Group Vb Metal (v, Nb, Or Ta) Patents (Class 423/62)
-
Patent number: 12173382Abstract: A combustion ash handling method of handling combustion ash discharged from a combustion furnace that combusts a petroleum-based fuel includes: separating the combustion ash into a heavy component and a light component by a dry-type separation technique; feeding the light component to the combustion furnace as a fuel; and recovering the heavy component. A metal such as vanadium is separated and extracted from the heavy component of the combustion ash.Type: GrantFiled: April 24, 2020Date of Patent: December 24, 2024Assignee: KAWASAKI JUKOGYO KABUSHIKI KAISHAInventors: Hiroyuki Mori, Seiji Tabata, Suguru Yabara, Tomohiro Osawa
-
Patent number: 10435637Abstract: The present invention relates generally to processes for hydromethanating a carbonaceous feedstock in a hydromethanation reactor to a methane-enriched raw product stream, and more specifically to processing of solid char by-product removed from the hydromethanation reactor to improve the carbon utilization and thermal efficiency and economics of the overall process by co-producing electric power and steam from the by-product char in addition to the end-product pipeline quality substitute natural gas.Type: GrantFiled: December 18, 2018Date of Patent: October 8, 2019Assignee: GreatPoint Energy, Inc.Inventors: Avinash Sirdeshpande, Earl T. Robinson, Pattabhi K. Raman, Kenneth Keckler
-
Patent number: 10344231Abstract: The present invention relates generally to processes for hydromethanating a carbonaceous feedstock in a hydromethanation reactor to a methane-enriched raw product stream, and more specifically to processing of solid char by-product removed from the hydromethanation reactor to improve the carbon utilization and thermal efficiency of the overall process and thereby lower the net costs of the end-product pipeline quality substitute natural gas.Type: GrantFiled: October 26, 2018Date of Patent: July 9, 2019Assignee: GreatPoint Energy, Inc.Inventors: Earl T. Robinson, Avinash Sirdeshpande, Pattabhi K. Raman, Kenneth Keckler
-
Patent number: 10125024Abstract: The present invention provides a system and method for purifying and preparing vanadium pentoxide powder. Industrial grade vanadium pentoxide is converted to vanadium oxytrichloride by low temperature fluidizing chlorination, wherein chlorinating gas is preheated via heat exchange between fluidizing gas and chlorination flue gas, and an appropriate amount of air is added to enable a part of carbon powder to combust so as to achieve a balanced heat supply during the chlorination, thereby increasing the efficiency of chlorination and ensuring good selectivity in low temperature chlorination. The vanadium oxytrichloride is purified by rectification, and then subjected to fluidized gas phase ammonification, thereby obtaining ammonium metavanadate, and further obtaining a high-purity vanadium pentoxide powder product through fluidized calcination.Type: GrantFiled: January 28, 2016Date of Patent: November 13, 2018Assignees: INSTITUTE OF PROCEES ENGINEERING CHINESE ACADEMY OF SCIENCES, BEIJING ZHONGKAIHONGDE TECHNOLOGY CO., LTD.Inventors: Qingshan Zhu, Haitao Yang, Chuanlin Fan, Wenheng Mu, Jibin Liu, Cunhu Wang, Qixun Ban
-
Patent number: 10112846Abstract: The present invention provides a system and method for producing high-purity vanadium tetraoxide powder. Industrial grade vanadium pentoxide is converted to vanadium oxytrichloride by low temperature fluidizing chlorination, wherein chlorinating gas is preheated via heat exchange between fluidizing gas and chlorination flue gas, and an appropriate amount of air is added to enable a part of carbon powder to combust so as to achieve a balanced heat supply during the chlorination, thereby increasing the efficiency of chlorination and ensuring good selectivity in low temperature chlorination. The vanadium oxytrichloride is purified by rectification, and then subjected to fluidized gas phase hydrolyzation, thereby producing a high-purity vanadium pentoxide product and a by-product solution of hydrochloric acid, and further obtaining a high-purity vanadium tetraoxide powder product through fluidized hydrogen reduction.Type: GrantFiled: January 28, 2016Date of Patent: October 30, 2018Assignees: INSTITUTE OF PROCESS ENGINEERING, CHINESE ACADEMY OF SCIENCES, BEIJING ZHONGKAIHONGDE TECHNOLOGY CO., LTDInventors: Qingshan Zhu, Chuanlin Fan, Wenheng Mu, Jibin Liu, Cunhu Wang, Qixun Ban
-
Patent number: 10099939Abstract: The present invention provides a system and method for producing high-purity vanadium pentoxide powder. Industrial grade vanadium pentoxide is converted to vanadium oxytrichloride by low temperature fluidizing chlorination, wherein chlorinating gas is preheated via heat exchange between fluidizing gas and chlorination flue gas, and an appropriate amount of air is added to enable a part of carbon powder to combust so as to achieve a balanced heat supply during the chlorination, thereby increasing the efficiency of chlorination and ensuring good selectivity in low temperature chlorination. The vanadium oxytrichloride is purified by rectification, and then subjected to fluidized gas phase hydrolyzation and fluidized calcination, thereby producing a high-purity vanadium pentoxide product and a by-product of hydrochloric acid solution.Type: GrantFiled: January 28, 2016Date of Patent: October 16, 2018Assignees: INSTITUTE OF PROCESS ENGINEERING, CHINESE ACADEMY OF SCIENCES, BEIJING ZHONGKAIHONG DE TECHNOLOGY CO., LTDInventors: Chuanlin Fan, Qingshan Zhu, Wenheng Mu, Jibin Liu, Cunhu Wang, Qixun Ban
-
Patent number: 10053371Abstract: The present invention provides a system and method for preparing high-purity vanadium pentoxide powder. Industrial grade vanadium pentoxide is converted to vanadium oxytrichloride by low temperature fluidizing chlorination, wherein chlorinating gas is preheated via heat exchange between fluidizing gas and chlorination flue gas, and an appropriate amount of air is added to enable a part of carbon powder to combust so as to achieve a balanced heat supply during the chlorination, thereby increasing the efficiency of chlorination and ensuring good selectivity in low temperature chlorination. The vanadium oxytrichloride is subjected to purification by rectification, ammonium salt precipitation and fluidized calcination, thereby obtaining high-purity vanadium pentoxide, wherein the ammonia gas produced during calcination is condensed and then recycled for ammonium salt precipitation.Type: GrantFiled: January 28, 2016Date of Patent: August 21, 2018Assignees: INSTITUTE OF PROCESS ENGINEERING, CHINESE ACADEMY OF SCIENCES, BEIJING ZHONGKAIHONGDE TECHNOLOGY CO., LTDInventors: Chuanlin Fan, Qingshan Zhu, Wenheng Mu, Jibin Liu, Cunhu Wang, Qixun Ban
-
Patent number: 9688534Abstract: Methods for producing nanostructures, particularly Group III-V semiconductor nanostructures, are provided. The methods include use of novel Group III and/or Group V precursors, novel surfactants, oxide acceptors, high temperature, and/or stable co-products. Related compositions are also described. Methods and compositions for producing Group III inorganic compounds that can be used as precursors for nanostructure synthesis are provided. Methods for increasing the yield of nanostructures from a synthesis reaction by removal of a vaporous by-product are also described.Type: GrantFiled: January 6, 2016Date of Patent: June 27, 2017Assignee: NANOSYS, INC.Inventors: Erik C. Scher, Mihai A. Buretea, William P. Freeman, Joel Gamoras, Baixin Qian, Jeffrey A. Whiteford
-
Patent number: 9416431Abstract: A process for treating a feedstock is provided. The feedstock comprises a mineral and/or a metal oxide/silicate derived from or associated with a mineral. The process comprises treating the feedstock by reacting, in a reaction step, the mineral and/or the metal oxide/silicate derived from or associated with a mineral, with an ammonium acid fluoride having the generic formula NH4F.xHF, wherein 1<x?5. An ammonium fluorometallate compound is produced as a reaction product.Type: GrantFiled: September 9, 2010Date of Patent: August 16, 2016Assignee: The South African Nuclear Energy Corporation LimitedInventors: Willem Liebenberg Retief, Nelius Dempers Retief, Johannes Theodorus Nel, Wilhelmina Du Plessis, Philippus Lodewyk Crouse, Johannes Petrus Le Roux
-
Patent number: 9206056Abstract: A process for treating a feedstock comprising tantalum- and/or niobium-containing compounds is provided. The process includes contacting the feedstock with a gaseous fluorinating agent, thereby to fluorinate tantalum and/or niobium present in the feedstock compounds. The resultant fluorinated tantalum and/or niobium compounds are recovered.Type: GrantFiled: April 1, 2011Date of Patent: December 8, 2015Assignee: The South African Nuclear Energy Corporation LimitedInventors: Pieter Andries Blatt Carstens, Jacobus Beyers Wagener, Andrew Dirk Pienaar
-
Publication number: 20150139873Abstract: The invention relates to a method for the extraction of vanadium from various sources in the form of vanadiumpentoxide, V2O5, from a source containing vanadium. The method includes the steps of: providing a source of V2O5, heating the source to a temperature of at least 1000° C., evaporating V2O5 from the heated source and recovering the evaporated V2O5.Type: ApplicationFiled: July 3, 2013Publication date: May 21, 2015Inventors: Seshadri Seetharaman, Sridhar Seetharaman, Lidong Teng, Piotr Scheller
-
Patent number: 8920924Abstract: Disclosed are a method of producing fine particulate alkali metal niobate in a liquid phase system, wherein the size and shape of particles of the fine particulate alkali metal niobate can be controlled; and fine particulate alkali metal niobate having a controlled shape and size. Specifically disclosed are a method of producing particulate sodium-potassium niobate represented by the formula (1): NaxK(1-x)NbO3 (1), the method including four specific steps, wherein a high-concentration alkaline solution containing Na+ ion and K+ ion is used as an alkaline solution; and particulate sodium-potassium niobate having a controlled shape and size.Type: GrantFiled: April 5, 2010Date of Patent: December 30, 2014Assignees: Sakai Chemical Industry Co., Ltd., TOHOKU University, Fuji Ceramics CorporationInventors: Atsushi Muramatsu, Kiyoshi Kanie, Atsuki Terabe, Yasuhiro Okamoto, Hideto Mizutani, Satoru Sueda, Hirofumi Takahashi
-
Patent number: 8906340Abstract: The present disclosure relates to reacting tin metal with crude TiCl4 containing arsenic to produce pure TiCl4, SnCl4, and an arsenic solid co-product. In some embodiments, the contaminant vanadium is removed as well. The reaction is preferably done in a continuous fashion in two stages for maximum through-put and utility at an elevated temperature. Distillation can be used to purify the TiCl4 produced and simultaneously yield a purified SnCl4 product. The synthesis of SnCl4 in this method utilizes waste chloride to save virgin chlorine which would otherwise be used.Type: GrantFiled: February 22, 2012Date of Patent: December 9, 2014Assignee: E I du Pont de Nemours and CompanyInventor: Lisa Edith Helberg
-
Patent number: 8871163Abstract: Process for purifying vanadium oxide that includes cationic exchange resin and solvent extraction.Type: GrantFiled: March 15, 2013Date of Patent: October 28, 2014Assignee: American Vanadium Corp.Inventor: Michael Adam Drozd
-
Publication number: 20130315804Abstract: The present invention is directed to a process of treating fly ash and/or fly ash leachate to immobilize heavy metals contained in such fly ash and/or fly ash leachate, which process comprises treating such fly ash and/or fly ash leachate with a soluble ferrous compound under alkaline conditions. This process may be conducted in the absence of any pH modification, mixing (in the sense of a physical blending with a solid material), drying or heating steps, making it practical for treatment of alkaline fly ash (and other coal combustion by-products) which is currently stored in landfills or wet ash lagoons, particularly fly ash which has been recovered from flue gas streams treated with highly alkaline materials such as trona, bicarbonate or limestone and the like.Type: ApplicationFiled: May 10, 2013Publication date: November 28, 2013Applicant: FMC Wyoming CorporationInventors: Aileen Halverson, Aaron Reichl
-
Publication number: 20130216455Abstract: A process for treating a feedstock comprising tantalum- and/or niobium-containing compounds is provided. The process includes contacting the feedstock with a gaseous fluorinating agent, thereby to fluorinate tantalum and/or niobium present in the feedstock compounds. The resultant fluorinated tantalum and/or niobium compounds are recovered.Type: ApplicationFiled: April 1, 2011Publication date: August 22, 2013Inventors: Jacobus Beyers Wagener, Andrew Dirk Pienaar, Pieter Andries Blatt Carstens
-
Patent number: 8415000Abstract: Stabilized precursor solutions can be used to form radiation inorganic coating materials. The precursor solutions generally comprise metal suboxide cations, peroxide-based ligands and polyatomic anions. Design of the precursor solutions can be performed to achieve a high level of stability of the precursor solutions. The resulting coating materials can be designed for patterning with a selected radiation, such as ultraviolet light, x-ray radiation or electron beam radiation. The radiation patterned coating material can have a high contrast with respect to material properties, such that development of a latent image can be successful to form lines with very low line-width roughness and adjacent structures with a very small pitch.Type: GrantFiled: October 28, 2011Date of Patent: April 9, 2013Assignee: Inpria CorporationInventors: Jason K. Stowers, Alan J. Telecky, Douglas A. Keszler, Andrew Grenville
-
Patent number: 8404199Abstract: The present disclosure generally relates to Vanadium Boride nanoparticle synthesis. In some examples, a method is described that includes fluorine based Vanadium Boride nanoparticle synthesis. In some examples, the method includes providing Vanadium Boride battery waste products, treating the battery waste products to treat precursors for fluorination, heating the precursors for fluorination to form VF3 and BH3 and heating the VF3 and BH3 to form VB2 nanorods in a liquid mixture, wherein the method is performed at less than approximately 700° C.Type: GrantFiled: August 6, 2010Date of Patent: March 26, 2013Assignee: Empire Technology Development LLCInventor: Ezekiel Kruglick
-
Patent number: 8398929Abstract: The disclosure provides a device and method used to produce a tubular structure made of a refractory metal compound. In particular, the disclosure provides a device and method used to produce a tubular structure made of a refractory metal compound by reacting a green tubular structure made of a refractory metal with at least one reactive gas.Type: GrantFiled: June 28, 2011Date of Patent: March 19, 2013Assignee: Nitride Solutions, Inc.Inventor: Jason Schmitt
-
Publication number: 20130064742Abstract: A process is disclosed for separation and recovery of vanadium, molybdenum, iron, tungsten, cobalt and nickel from alumina-based materials, mattes, ores, manufacturing by-products and waste. These elements are oxidized. The oxides are reacted with gaseous HCl to form volatile chloride-bearing compounds that subsequently sublimate. The volatile compounds are condensed in a downward-stepped thermal gradient that allows collection of moderate to high purity compounds of individual elements with exception of a nickel-cobalt co-condensate. Nickel is separated from cobalt by precipitation of nickel chloride from concentrated HCl pressurized with gaseous HCl.Type: ApplicationFiled: September 17, 2012Publication date: March 14, 2013Applicant: METALS RECOVERY TECHNOLOGY INC.Inventor: JOSEPH L. THOMAS
-
Patent number: 8383070Abstract: A method of recovering rhenium (Re) and other metals from Re-bearing materials in the form of ammonium perrhenate having at least the step of adding Re-bearing materials into a leaching slurry. Additionally, the method has the step of adjusting the pH of the slurry to obtain Re in soluble form in a metal salt solution and insoluble residues; filtering the metal salt solution to remove the insoluble residues; selectively precipitating Re from the metal salt solution; filtering the Re precipitate from the metal salt solution to obtain a Re filtercake; and formulating and drying the Re filtercake to obtain a Re sulfide product. The method further has the step of combining the Re sulfide product with a Molybdenum (Mo) concentrate containing Re to obtain a Mo/Re concentrate; roasting the Mo/Re concentrate to obtain Mo oxide product and a flue gas containing Re; and treating the flue gas containing Re to obtain ammonium perrhenate.Type: GrantFiled: March 8, 2011Date of Patent: February 26, 2013Assignees: World Resources Company, WRC World Resources Company GmbHInventors: Eberhard Luederitz, Ulrich R. Schlegel, Peter T. Halpin, Dale L. Schneck
-
Publication number: 20120328496Abstract: A process for treating a feedstock is provided. The feedstock comprises a mineral and/or a metal oxide/silicate derived from or associated with a mineral. The process comprises treating the feedstock by reacting, in a reaction step, the mineral and/or the metal oxide/silicate derived from or associated with a mineral, with an ammonium acid fluoride having the generic formula NH4F.xHF, wherein 1<x?5. An ammonium fluorometallate compound is produced as a reaction product.Type: ApplicationFiled: September 9, 2010Publication date: December 27, 2012Inventors: Willem Liebenberg Retief, Nelius Dempers Retief, Johannes Theodorus Nel, Wilhelmina Du Plessis, Philippus Lodewyk Crouse, Johannes Petrus Le Roux
-
Patent number: 8333941Abstract: Mesoporous conductive niobium and niobium-ruthenium particles and methods for forming the same are described. In some cases the particles are suitable for use as a fuel cell catalyst. The described aerosol-based synthesis method allows for single step formation and processing of the particles.Type: GrantFiled: October 19, 2009Date of Patent: December 18, 2012Assignee: STC.UNMInventors: Plamen Atanassov, Elise Switzer, Datye Abhaya, Timothy Olson, Daniel Konopka, Svitlana Pylypenko, Timothy L Ward
-
Patent number: 8277766Abstract: This invention relates to a process that utilizes high-temperature oxidation with controlled stoichiometry in the concentration of vanadium from carbonaceous feedstock materials containing vanadium, such as residues, ashes and soots resulting from the combustion or gasification of petroleum vacuum residuum, petroleum coke, kerogen from oil shale, and bituminous sand, e.g., tar sand or oil sand, or extra heavy oil or other carbonaceous feedstocks that contain vanadium. A preferred embodiment uses a counter-rotating vortex reactor and a cyclonic, entrained-flow reactor to rapidly heat and oxidize feedstock at temperatures in the range of about 2100° F. to 2900° F., resulting in a vapor stream with entrained, solid materials comprising the concentrated vanadium species.Type: GrantFiled: December 27, 2010Date of Patent: October 2, 2012Inventors: James G. Hnat, Mark A. Schaffer
-
Patent number: 8268267Abstract: A process is disclosed for separation and recovery of vanadium, molybdenum, iron, tungsten, cobalt and nickel from alumina-based materials, mattes, ores, manufacturing by-products and waste. These elements are oxidized. The oxides are reacted with gaseous HCl to form volatile chloride-bearing compounds that subsequently sublimate. The volatile compounds are condensed in a downward-stepped thermal gradient that allows collection of moderate to high purity compounds of individual elements with exception of a nickel-cobalt co-condensate. Nickel is separated from cobalt by precipitation of nickel chloride from concentrated HCl pressurized with gaseous HCl.Type: GrantFiled: October 19, 2009Date of Patent: September 18, 2012Assignee: Metals Recovery Technology Inc.Inventor: Joseph L. Thomas
-
Publication number: 20120213680Abstract: The present invention relates to processes for hydromethanating a nickel-containing (and optionally vanadium-containing) carbonaceous feedstock while recovering at least a portion of the nickel content (and optionally vanadium content) originally present in the carbonaceous feedstock.Type: ApplicationFiled: February 22, 2012Publication date: August 23, 2012Applicant: GREATPOINT ENERGY, INC.Inventors: Alkis S. Rappas, Robert A. Spitz
-
Publication number: 20120164040Abstract: This invention relates to a process that utilizes high-temperature oxidation with controlled stoichiometry in the concentration of vanadium from carbonaceous feedstock materials containing vanadium, such as residues, ashes and soots resulting from the combustion or gasification of petroleum vacuum residuum, petroleum coke, kerogen from oil shale, and bituminous sand, e.g., tar sand or oil sand, or extra heavy oil or other carbonaceous feedstocks that contain vanadium. A preferred embodiment uses a counter-rotating vortex reactor and a cyclonic, entrained-flow reactor to rapidly heat and oxidize feedstock at temperatures in the range of about 2100° F. to 2900° F., resulting in a vapor stream with entrained, solid materials comprising the concentrated vanadium species.Type: ApplicationFiled: December 27, 2010Publication date: June 28, 2012Inventors: JAMES G. HNAT, Mark A. Schaffer
-
Patent number: 8137646Abstract: A mixture of zirconium hydroxides or zirconium basic carbonate with vanadium oxide (V205) co-reacts in high temperature aqueous slurry to form respectively an amorphous material, believed to be based on a zirconium analog of a zeolite structure, and a solid solution of zirconium oxide with vanadium oxide. The subject compositions, free of hexavalent chromium, are highly effective in providing blister-free corrosion prevention in typical coil and aerospace grade epoxy primer and color coat combinations.Type: GrantFiled: March 25, 2008Date of Patent: March 20, 2012Assignee: The Shepherd Color CompanyInventor: Simon Boocock
-
Patent number: 8137654Abstract: Provided is a roasting method capable of reducing both C and S components in minerals down to 0.5% or less, respectively, and securing a yield ratio of 90% or more for the Mo component. In a rotary kiln 7, a V, Mo and Ni containing material containing C and S components is subjected to oxidizing roasting to remove the C and S components from the material before reducing the material by means of a reducing agent in order to recover valuable metals composed of V, Mo and Ni. The rotary kiln is equipped with a burner 11 disposed on a material charge side 8a of the roasting furnace 8 to which the material is charged. In the roasting furnace, a direction along which the material moves and a flow of oxygen-containing gas introduced into the roasting furnace 8 are set to be parallel with each other.Type: GrantFiled: February 21, 2006Date of Patent: March 20, 2012Assignees: JFE Material Co., Ltd., Sumitomo Heavy Industries, Ltd.Inventors: Kenji Takahashi, Hiroichi Sugimori, Nobuo Ehara
-
Publication number: 20120034141Abstract: The present disclosure generally relates to Vanadium Boride nanoparticle synthesis. In some examples, a method is described that includes fluorine based Vanadium Boride nanoparticle synthesis. In some examples, the method includes providing Vanadium Boride battery waste products, treating the battery waste products to treat precursors for fluoridation, heating the precursors for fluoridation to form VF3 and BH3 and heating the VF3 and BH3 to form VB2 nanorods in a liquid mixture, wherein the method is performed at less than approximately 700° C.Type: ApplicationFiled: August 6, 2010Publication date: February 9, 2012Applicant: Empire Technology Development LLCInventor: Ezekiel Kruglick
-
Patent number: 8088709Abstract: Disclosed are a method for preparing a catalyst, which has excellent nitrogen oxide-removal performance and resistance over a wide temperature range, and the use of the catalyst. According to the disclosed method, the oxidation number and surface defects of the catalyst are changed by applying artificial high energy through mechanical ball milling during the preparation process of the catalyst, instead of applying the addition of a precious metal, the deformation of a support and the use of a co-catalyst in order to increase NOx removal activity, such that activation energy for inducing redox reactions can be decreased.Type: GrantFiled: March 20, 2007Date of Patent: January 3, 2012Assignee: Korea Power Engineering Company, Inc.Inventors: Sung Ho Hong, Jun Yub Lee, Seok Joo Hong, Sung Pill Cho, Chang Hoon Shin, Sung Chang Hong, Sang Hyun Choi, Suk Jae Kang, Pill Won Seo
-
Publication number: 20110274597Abstract: The application of aqueous solution of magnesium bicarbonate and/or calcium bicarbonate in the process of extraction separation and purification of metals is disclosed, wherein the aqueous solution of magnesium bicarbonate and/or calcium bicarbonate is used as an acidity balancing agent, in order to adjust the balancing pH value of the extraction separation process which uses an acidic organic extractant, improve the extraction capacity of organic phase, and increase the concentration of metal ions in the loaded organic phase.Type: ApplicationFiled: January 14, 2010Publication date: November 10, 2011Inventors: Xiaowei Huang, Zhiqi Long, Xinlin Peng, Hongwei Li, Guilin Yang, Dali Cui, Chunmei Wang, Na Zhao, Liangshi Wang, Ying Yu
-
Patent number: 7988945Abstract: An object of the present invention is to provide a niobium monoxide able to realize large capacitance in a miniature sized capacitor. The invention relates to a niobium monoxide having a porous structure comprising particles, characterized in that the niobium monoxide has a full-width at half maximum of an X-ray diffraction peak corresponding to a (111) plane or an X-ray diffraction peak corresponding to a (200) plane of 0.21° to 1.0°. The niobium monoxide has a large specific surface area and porosity, and is especially suitable for use in a capacitor.Type: GrantFiled: June 26, 2007Date of Patent: August 2, 2011Assignee: Mitsui Mining & Smelting Co., Ltd.Inventors: Yoshihiro Yoneda, Shuji Ogura, Isamu Yashima
-
Patent number: 7985389Abstract: A method for producing pig iron by direct processing of ferrotitania sands, by the steps of: (a) mixing carbonaceous reductant, a fluxing agent, and a binder with titanium-containing materials selected from iron sands, metallic oxides, and/or iron ore concentrates, to form a mixture; (b) forming agglomerates from the mixture (c) introducing the agglomerates to a melting furnace; (d) melting the agglomerates at a temperature of from 1500 to 1760 C and forming hot metal with a slag thereon; (e) removing the slag; (f) tapping the hot metal; and (g) recovering the titanium and vanadium values.Type: GrantFiled: August 12, 2008Date of Patent: July 26, 2011Assignee: Cardero Resource CorporationInventor: Glenn E. Hoffman
-
Patent number: 7858816Abstract: Tantalum compounds of Formula I hereof are disclosed, having utility as precursors for forming tantalum-containing films such as barrier layers. The tantalum compounds of Formula I may be deposited by CVD or ALD for forming semiconductor device structures including a dielectric layer, a barrier layer on the dielectric layer, and a copper metallization on the barrier layer, wherein the barrier layer includes a Ta-containing layer and sufficient carbon so that the Ta-containing layer is amorphous. According to one embodiment, the semiconductor device structure is fabricated by depositing the Ta-containing barrier layer, via CVD or ALD, from a precursor including the tantalum compound of Formula I hereof at a temperature below about 400° C. in a reducing or inert atmosphere, e.g., a gas or plasma optionally containing a reducing agent.Type: GrantFiled: May 30, 2010Date of Patent: December 28, 2010Assignee: Advanced Technology Materials, Inc.Inventors: Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum
-
Publication number: 20100226838Abstract: The present invention relates to a process for the removal of metal catalyst degradation products from a bleed stream of a catalytic chemical reaction process, wherein the catalyst is based on a metal selected from those in group VIII of the periodic table, chromium, copper, molybdenum, tungsten, rhenium, vanadium, titanium and zirconium, said process comprising treatment of the bleed stream with an alkali metal carbonate or ammonium carbonate source to form a solid complex or an aqueous solution of said solid complex, and removal of the solid complex or the aqueous solution of said solid complex from the bleed stream.Type: ApplicationFiled: May 28, 2008Publication date: September 9, 2010Inventors: Anand Kumar Bachasingh, Arie Van Zon
-
Patent number: 7750173Abstract: Tantalum compounds of Formula I hereof are disclosed, having utility as precursors for forming tantalum-containing films such as barrier layers. The tantalum compounds of Formula I may be deposited by CVD or ALD for forming semiconductor device structures including a dielectric layer, a barrier layer on the dielectric layer, and a copper metallization on the barrier layer, wherein the barrier layer includes a Ta-containing layer and sufficient carbon so that the Ta-containing layer is amorphous. According to one embodiment, the semiconductor device structure is fabricated by depositing the Ta-containing barrier layer, via CVD or ALD, from a precursor including the tantalum compound of Formula I hereof at a temperature below about 400° C. in a reducing or inert atmosphere, e.g., a gas or plasma optionally containing a reducing agent.Type: GrantFiled: January 12, 2008Date of Patent: July 6, 2010Assignee: Advanced Technology Materials, Inc.Inventors: Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum
-
Publication number: 20100098606Abstract: A process is disclosed for separation and recovery of vanadium, molybdenum, iron, tungsten, cobalt and nickel from alumina-based materials, mattes, ores, manufacturing by-products and waste. These elements are oxidized. The oxides are reacted with gaseous HCl to form volatile chloride-bearing compounds that subsequently sublimate. The volatile compounds are condensed in a downward-stepped thermal gradient that allows collection of moderate to high purity compounds of individual elements with exception of a nickel-cobalt co-condensate. Nickel is separated from cobalt by precipitation of nickel chloride from concentrated HCl pressurized with gaseous HCl.Type: ApplicationFiled: October 19, 2009Publication date: April 22, 2010Inventor: JOSEPH L. THOMAS
-
Patent number: 7655214Abstract: Valve metal suboxides having a primary suboxide phase and optionally a secondary suboxide phase, a valve metal phase, and/or at least one tertiary suboxide phase can be present in varying amounts. Also disclosed is anodes and capacitors containing the valve metal suboxides of the present invention. Also, a method to prepare a valve metal suboxide is further described which includes granulating one or more of the starting materials individually or together and/or granulating the final product.Type: GrantFiled: February 25, 2004Date of Patent: February 2, 2010Assignee: Cabot CorporationInventors: David M. Reed, Sridhar Venigalla, Jeffrey A. Kerchner
-
Patent number: 7651674Abstract: A metal sulfide nanocrystal manufactured by a method of reacting a metal precursor and an alkyl thiol in a solvent, wherein the alkyl thiol reacts with the metal precursor to form the metal sulfide nanocrystals, wherein the alkyl thiol is present on the surface of the metal sulfide nanocrystal, wherein the alkyl thiol is bonded to the sulfur crystal lattice. A metal sulfide nanocrystal manufactured with a core-shell structure by a method of reacting a metal precursor and an alkyl thiol in a solvent to form a metal sulfide layer on the surface of a core, wherein the alkyl thiol is present on the surface of the metal sulfide nanocrystal, wherein the alkyl thiol is bonded to the sulfur crystal lattice. These metal sulfide nanocrystals can have a uniform particle size at the nanometer-scale level, selective and desired crystal structures, and various shapes.Type: GrantFiled: July 17, 2008Date of Patent: January 26, 2010Assignee: Samsung Electronics Co., Ltd.Inventors: Shin Ae Jun, Eun Joo Jang, Seong Jae Choi
-
Patent number: 7648689Abstract: The invention is to provide a process for industrially advantageously producing InP fine particles having a nano-meter size efficiently in a short period of time and an InP fine particle dispersion, and there are provided a process for the production of InP fine particles by reacting an In raw material containing two or more In compounds with a P raw material containing at least one P compound in a solvent wherein the process uses, as said two or more In compounds, at least one first In compound having a group that reacts with a functional group of P compound having a P atom adjacent to an In atom to be eliminated with the functional group in the formation of an In-P bond and at least one second In compound having a lower electron density of In atom in the compound than said first In compound and Lewis base solvent as said solvent, and InP fine particles obtained by the process.Type: GrantFiled: March 10, 2006Date of Patent: January 19, 2010Assignee: Hoya CorporationInventor: Shuzo Tokumitsu
-
Patent number: 7625831Abstract: Anisotropically shaped ceramic particles are represented by the general formula {(K1?x?yNaxLiy)4(Nb1?zTaz)6O17+aMeOb} (where Me is at least one element selected from the group consisting of antimony, copper, manganese, vanadium, silicon, titanium, and tungsten; and b is a positive number determined by the valence of Me), where x, y, z, and a satisfy 0?x?0.5, 0?y?0.3, 0?z?0.3, and 0.001?a?0.1, respectively. The anisotropically shaped ceramic particles have a plate-like shape. The average particle size is 1 to 100 ?m, and the ratio D/t of the maximum diameter D of a main surface to the thickness t in a direction perpendicular to the main surface is 2 or more, preferably 5 or more. Thus, anisotropically shaped ceramic particles suitable as a reactive template for preparing a crystal-oriented alkali metal niobate-based ceramic can be produced at relatively low production costs without the need for a complicated production process.Type: GrantFiled: July 10, 2008Date of Patent: December 1, 2009Assignee: Murata Manufacturing Co., Ltd.Inventors: Masahiko Kimura, Kosuke Shiratsuyu
-
Patent number: 7604784Abstract: A process is disclosed for separation and recovery of vanadium, molybdenum, iron, tungsten, cobalt and nickel from alumina-based materials, mattes, ores, manufacturing by-products and waste. These elements are oxidized. The oxides are reacted with gaseous HCl to form volatile chloride-bearing compounds that subsequently sublimate. The volatile compounds are condensed in a downward-stepped thermal gradient that allows collection of moderate to high purity compounds of individual elements with exception of a nickel-cobalt co-condensate. Nickel is separated from cobalt by precipitation of nickel chloride from concentrated HCl pressurized with gaseous HCl.Type: GrantFiled: June 24, 2005Date of Patent: October 20, 2009Assignee: Metals Recovery Technology Inc.Inventor: Joseph L. Thomas
-
Patent number: 7585486Abstract: The present invention relates to high-purity niobium monoxide powder (NbO) produced by a process of combining a mixture of higher niobium oxides and niobium metal powder or granules; heating and reacting the compacted mixture under controlled atmosphere to achieve temperature greater than about 1945° C., at which temperature the NbO is liquid; solidifying the liquid NbO to form a body of material; and fragmenting the body to form NbO particles suitable for application as capacitor anodes. The NbO product is unusually pure in composition and crystallography, and can be used for capacitors and for other electronic applications. The method of production of the NbO is robust, does not require high-purity feedstock, and can reclaim value from waste streams associated with the processing of NbO electronic components. The method of production also can be used to make high-purity NbO2 and mixtures of niobium metal/niobium monoxide and niobium monoxide/niobium dioxide.Type: GrantFiled: May 24, 2007Date of Patent: September 8, 2009Assignee: Reading Alloys, Inc.Inventors: Charles A. Motchenbacher, James W. Robison, Brian J. Higgins, Thomas J. Fonville
-
Patent number: 7578457Abstract: Grinding media, including shaped media such as spheres or rods ranging in size from about 0.5 micron to 100 mm in diameter, are formed from a multi-carbide material consisting essentially of two or more carbide-forming elements and carbon, with or without carbide-forming elements in their free elemental state. The media have extremely high mass density, extreme hardness, and extreme mechanical toughness.Type: GrantFiled: January 14, 2005Date of Patent: August 25, 2009Assignee: Primet Precision Materials, Inc.Inventor: Robert Dobbs
-
Patent number: 7557028Abstract: Methods for producing nanostructures, particularly Group III-V semiconductor nanostructures, are provided. The methods include use of novel Group III and/or Group V precursors, novel surfactants, oxide acceptors, high temperature, and/or stable co-products. Related compositions are also described. Methods and compositions for producing Group III inorganic compounds that can be used as precursors for nanostructure synthesis are provided. Methods for increasing the yield of nanostructures from a synthesis reaction by removal of a vaporous by-product are also described.Type: GrantFiled: July 8, 2005Date of Patent: July 7, 2009Assignee: Nanosys, Inc.Inventors: Erik C. Scher, Mihai A. Buretea, William P. Freeman, Joel Gamoras, Baixin Qian, Jeffery A. Whiteford
-
Publication number: 20090047198Abstract: A process is disclosed for separation and recovery of vanadium, molybdenum, iron, tungsten, cobalt and nickel from alumina-based materials, mattes, ores, manufacturing by-products and waste. These elements are oxidized. The oxides are reacted with gaseous HCl to form volatile chloride-bearing compounds that subsequently sublimate. The volatile compounds are condensed in a downward-stepped thermal gradient that allows collection of moderate to high purity compounds of individual elements with exception of a nickel-cobalt co-condensate. Nickel is separated from cobalt by precipitation of nickel chloride from concentrated HCl pressurized with gaseous HCl.Type: ApplicationFiled: June 24, 2005Publication date: February 19, 2009Inventor: Joseph L. Thomas
-
Publication number: 20090035661Abstract: The present invention relates to a method for preparing a lithium vanadium phosphate material comprising forming a aqueous slurry (in which some of the components are at least partially dissolved) comprising a polymeric material, an acidic phosphate anion source, a lithium compound, V2O5 and a source of carbon; wet blending said slurry, spray drying said slurry to form a precursor composition; and heating said precursor composition to produce a lithium vanadium phosphate.Type: ApplicationFiled: August 1, 2007Publication date: February 5, 2009Inventors: Jeffrey Swoyer, M. Yazid Saidi, Titus Faulkner
-
Publication number: 20090032952Abstract: Tantalum compounds of Formula I hereof are disclosed, having utility as precursors for forming tantalum-containing films such as barrier layers. The tantalum compounds of Formula I may be deposited by CVD or ALD for forming semiconductor device structures including a dielectric layer, a barrier layer on the dielectric layer, and a copper metallization on the barrier layer, wherein the barrier layer includes a Ta-containing layer and sufficient carbon so that the Ta-containing layer is amorphous. According to one embodiment, the semiconductor device structure is fabricated by depositing the Ta-containing barrier layer, via CVD or ALD, from a precursor including the tantalum compound of Formula I hereof at a temperature below about 400° C. in a reducing or inert atmosphere, e.g., a gas or plasma optionally containing a reducing agent.Type: ApplicationFiled: January 12, 2008Publication date: February 5, 2009Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.Inventors: Tianniu Chen, Chongying Xu, Jeffrey F. Roeder, Thomas H. Baum
-
Patent number: 7455825Abstract: Disclosed herein is a method for manufacturing metal sulfide nanocrystals using a thiol compound as a sulfur precursor. The method comprises reacting the thiol compound and a metal precursor in a solvent to grow metal sulfide crystals to the nanometer-scale level. Further disclosed is a method for manufacturing metal sulfide nanocrystals with a core-shell structure by reacting a metal precursor and a thiol compound in a solvent to grow a metal sulfide layer on the surface of a core. The metal sulfide nanocrystals prepared by these methods can have a uniform particle size at the nanometer-scale level, selective and desired crystal structures, and various shapes.Type: GrantFiled: October 19, 2004Date of Patent: November 25, 2008Assignee: Samsung Electronics Co., Ltd.Inventors: Shin Ae Jun, Eun Joo Jang, Seong Jae Choi