By Reacting Water Or Aqueous Solution With Metal Or Compound Thereof Patents (Class 423/657)
  • Patent number: 8858910
    Abstract: A device for generating hydrogen for power system based on hydrolysis aluminum assisted water split has a housing, a unit for containing aluminum in the housing, a unit for periodically bringing the aluminum and the electrolyte in contact for production of hydrogen, and a unit for the withdrawing the hydrogen to a power source.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: October 14, 2014
    Assignee: Altek Capital, Inc.
    Inventor: Evgeny B. Kulakov
  • Patent number: 8845998
    Abstract: A catalyst has a long life span and efficiently separates hydrogen from water. A first metal element (Ni, Pd, Pt) for cutting the combination of hydrogen and oxygen and a second metal element (Cr, Mo, W, Fe) for helping the function of the first metal element are melted in alkaline metal hydroxide or alkaline earth metal hydroxide to make a mixture heated at a temperature above the melting point of the hydroxide to eject fine particles from the liquid surface, bringing steam into contact with the fine particles. Instead of this, a mixture of alkaline metal hydroxide and metal oxide is heated at a temperature above the melting point of the alkaline metal hydroxide to make metal compound in which at least two kinds of metal elements are melted, and fine particles are ejected from the surface of the metal compound to be brought into contact with steam.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: September 30, 2014
    Inventor: Yasuo Ishikawa
  • Publication number: 20140271449
    Abstract: A hydrogen generator including a reactor chamber having a feedstock inlet and an inlet seal positioned at the feedstock inlet. At least one pair of feed rollers is positioned to draw a feedstock through the inlet seal and into the reactor chamber. At least one pair of distressing rollers is positioned in line with the feed rollers to produce stress in the feedstock. Steam is provided to the reactor chamber through a steam inlet and hydrogen is collected from a hydrogen outlet.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Publication number: 20140261132
    Abstract: Systems and methods for storing energy in gaseous form in submerged thin-walled tanks are secured to the ocean or lake floor but are open to the water at the tank bottoms and are configured to be filled with gas while submerged. A conduit operatively connected to the tanks provides flow from a surface source of an energy-containing gas to the tank interiors. Surface or subsurface pumping apparatus which may include piston-less pressure cylinders or have leveraged pistons provide a preselected flow rate of the energy-containing gas into the containment structure interior against a back pressure essentially equal to the static pressure of the body of water at the location of the tank to displace an equivalent volume of water through the open bottom. The conduit can be configured to allow heat transfer to vaporize liquefied gas prior to storage. Hydrogen gas can be generated and stored within the tank using Aluminum activated with Galinstan.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Fevzi Zeren, Zekeriye Konukoglu
  • Patent number: 8828108
    Abstract: An apparatus, system, and method are disclosed for capturing electrical energy from a process designed for producing hydrogen. An electrode is placed within a stream of liquid alkali metal that flows through a titration module and interacts with water to produce, among other byproducts, hydrogen. Another electrode is placed within a reaction chamber that houses the water. The electrodes can then be coupled to a terminal, and during the hydrogen generation process (when the liquid alkali metal and water interact) the stream of liquid alkali metal acts as an anode and the electrode in the water as a cathode. Current flows, and energy is captured and made available as electrical energy at the terminal, which can be connected to electrical loads. The terminal may be connected with the terminal of a fuel cell that is consuming the hydrogen that is being produced, thus providing additional voltage and/or current.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: September 9, 2014
    Inventor: Bruce McGill
  • Patent number: 8821834
    Abstract: The present invention concerns a hydrogen gas-generating apparatus (10) comprising (1) a reservoir (100) comprising an aqueous component (110), (2) a fuel compartment (200) comprising a solid metal borohydride fuel component (210), and (3) a reaction chamber (300) comprising an aerogel catalyst (310). A first fluid path introduces the aqueous component into the fuel compartment where the solid metal borohydride fuel component is dissolved into a liquid metal borohydride fuel component (210?). A second fluid path introduces the liquid metal borohydride fuel component into the reaction chamber to produce a hydrogen gas by means of a hydride-water oxidation reaction that is accelerated by the aerogel catalyst. The temperature and/or pressure of the reaction chamber are predetermined to maintain the water in the borate byproduct to be substantially in the liquid phase to minimize the precipitation of the borate byproduct.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: September 2, 2014
    Assignee: Societe BIC
    Inventors: Michael Curello, Constance Stepan
  • Patent number: 8821601
    Abstract: A hydrogen generating element which can supply hydrogen efficiently and stably, is safe, and has low environmental load is provided. Further, a hydrogen generation device to which the hydrogen generating element is applied is provided. Furthermore, a power generation device and a driving device to each of which the hydrogen generation device is applied are provided. A hydrogen generating element in which a needle-like or dome-like silicon microstructure is formed over a base may be used and reacted with water, whereby hydrogen is efficiently generated. The hydrogen generating element may be applied to a hydrogen generation device. The hydrogen generation device may be applied to a power generation device and a driving device.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: September 2, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tomokazu Yokoi, Shuhei Yoshitomi, Kensuke Yoshizumi
  • Publication number: 20140241979
    Abstract: The present invention relates to method for recycling alkaline waste water from a stainless steel slag treatment process wherein stainless steel slag is brought into contact with water thereby producing said waste water, which waste water contains heavy metals, including at least chromium, and has a pH of at least 12. The waste water is recycled by using it for treating an alkaline granular carbonatable material, which contains aluminium metal, in order to oxidise the aluminium metal contained therein. This material is in particular municipal waste incinerator bottom ash which can, after the treatment of the present invention, safely be used as fine or coarse aggregate in bonded applications such as concrete, mortar and asphalt. During the treatment with the alkaline waste water, hydrogen gas is produced which is captured and used to produce energy by means of a cogeneration device.
    Type: Application
    Filed: October 22, 2012
    Publication date: August 28, 2014
    Applicant: RECMIX BELGIUM
    Inventors: Dirk Van Mechelen, Mieke Quaghebeur, Peter Nielsen
  • Publication number: 20140234205
    Abstract: Disclosed is a method for the preparation of hydrogen suitable for civil applications, in which metal aluminum is mainly used for producing hydrogen. Water is added into a collection of reactants formed by placing an alkaline substance and metal aluminum together. The portion of said alkaline substance or its reaction product with water, wherein participates in the mass-transferring contact with said metal aluminum, has an effective molar ratio of less than 0.8 with respect to said metal aluminum. The water is added slowly into the collection of reactants; during the reaction, residual reactive but as yet unreacted water has a molar ratio of less than 1 but greater than 0 with respect to the metal aluminum added initially. Also disclosed is a device for the preparation of hydrogen, and a composition.
    Type: Application
    Filed: November 2, 2012
    Publication date: August 21, 2014
    Inventor: Ke Jin
  • Patent number: 8808410
    Abstract: A hydrogen generator that includes a solid fuel mixture, a liquid reactant, a liquid delivery medium (LDM), a movable boundary interface (MBI), a reaction zone, wherein the MBI provides constant contact between a reacting surface of the solid fuel mixture and the liquid reactant delivered by the LDM to form the reaction zone, and a product separation media, fluidly coupled to the reaction zone by a fluid junction, that degasses a product. The hydrogen generator may further include auxiliary LDMs disposed throughout the hydrogen generator, wherein said auxiliary LDMs may be operated based on a ratio of the liquid reactant flow rate to the hydrogen generation rate.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: August 19, 2014
    Assignee: Intelligent Energy Limited
    Inventors: Daniel Braithwaite, Matthieu Jonemann, Tibor Fabian
  • Publication number: 20140219911
    Abstract: The present invention discloses a class of organometallic catalysts for both hydrogenation and water oxidation. The synthesis and the use of these catalysts for hydrogenation, hydrogen production and water oxidation reactions is also disclosed.
    Type: Application
    Filed: August 27, 2012
    Publication date: August 7, 2014
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ALABAMA
    Inventors: Elizabeth T. Papish, Ismael Nieto
  • Publication number: 20140154172
    Abstract: A system for the generation of hydrogen for use in portable power systems is set forth utilizing a two-step process that involves the thermal decomposition of AlH3 (10 wt % H2) followed by the hydrolysis of the activated aluminum (Al*) byproduct to release additional H2.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 5, 2014
    Applicant: Savannah River Nuclear Solutions, LLC
    Inventors: Ragaiy Zidan, Joseph A. Teprovich, Theodore Motyka
  • Publication number: 20140154173
    Abstract: Exemplary embodiments of methods and systems for hydrogen production using an electro-activated material are provided. In some exemplary embodiments, carbon can be electro-activated and used in a chemical reaction with water and a fuel, such as aluminum, to generate hydrogen, where the by-products are electro-activated carbon, and aluminum oxide or aluminum hydroxide. Controlling the temperature of the reaction, and the amounts of aluminum and electro-activated carbon can provide hydrogen on demand at a desired rate of hydrogen generation.
    Type: Application
    Filed: July 24, 2012
    Publication date: June 5, 2014
    Applicant: H2 CATALYST, LLC
    Inventor: Douglas Howard Phillips
  • Publication number: 20140154171
    Abstract: A hydrogen generator and a method of producing hydrogen gas using stabilized aluminum hydroxide and water are disclosed. The hydrogen generator contains stabilized aluminum hydride, water, a base, and a reaction chamber within which at least a portion of the stabilized aluminum hydride reacts with at least a portion of the water to produce hydrogen gas. The water that reacts with the stabilized aluminum hydride is contained in a basic aqueous solution including at least a portion of the base. The base can be included with the water in the basic aqueous solution, stored in a reservoir separate from the stabilized aluminum hydroxide, or the base can be a solid contained in a mixture with the stabilized aluminum hydroxide and mix with water when added to the mixture to form the basic aqueous solution.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 5, 2014
    Applicant: EVEREADY BATTERY COMPANY, INC.
    Inventor: Guanghong Zheng
  • Patent number: 8741004
    Abstract: A reaction hydrogen production control mechanism is provided that includes, a solid sodium borohydride mixture, a liquid fuel reactant, at least one liquid delivery medium (LDM), a movable boundary interface (MBI) and a reaction zone, where the MBI is disposed to provide a constant contact between a reacting surface of the solid fuel mixture and the primary LDM to form the reaction zone. A reaction in the reaction zone includes a hydrolysis reaction. The MBI moves according to a spring, gas pressure, or an elastic membrane. Product paths are disposed to transfer reactants from the system. The product paths can include a channel on a surface of the solid fuel mixture, a channel disposed through the solid fuel mixture, a channel disposed about the solid fuel mixture, a contained region disposed about the solid fuel mixture, or a conduit abutting the solid fuel mixture.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: June 3, 2014
    Assignee: Intelligent Energy Limited
    Inventors: Daniel Braithwaite, Wonhyoung Ryu, Courtney Aline Helland, Kei E. Yamamoto, Andrew Philip Peterson, Matthieu Jonemann, Adam Naegeli Rodriguez, Gabriel Parisi-Amon
  • Publication number: 20140147375
    Abstract: The present invention relates to a process for the self-regulated production as a function of the demand, under submerged conditions, of a gas (G), said gas (G) being generated by a chemical reaction between a liquid (L) and a solid (S) (hydrogen generated by hydrolysis of a metal hydride, for example) and not being polluted between the generation thereof and the delivery thereof. The present invention also relates to a device suitable for the implementation of said process.
    Type: Application
    Filed: December 28, 2011
    Publication date: May 29, 2014
    Applicant: HERAKLES
    Inventors: Gilles Gonthier, Pierre Yvart, Christian Perut
  • Publication number: 20140105815
    Abstract: Disclosed is a method for production of hydrogen energy utilizing silicon wastewater. The method includes treating the silicon wastewater through UF membrane filtration to separate UF treated water and a concentrated silicon waste solution therefrom, admixing the separated silicon waste solution with an alkaline material, reacting the concentrated silicon waste solution with the alkaline material in the mixture to produce hydrogen gas and alkaline water, using an acidic material to neutralize the alkaline water, thereby forming a supernatant and a precipitate.
    Type: Application
    Filed: December 19, 2013
    Publication date: April 17, 2014
    Applicant: COWAY CO., LTD.
    Inventors: Chae-Seok CHOI, Ji-Hyeon HWANG, Youn-Kook KIM
  • Patent number: 8697027
    Abstract: Methods and systems of providing a source of hydrogen and oxygen with high volumetric energy density, as well as a power systems useful in non-air breathing engines such as those in, for example, submersible vehicles, is disclosed. A hydride reactor may be utilized in forming hydrogen from a metal hydride and a peroxide reactor may be utilized in forming oxygen from hydrogen peroxide. The high temperature hydrogen and oxygen may be converted to water using a solid oxide fuel cell, which serves as a power source. The power generation system may have an increased energy density in comparison to conventional batteries. Heat produced by exothermic reactions in the hydride reactor and the peroxide reactor may be transferred and utilized in other aspects of the power generation system. High temperature water produced during by the peroxide reactor may be used to fuel the hydride reactor.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: April 15, 2014
    Assignee: Alliant Techsystems Inc.
    Inventors: Ighor K. Uzhinsky, Gary K. Lund, John C. Leylegian, Florin Girlea, Jason S. Tyll, Lawrence G. Piper, Marten Byl, Wallace Chinitz
  • Patent number: 8668897
    Abstract: The present invention relates to compositions and methods for producing hydrogen from water involving reacting metal particles with water in the presence of an effective amount of activator. In particular the invention pertains to compositions and methods for producing hydrogen upon reaction of metal particles selected from the group consisting of aluminum (Al), magnesium (Mg), boron (B), silicon (Si), iron (Fe), and zinc (Zn) with water, in the presence of an effective amount of an activator catalyst, wherein the activator is selected from the group consisting of: alkali metals, earth alkali metals, hydrides of alkali metals, hydrides of earth alkali metals, hydroxides of alkali metals, and hydroxides of earth alkali metals.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: March 11, 2014
    Assignee: Technion Research & Development Foundation Limited
    Inventors: Valery Rosenband, Alon Gany
  • Patent number: 8658055
    Abstract: Solid-state hydrogen fuel with a polymer matrix and fabrication methods thereof are presented. The solid-state hydrogen fuel includes a polymer matrix, and a crushed mixture of a solid chemical hydride and a solid-state catalyst uniformly dispersed in the polymer matrix. The fabrication method for the solid-state hydrogen fuel includes crushing and mixing a solid chemical hydride and a solid-state catalyst in a crushing/mixing machine, and adding the polymer matrix into the mixture of the solid chemical hydride and the solid-state catalyst to process a flexible solid-state hydrogen fuel. Moreover, various geometric and/or other shapes may be formed and placed into suitable vessels to react with a particular liquid and provide a steady rate of hydrogen release.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: February 25, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Chan-Li Hsueh, Jie-Ren Ku, Shing-Fen Tsai, Ya-Yi Hsu, Cheng-Yen Chen, Reiko Ohara, Ming-Shan Jeng, Fanghei Tsau
  • Patent number: 8642002
    Abstract: Disclosed are a hydrogen energy production system utilizing silicon wastewater and a method for production of hydrogen energy using the same. More particularly, the disclosed system includes: a UF treatment bath wherein the silicon wastewater is treated through UF film filtration to separate UF treated water and a concentrated silicon waste solution therefrom; a line mixer connected to the UF treatment bath in order to admix the separated silicon waste solution with an alkaline material fed from the outside; and a hydrogen production bath connected to the line mixer, wherein the concentrated silicon waste solution in the mixture reacts with the alkaline material, in order to produce hydrogen gas. Additionally, a hydrogen energy production method using the foregoing system is also disclosed.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: February 4, 2014
    Assignee: Woongjin Coway Co., Ltd.
    Inventors: Chae-Seok Choi, Ji-Hyeon Hwang, Youn-Kook Kim
  • Patent number: 8642005
    Abstract: A method for producing hydrogen via a thermochemical route from water, based on the cerium-chlorine cycle is provided. The method comprises, according to a first reaction scheme, the following reactions: H2O+Cl2=2HCl+½O2;??(A) 8HCl+2CeO2=2CeCl3+Cl2+4H2O;??(B) 2CeCl3+4H2O=2CeO2+6HCl+H2;??(C) or, according to a second reaction scheme, the following reactions: H2O+Cl2=2HCl+½O2;??(A) 8HCl+2CeO2=2CeCl3+Cl2+4H2O;??(B) 2CeCl3+2H2O=2CeOCl+4HCl;??(B?) 2CeOCl+2H2O=2CeO2+2HCl+H2;??(C?) wherein the reaction (B) for chlorination of cerium oxide is conducted in a liquid phase, the cerium chloride passing into solution, and wherein the reaction (B) is catalyzed by fluoride ions.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: February 4, 2014
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Florent Lemont, Alizée Barbier-Maderou
  • Patent number: 8636961
    Abstract: The present invention increases the amount of hydrogen produced or released from reactions between a metal hydride fuel and liquid reactant. The present invention also decreases the volume of a hydrogen generating cartridge by reducing the pH of the liquid reactant.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: January 28, 2014
    Assignee: Societe BIC
    Inventors: Anthony Sgroi, Jr., Constance R. Stepan, Andrew J. Curello, Michael Curello
  • Publication number: 20130344407
    Abstract: A hydrogen generator is provided for generating hydrogen gas for a fuel cell stack. The hydrogen generator includes a reaction area and a reactant storage area for storing a reactant composition for reacting to generate hydrogen gas. The hydrogen generator also includes a high pH solution contained within a solution storage area. Hydrogen gas is discharged through an outlet that passes through a filter to supply gas to the fuel cell. A predetermined quantity of high pH solution is injected into the reaction area to stop the reaction when electrical power is no longer demanded.
    Type: Application
    Filed: June 25, 2012
    Publication date: December 26, 2013
    Applicant: EVEREADY BATTERY COMPANY, INC.
    Inventor: Alvin R. Mick
  • Patent number: 8586004
    Abstract: The present invention involves modifying certain characteristics of solid and aqueous chemical metal hydride fuels to increase the efficiency of hydrogen generation and/or to reduce the problems associated with such conventional hydride fuel sources. The present invention also relates to an apparatus (10) usable with the release of hydrogen from hydride-water fuel cells in which both the borohydride (110) and the water (210) components are in flowable or liquid form.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: November 19, 2013
    Assignee: Societe BIC
    Inventors: Alain Rosenzweig, Andrew J. Curello, David M. Weisberg
  • Patent number: 8580227
    Abstract: The present inventions are a method for production of hydrogen which decomposes water into hydrogen by oxidation of metals only when the metals are exposed to the water, while preventing oxidation of pure metal nanoparticles using block copolymers and, in addition, hydrogen produced by the method described above. The method of the present invention has advantages of improved convenience and simplicity, achieves a preferable approach for hydrogen storage because the metal nanoparticles enclosed by the block copolymer have the ease of delivery and reaction thereof. Additionally, the method of the present invention only using water and the metal is considered eco-friendly and useful in industrial energy applications.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: November 12, 2013
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jeung-Ku Kang, Weon-Ho Shin, Jun-Hyeon Bae, Jung-Hoon Choi, Cheol-Ock Song, Kyung-Min Choi
  • Patent number: 8578718
    Abstract: The present invention provides a motor powered by an expandable, combustible gas. The motor includes a cartridge for the generation of hydrogen. The cartridge is configured to generate high pressure and high temperature hydrogen. The motor is configured such that hydrogen generated by the cartridge is directed into a series of expandable chambers defined by at least one flywheel. The flywheel is connected to a shaft such that power generated by the hydrogen can be transmitted out of the motor. The motor is configured such that power can be generated by expansion of the hydrogen and subsequent combustion of the hydrogen.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: November 12, 2013
    Assignee: Advanced Hydrogen Technologies Corporation
    Inventor: Peter James Lohr, Sr.
  • Publication number: 20130276769
    Abstract: Aluminum may be used as a fuel source to power small vehicles, unmanned vehicles or underwater vehicles, other small robotics, backup or regular underwater power sources (e.g., for oil rigs), or as an emergency power source in flooded or disaster areas. Reactors are described that harvest energy produced by the exothermic oxidative reaction of aluminum or an aluminum alloy with water, with the assistance of liquid gallium as a depassivating agent.
    Type: Application
    Filed: March 13, 2013
    Publication date: October 24, 2013
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Ian S. McKay, Ruaridh R. MacDonald, Erich J. Brandeau
  • Publication number: 20130277229
    Abstract: The invention relates to novel metal complexes useful as catalysts in redox reactions (such as, hydrogen (H2) production). In particular, the invention provides novel transition metal (e.g., cobalt (Co) or nickel (Ni)) complexes, in which the transition metal is coupled with N,N-Bis(2-pyridinylmethyl)-2,2?-Bipyridine-6-methanamine (DPA-Bpy), 6?-((bis(pyridin-2-ylmethyl)amino)methyl)-N,N-dimethyl-2,2?-bipyridin-6-amine (DPA-ABpy), or a derivative thereof. The invention also relates to a method of producing H2 from an aqueous solution by using the metal complex as a catalyst. In certain embodiments, the invention provides a metal complex of the formulae as described herein.
    Type: Application
    Filed: April 22, 2013
    Publication date: October 24, 2013
    Applicant: University of Memphis Research Foundation
    Inventor: University of Memphis Research Foundation
  • Publication number: 20130251626
    Abstract: Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force.
    Type: Application
    Filed: February 7, 2013
    Publication date: September 26, 2013
    Applicant: SIGNA CHEMISTRY, INC.
    Inventors: Andrew P. WALLACE, John M. MELACK, Michael LEFENFELD
  • Publication number: 20130252808
    Abstract: To provide a catalyst, which is formed from a perovskite oxide, for thermochemical fuel production, and a method of producing fuel using thermochemical fuel production that is capable of allowing a fuel to be produced in a thermochemical manner. Provided is a catalyst for thermochemical fuel production, which is used for producing the fuel from thermal energy by using a two-step thermochemical cycle of a first temperature and a second temperature that is equal to or lower than the first temperature, wherein the catalyst is formed from a perovskite oxide having a compositional formula of AXO3±? (provided that, 0???1). Here, A represents one or more of a rare-earth element (excluding Ce), an alkaline earth metal element, and an alkali metal element, X represents one or more of a transition metal element and a metalloid element, and O represents oxygen.
    Type: Application
    Filed: August 31, 2012
    Publication date: September 26, 2013
    Inventors: Yoshihiro YAMAZAKI, Sossina M. HAILE, Chih-Kai YANG
  • Patent number: 8540962
    Abstract: The disclosed method for producing hydrogen by means of thermochemical water-splitting can efficiently use solar energy obtained by means of a beam-down typed light collecting system. Further disclosed is a device for producing hydrogen. While circulating within a reactor (1) a fluidized bed (2) made of metal oxide particles, two reactions are simultaneously caused to proceed: a thermal reduction reaction, which is an oxygen evolution reaction wherein a portion of the fluidized bed (2) is heated by solar light (S) in a nitrogen atmosphere, which is a low oxygen partial pressure gas, releasing oxygen from the metal oxide; and a thermochemical water-splitting reaction, which is a hydrogen evolution reaction wherein water vapor is brought into contact with the metal oxide after oxygen has been released, generating hydrogen.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: September 24, 2013
    Assignee: Niigata University
    Inventors: Tatsuya Kodama, Nobuyuki Gokon
  • Publication number: 20130236393
    Abstract: The use of a colloidal suspension that comprises between 35% and 60% of alkaline metal particles that are suspended in a neutral hydrophobic diluent for producing gaseous hydrogen, as well as a process for producing hydrogen. Also, a hydrogen-generating device and its use.
    Type: Application
    Filed: April 10, 2013
    Publication date: September 12, 2013
    Applicant: UNITHER DEVELOPPEMENT
    Inventor: Marc MAURY
  • Patent number: 8529867
    Abstract: An aluminum-alkali hydroxide recyclable hydrogen generator is provided that enables generation of hydrogen for a consuming apparatus on demand. The hydrogen generator includes a source of aluminum, a source of a hydroxide, a source of water, and a reaction chamber, where the amount of at least one of the aluminum, sodium hydroxide, and water that is introduced into the reaction chamber is used to limit the chemical reaction to control the amount of hydrogen generated.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: September 10, 2013
    Assignee: Cedar Ridge Research, LLC
    Inventor: Larry W. Fullerton
  • Publication number: 20130228721
    Abstract: A reactor system for the transformation of solid, liquid, gaseous, and related hydrocarbon feedstocks into high-purity, high-pressure gas streams capable of withstanding high temperatures and high pressures. The system comprises a plurality of reactor housings and a plurality of molten-metal bath vessels within the housings, the bath vessels in fluid communication with each other via conduits, with communication facilitated by gravity and temperature/pressure differentials.
    Type: Application
    Filed: September 26, 2012
    Publication date: September 5, 2013
    Inventors: Michael C. Collins, Robert D. Bach
  • Patent number: 8518368
    Abstract: The present disclosure relates to processes and methods of generating hydrogen via the hydrolysis or solvolyis of a compound of the formula (I), R1R2HNBHR3R4, using ligand-stabilized homogeneous metal catalysts.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: August 27, 2013
    Assignee: Kanata Chemical Technologies Inc.
    Inventors: Kamaluddin Abdur-Rashid, Todd Graham, Chi-Wing Tsang, Xuanhua Chen, Rongwei Guo, Wenli Jia, Dino Amoroso, Christine Sui-Seng
  • Patent number: 8501036
    Abstract: The invention relates to Group 1 metal/silica gel compositions comprising silica gel and an alkali metal or alloy, wherein Group 1 metals or alloys are absorbed into the silica gel pores. The invention relates to producing hydrogen gas comprising contacting a Group 1 metal/silica gel composition with water, and further relates to an alkali metal reduction of an organic compound, the improvement comprising contacting the organic compound with a Group 1 metal/silica gel composition. In these embodiments, the Group 1 metal/silica gel composition reacts with dry O2. The invention also relates to producing hydrogen gas comprising contacting a Group 1 metal/silica gel composition with water, and further relates to an alkali metal reduction of an organic compound, the improvement comprising contacting the organic compound with a Group 1 metal/silica gel composition. In these embodiments, the Group 1 metal/silica gel composition produced does not react with dry O2.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: August 6, 2013
    Assignees: SiGNa Chemistry, Inc., Board of Trustees of Michigan State University
    Inventors: Michael Lefenfeld, James L. Dye
  • Patent number: 8500830
    Abstract: A hydrogen generating apparatus and a fuel cell using the same is provided. The hydrogen generating apparatus is adapted to a fuel cell, and includes a main body, an electromagnet, a magnetic element, a containing tank and a sliding element. The electromagnet is fixed on the main body. The magnetic element is movably disposed on the main body. The containing tank is fixed on the main body and is used for containing liquid water. The sliding element is slidably disposed on the main body, wherein a solid fuel is fixed on the sliding element. When the electromagnet is electrified to generate magnetic force to drive a motion of the magnetic element, the magnetic element drives the sliding element to slide towards the containing tank, so that the solid fuel reacts with the liquid water in the containing tank to generate hydrogen.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: August 6, 2013
    Assignee: Young Green Energy Co.
    Inventors: Po-Kuei Chou, Cheng Wang, Yueh-Chang Wu
  • Patent number: 8470292
    Abstract: The present invention relates to a hydrogen production method from water by using germanium oxide, more precisely a hydrogen and oxygen production method from water by thermochemical cycles using germanium oxide. The method of the present invention facilitates the production of hydrogen by multi-step thermochemical cycle using germanium oxide, so that it is characterized by that the thermochemical cycle is low temperature reaction and only water is consumed and other materials are not consumed but circulated.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: June 25, 2013
    Assignee: Korea Institute of Energy Research
    Inventors: Kyoung-Soo Kang, Chu-Sik Park, Chang-Hee Kim, Ki-Kwang Bae, Won-Chul Cho
  • Publication number: 20130149234
    Abstract: The present invention provides a continuous hydrogen production device and method thereof. The device comprises a reaction chamber, a solid raw material inlet, a liquid raw material inlet, a gas outlet, and a temperature controller. The reaction chamber contains an initiation solution, comprising a saturated aluminum hydroxide solution. The solid raw material inlet is used to add aluminum powders into the reaction chamber and the liquid raw material inlet is used to add water into the reaction chamber. The gas outlet is used to collect the produced hydrogen gas. The temperature controller is used to control the temperature of the reaction chamber within a preset reaction temperature range.
    Type: Application
    Filed: January 5, 2012
    Publication date: June 13, 2013
    Applicant: CHUNG YUAN CHRISTIAN UNIVERSITY
    Inventors: Hong-Wen Wang, Hsin-Te Teng
  • Patent number: 8460412
    Abstract: A method is disclosed for producing energy from the controlled reaction of an alkali metal with water. The method comprises forcing a liquefied alkali metal through a filter that separates the liquid alkali metal into alkali metal droplets. The alkali metal droplets comprise small enough particles that the alkali metal droplets completely react in water to produce heat, steam, an alkaline hydroxide and hydrogen gas before the alkali metal droplets reach the surface of the water. The filter separates the alkali metal droplets at a sufficient distance to avoid recombining of the alkali metal droplets. The alkaline hydroxide is reduced to an alkali metal and water which can be reused in the system.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: June 11, 2013
    Inventor: Bruce McGill
  • Publication number: 20130142716
    Abstract: The invention relates to a method adapted for integration with a carbonate absorption/stripping process for removal of carbon dioxide, the method and system including the steps of: converting a source of alkali from a first industry to a non-carbonate alkali; feeding the non-carbonate alkali as makeup to a carbonate absorption system for stripping carbon dioxide from emissions from a second industry; recovering an output from the system for stripping carbon dioxide, and in the process of conversion of the alkali from the first industry, utilising energy from the second industry.
    Type: Application
    Filed: July 15, 2011
    Publication date: June 6, 2013
    Applicant: REDEEM CCS PTY LTD
    Inventor: Barry Neil Hooper
  • Patent number: 8444846
    Abstract: A method of producing hydrogen from sodium hydroxide and water is disclosed. The method comprises separating sodium from a first aqueous sodium hydroxide stream in a sodium ion separator, feeding the sodium produced in the sodium ion separator to a sodium reactor, reacting the sodium in the sodium reactor with water, and producing a second aqueous sodium hydroxide stream and hydrogen. The method may also comprise reusing the second aqueous sodium hydroxide stream by combining the second aqueous sodium hydroxide stream with the first aqueous sodium hydroxide stream. A system of producing hydrogen is also disclosed.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: May 21, 2013
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Dennis N. Bingham, Kerry M. Klingler, Terry D. Turner, Bruce M. Wilding, Lyman Frost
  • Publication number: 20130115161
    Abstract: Disclosed is a method for storing hydrogen, a method for generating hydrogen, a hydrogen storing device, and a hydrogen generating device. In a disclosed method for storing hydrogen, water that is treated so as to include hydrogen ions in a state the ions can be changed into protium is prepared, and hydrogen is stored by supplying a hydrogen-containing substance or a substance that generates hydrogen, for example, Mg, into the water. Preferably, the hydrogen-containing substance is sodium borohydride (NaBH4). Preferably, the water is ionized hydrogen water treated with a metal hydride, and the metal hydride is at least one among an alkali metal, an alkaline earth metal, a group 13 metal, and a group 14 metal.
    Type: Application
    Filed: December 28, 2012
    Publication date: May 9, 2013
    Applicant: TAANE CO., LTD.
    Inventor: TAANE CO., LTD.
  • Patent number: 8435486
    Abstract: An improved redox material able to be used for thermochemical water splitting, and a method for producing hydrogen using this redox material are provided. The redox material for thermochemical water splitting comprises a redox metal oxide selected from the group comprising perovskite-type composite metal oxides, fluorite-type composite metal oxides and combinations thereof, and a metal oxide carrier. The redox metal oxide is carried on the metal oxide carrier in a dispersed state. The method for producing hydrogen uses the oxidation and reduction of the redox material to decompose water into hydrogen and oxygen.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: May 7, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Shinichi Takeshima
  • Patent number: 8420032
    Abstract: Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: April 16, 2013
    Assignee: Sandia Corporation
    Inventor: Ivan Ermanoski
  • Patent number: 8418435
    Abstract: Aluminum is treated with an agent to prevent passivation of the aluminum during oxidation. The passivation preventing agent is a metal alloy containing gallium, preferably a eutectic alloy of gallium, indium and tin. The surface of the metallic aluminum is wetted with the eutectic alloy, suitably by scouring and/or immersion. The treated aluminum may be mixed with water, hydrogen peroxide or other suitable oxidizer in a controlled manner to produce hydrogen, heat, steam or oxygen for the use in power generation or chemical reactions. The passivation removal agent can be used in small quantities and is readily recoverable following the reaction.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: April 16, 2013
    Inventor: Nagi Hatoum
  • Publication number: 20130064756
    Abstract: A hydrogen generating system and a method of in situ hydrogen generation controlled on demand capable of reacting an aluminum-free metal reagent composed of at least one of alkali metals, alkaline earth metals, alkali metal alloys and blends including alkali metals, alkaline earth metal alloys and blends including alkaline earth metals and metal alloys including at least one alkali metal and at least one alkaline earth metal, with water to obtain hydrogen and a residual reaction product including metal hydroxide composed of at least one of alkali hydroxides and alkaline earth hydroxide; and separating hydrogen from the residual reaction product; liquefying the metal reagent by heating to obtain liquid metal reagent under vacuum conditions; injecting the liquid metal reagent into a reactor by metal reagent injecting means and simultaneously injecting, by water injection system, a stoichiometric amount of water with respect to the amount of the liquid metal reagent being injected into the reactor such that a co
    Type: Application
    Filed: May 9, 2011
    Publication date: March 14, 2013
    Inventor: Amalio Garrido Escudero
  • Patent number: 8383078
    Abstract: Reactive diluent fluid (22) is introduced into a stream of synthesis gas (or “syngas”) produced in a heat-generating unit such as a partial oxidation (“POX”) reactor (12) to cool the syngas and form a mixture of cooled syngas and reactive diluent fluid. Carbon dioxide and/or carbon components and/or hydrogen in the mixture of cooled syngas and reactive diluent fluid is reacted (26) with at least a portion of the reactive diluent fluid in the mixture to produce carbon monoxide-enriched and/or solid carbon depleted syngas which is fed into a secondary reformer unit (30) such as an enhanced heat transfer reformer in a heat exchange reformer process. An advantage of the invention is that problems with the mechanical integrity of the secondary unit arising from the high temperature of the syngas from the heat-generating unit are avoided.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: February 26, 2013
    Assignee: GTLpetrol LLC
    Inventors: Shoou-I Wang, John Michael Repasky, Shankar Nataraj, Xiang-Dong Peng
  • Publication number: 20130039845
    Abstract: A method for production of hydrogen. In the method, an aqueous solution of a chalcogenoxanthylium compound, a catalyst and sacrificial electron donor are exposed to electromagnetic radiation with a wavelength of from 400 nm to 850 nm. Exposure of the aqueous solution to the electromagnetic radiation results in production of hydrogen. Such a method can be used, for example, in dye-sensitized solar cell.
    Type: Application
    Filed: January 19, 2011
    Publication date: February 14, 2013
    Inventors: Michael R. Detty, Brandon D. Calitree, Alexandra Orchard, Richard Eisenberg, Theresa McCormick