator (3) and then controls the material gas supply device (13) to supply the material gas to the reformer (1) in a period during which residual water evaporates in at least either the evaporator (3) or the reformer (1).Type: ApplicationFiled: May 20, 2011Publication date: May 16, 2013Applicant: PANASONIC CORPORATIONInventors: Yukimune Kani, Kunihiro Ukai, Hiroaki Kaneko
-
Patent number: 8419829Abstract: A method and system for coal-to-liquids (CTL) conversion is provided. The system includes a coal gasifier configured to partially oxidize a coal fuel stream to generate a flow of synthesis gas (syngas), a Fischer-Tropsch (FT) reactor configured to receive the flow of syngas and to generate a stream of tail gas, and an absorber coupled in flow communication downstream of the FT reactor and configured to receive the stream of tail gas. The absorber is further configured to generate a first flow including carbon dioxide, C2 hydrocarbons, and higher boiling gas components (C3+) and a second flow including C1, carbon monoxide, hydrogen, and nitrogen. The system also includes a first membrane separator including a selective membrane configured to separate the second flow from the absorber generating a permeate flow of hydrogen and a non-permeate flow of combustion turbine fuel gas including methane and hydrogen.Type: GrantFiled: October 27, 2010Date of Patent: April 16, 2013Assignee: General Electric CompanyInventor: Paul Steven Wallace
-
Patent number: 8394174Abstract: The present invention provides for various processes for recovering high purity gaseous hydrogen and high purity gaseous carbon dioxide from the gas stream produced using steam hydrocarbon reforming, especially steam methane reforming, utilizing a H2 pressure swing adsorption unit in combination with either a CO2 pressure swing adsorption unit in combination with a membrane separation unit or a CO2 pressure vacuum swing adsorption unit in combination with a membrane separation unit. The present invention further relates to a process for optimizing the recovery of carbon dioxide from waste gas streams produced during the hydrogen purification step of a steam hydrocarbon reforming/water gas shift reactor/H2 pressure swing adsorption unit utilizing either a CO2 pressure swing adsorption unit in combination with a membrane separation unit or a CO2 pressure vacuum swing adsorption unit in combination with a membrane separation unit.Type: GrantFiled: September 30, 2009Date of Patent: March 12, 2013Assignees: American Air Liquide, Inc., Air Liquide Industrial U.S. LPInventors: Yudong Chen, Glenn Fair
-
Publication number: 20130045865Abstract: A catalyst composition contains an active metal on a support including a high surface area substrate and an interstitial compound, for example molybdenum carbide. Pt—Mo2C/Al2O3 catalysts are described. The catalyst systems and compositions are useful for carrying out reactions generally related to the water gas shift reaction (WGS) and to the Fischer-Tropsch Synthesis (FTS) process.Type: ApplicationFiled: January 31, 2012Publication date: February 21, 2013Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Levi T. Thompson, Neil Schweitzer, Joshua Schaidle
-
Patent number: 8372375Abstract: For recovering hydrogen with a high recovery from a reformed gas and contributing to downsizing and cost reduction of facilities, a high-purity hydrogen E is obtained by reforming a reformable raw material A through a reforming unit 1 to yield a hydrogen-rich reformed gas B, compressing the hydrogen-rich reformed gas B with a compressor 2, allowing the compressed gas to pass through a PSA unit 3 to remove unnecessary gases other than carbon monoxide by adsorption, and allowing the resulting gas to pass through a carbon monoxide remover 4 packed with a carbon monoxide adsorbent supporting a copper halide to remove carbon monoxide by adsorption.Type: GrantFiled: April 25, 2006Date of Patent: February 12, 2013Assignee: Kobe Steel, Ltd.Inventors: Noboru Nakao, Takeshi Yamashita, Akitoshi Fujisawa, Keita Yura