Ammoniating Or Sulfating Patents (Class 423/67)
  • Patent number: 4150092
    Abstract: The present invention provides a method for recovering vanadium from ferruginous chloride solutions by liquid-liquid extraction (or liquid ion exchange). Such chloride solutions are obtained in the extraction of vanadium from vanadiferous residues arising from the chlorination of titaniferous ores and in the extraction of vanadium from vanadiferous minerals. These solutions contain chlorides of vanadium, aluminum, iron, manganese and chromium. The method comprises adding sulfate ions to the chloride solution and recovering the vanadium by liquid-liquid extraction. By adjusting the sulfate-additive in relation to the concentrations of vanadium, iron and chloride in the solution vanadium can be exhausted substantially free from iron.
    Type: Grant
    Filed: October 21, 1977
    Date of Patent: April 17, 1979
    Assignee: Engelhard Minerals & Chemicals Corporation
    Inventor: Frank Pitts
  • Patent number: 4145397
    Abstract: From roasted products of used catalysts from hydrotreatment desulfurization of petroleum, valuable molybdenum, vanadium, cobalt and nickel are recovered easily and a high percent recovery by means of a combination of simple chemical procedures and also inexpensive chemicals. The recovered metal components can be reused for preparing new catalysts and the like.
    Type: Grant
    Filed: August 3, 1977
    Date of Patent: March 20, 1979
    Assignees: Marubeni Corporation, Fuji Fine Chemical Co. Ltd.
    Inventors: Shigeo Toida, Akira Ohno, Kozo Higuchi, deceased, by Makoto Higuchi, heir at law, by Yuko Higuchi, heir at law
  • Patent number: 4126663
    Abstract: A process for the recovery of vanadium from acid sulfate solutions such as those derived by sulfuric acid leaching of industrial residues such as spent hydrodesulfurization catalysts, fly ash and furnace bottom ash in which magnesium oxide, hydroxide or carbonate is used as the neutralizing agent.
    Type: Grant
    Filed: October 17, 1977
    Date of Patent: November 21, 1978
    Assignee: Engelhard Minerals & Chemicals Corporation
    Inventor: Frank Pitts
  • Patent number: 4120934
    Abstract: The invention is a method for working-up shale while recovering metals therefrom and the sulphur content thereof. The method comprises crushing the shale and leaching and roasting the shale. The sulphur content is oxidized and converted into sulphuric acid, concentrated sulphur dioxide or sulphur. The leaching operation is effected with sulphuric acid. The leached metals are recovered in a manner known per se and the residual solution is passed to the roasting stage.
    Type: Grant
    Filed: June 25, 1976
    Date of Patent: October 17, 1978
    Assignee: Boliden Aktiebolag
    Inventor: Thomas K. Mioen
  • Patent number: 4061712
    Abstract: Vanadium values such as those in the form of vanadium pentoxide may be recovered from vanadium-containing materials by leaching the vanadium-containing material with caustic and thereafter precipitating insoluble salts of vanadium with an ammonium-containing compound followed by separation and recovery. After suitable stripping of the ammonia from the lean leach solution, said solution may be recycled to the leach step. The recovery of the vanadium values is enhanced by effecting the precipitation step in the presence of carbon dioxide which maintains the pH of the solution in the optimum range.
    Type: Grant
    Filed: October 26, 1976
    Date of Patent: December 6, 1977
    Assignee: UOP Inc.
    Inventors: Kenneth A. Morgan, Marilyn Miller
  • Patent number: 4061711
    Abstract: Vanadium values may be recovered by leaching a vanadium bearing material in which the vanadium is present as an oxide in its highest valence state in an ammoniacal medium at elevated temperatures and pressures followed by separation of the soluble ammonium metavanadate, precipitation and further separation to recover the desired vanadium values.
    Type: Grant
    Filed: October 26, 1976
    Date of Patent: December 6, 1977
    Assignee: UOP Inc.
    Inventors: Kenneth A. Morgan, Robert R. Frame
  • Patent number: 4039582
    Abstract: The invention relates to methods of preparing vanadium pentoxide from a vanadium-containing solution, and more particularly, from a sodium vanadate solution. The method consists in that the solution is treated at a pH of 4 to 6 with ammonium chloride or sulphate to prepare an ammonium-vandate salt precipitate which is then dissolved in hot water, and recrystallized by a mineral acid. The new precipitate of the ammonium-vanadate salt is calcined to prepare vanadium pentoxide. The advantage of the proposed method is a highly increased degree of precipitation of the ammonium-vanadate salt from the solution of sodium vanadate and a corresponding decrease of vanadium loss with wastes to at least four times.
    Type: Grant
    Filed: August 23, 1976
    Date of Patent: August 2, 1977
    Inventors: Gakif Zakirovich Nasyrov, Izabella Vladislayovna Ravdonikas
  • Patent number: 3963585
    Abstract: In the purification of impure titanium tetrachloride comprising adding an agent to said titanium tetrachloride and thereafter distilling off purified titanium tetrachloride while leaving the impurity in the distillation residue, the improvement which comprises employing as said agent at least one amine of the formula ##EQU1## in which R.sub.1 and R.sub.2 each independently is hydrogen, alkyl or alkenyl of up to 6 carbon atoms, cycloalkyl of 5 to 7 carbon atoms, or aryl, andR.sub.3 is cycloalkyl of 5 to 7 ring carbon atoms, or aryl, orR.sub.2 together with R.sub.3 is butylene, pentylene or hexylene, in which eventR.sub.1 is hydrogen, alkyl of up to 6 carbon atoms or aryl.The preferred agents are aniline, cyclohexylamine, N,N-dimethyl-aniline, diphenylamine, 2,3-dimethyl-aniline and 2,6-dimethyl-aniline. The process serves to remove vanadium impurities.
    Type: Grant
    Filed: May 1, 1974
    Date of Patent: June 15, 1976
    Assignee: Bayer Aktiengesellschaft
    Inventors: Gerhard Winter, Walter Deissmann, Walter Gutsche, Peter Woditsch