Treating With Compound Containing Alkali Metal Or Alkaline Earth Metal Patents (Class 423/84)
  • Patent number: 8540951
    Abstract: A process for extracting metal values from ores or residues is disclosed. The process mentioned above is mainly suitable for aluminoferrous ores such as bauxite, titanoferrous ores such as ilmenite, or residues such as red mud waste. The process involves pulverizing the ore and/or residue and mixing with a carbonaceous material, followed by smelting the iron values and slag in the mixture to yield molten iron and oxides of aluminum and titanium. The process is simple, cost-effective, and provides effective extraction of high purity metal values.
    Type: Grant
    Filed: June 6, 2011
    Date of Patent: September 24, 2013
    Inventor: Keki Hormusji Gharda
  • Patent number: 8507405
    Abstract: The present invention is directed to compositions and processes for the production of stable, alkaline, high solids, low viscosity, low surface tension, low flammability, sub-micron titania sols that have minimal offensive odor and methods of their use. Compositions of the present invention include, for example, mixtures of strong and weak organic bases used as dispersants to stabilize the titania sols. The dispersant mixtures have been found to result in relatively high titania solids content, low surface tension, low viscosity suspensions that are low in flammability. Sols produced according to the present invention can be used, for example, in catalytic applications such as catalyst supports for diesel emission control, or in pollutant photocatalyst applications in which it is desirable to have the titania in sol form.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: August 13, 2013
    Assignee: Cristal USA, Inc.
    Inventor: David M. Chapman
  • Publication number: 20130101483
    Abstract: A process for extracting metal values from ores or residues is disclosed. The process mentioned above is mainly suitable for aluminoferrous ores such as bauxite, titanoferrous ores such as ilmenite, or residues such as red mud waste. The process involves pulverizing the ore and/or residue and mixing with a carbonaceous material, followed by smelting the iron values and slag in the mixture to yield molten iron and oxides of aluminum and titanium. The process is simple, cost-effective, and provides effective extraction of high purity metal values.
    Type: Application
    Filed: June 6, 2011
    Publication date: April 25, 2013
    Inventor: Keki Hormusji Gharda
  • Publication number: 20130022522
    Abstract: A process for recovering titanium as synthetic rutile from an ilmenite unsuited to the standard Becher process by treating the ilmenite in a reducing atmosphere in the presence of a carbonaceous reductant to yield reduced ilmenite in which iron oxides in the ilmenite have been reduced to metallic iron, and separating the metallic iron to obtain a synthetic rutile product. The ilmenite is treated at an elevated temperature lower than that for which the TiO2 content of the synthetic rutile product is highest but at which there is substantially no reoxidation of metallic iron. The carbonaceous reductant comprises coal selected for a gasification reactivity that increases the rate of reduction of iron oxides and titanium species that at least partly offsets the lowered TiO2 content of synthetic rutile product resulting from the lower elevated temperature, and achieves a TiO2 content of ?90% in the synthetic rutile product.
    Type: Application
    Filed: April 6, 2011
    Publication date: January 24, 2013
    Applicant: ILUKA RESOURCES LIMITED
    Inventors: Timothy John McDougall, Andre Kirwan Vaisey
  • Patent number: 8343455
    Abstract: The invention provides flaky titanic acid having polymerizable functional groups, a suspension of the same, titanic acid coating films excellent in tight adhesion, and resin bases with titanic acid coating films, namely, flaky titanic acid obtained by treating a layered titanate with an acid and then making an organic basic compound act on the obtained product to conduct interlaminar swelling or delamination, characterized in that at least part of the organic basic compound is one having a polymerizable functional group such as acryl or methacryl and, preferably, in that the layered titanate is one represented by the general formula: AxMy?zTi2-(y+z)O4 [wherein A and M are different from each other and are each a mono- to tri-valent metal; ? represents a Ti-defective site; x is a positive real number satisfying the relationship: 0<x<1; and y and z are 0 or positive real numbers satisfying the relationship: 0<y+z<1].
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: January 1, 2013
    Assignee: Otsuka Chemical Co., Ltd.
    Inventors: Minoru Yamamoto, Takuya Nomoto
  • Patent number: 8268268
    Abstract: A method for preparing titania or precursor thereof with a controllable structure from micropore to mesopore is provided. The method is characterized in that the alkali metal titanate as raw material is reacted for 0.5˜72 hours in the wet atmosphere with humidity of 2˜100% at temperature of 20˜250° C., then washed with water or acid, finally performed by air roasting or solvent thermal treatment. The method has advantages that the raw material is easy to be obtained, the conditions and preparation are controllable, the pore structure may be adjusted from micropore to mesopore, crystal mixing and doping are easy, reacting time is short, preparing cost is low, and the said method is suitable for large scale production and so on. The most probable aperture of titanium oxide or precursor thereof with a controllable structure from micropore to mesopore is in the range of 1˜20 nm, the pore volume thereof is in the range of 0.05˜0.4 cm3/g, and the specific surface area thereof is more than 30 m2/g.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: September 18, 2012
    Assignees: Nanjing University of Technology, Nanjing Taiwei Technology Co., Ltd.
    Inventors: Xiaohua Lu, Yaxin Zhou, Chang Liu, Xin Feng, Zhuhong Yang, Changsong Wang
  • Patent number: 8247343
    Abstract: The present invention is directed to compositions and processes for the production of stable, alkaline, high solids, low viscosity, low surface tension, low flammability, sub-micron titania sols that have minimal offensive odor and methods of their use. Compositions of the present invention include, for example, mixtures of strong and weak organic bases used as dispersants to stabilize the titania sols. The dispersant mixtures have been found to result in relatively high titania solids content, low surface tension, low viscosity suspensions that are low in flammability. Sols produced according to the present invention can be used, for example, in catalytic applications such as catalyst supports for diesel emission control, or in pollutant photocatalyst applications in which it is desirable to have the titania in sol form.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: August 21, 2012
    Inventor: David M. Chapman
  • Patent number: 8241595
    Abstract: A potassium titanate, method for manufacturing the potassium titanate, a friction material using the potassium titanate and a resin composition using the potassium titanate are disclosed. The potassium titanate is represented by K2TinO(2n+1) (n=4.0-11.0) and has the highest X-ray diffraction intensity peak (2?) in the range of 11.0°-13.5° with its half width being not less than 0.5°.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: August 14, 2012
    Assignee: Otsuka Chemical, Co., Ltd.
    Inventor: Nobuki Itoi
  • Patent number: 8221714
    Abstract: Nano-sized titanium nitride powder can be prepared by a simple process comprising subjecting mixed powder of titanium trichloride and lithium nitride to high-energy ball milling using a plurality of balls in an airtight reactor vessel under an inert gas atmosphere to form composite powder, and recovering the titanium nitride powder therefrom.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: July 17, 2012
    Assignee: Korea Institute of Science and Technology
    Inventors: Jae-Hyeok Shim, Ji-Woo Kim, Young-Whan Cho, Woo-Sang Jung, Dong-Ik Kim, Seung-Cheol Lee
  • Patent number: 8221713
    Abstract: A method for making a mono-dispersed metal titanate includes the steps of: (a) mixing titanate ester, metal salt, and rare earth metal salt in a molar ratio of 1:1:x in a reaction medium comprised of ethanol and water to form a solution, wherein x is in the range from 0 to 0.1; (b) heating the solution, under an alkaline condition to form a white sediment; (c) filtering out liquid part of the solution to obtain the white sediment, (d) washing the white sediment, and (e) drying the white sediment to obtain mono-dispersed metal titanate.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: July 17, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Ya-Dong Li, Zi-Yang Huo, Chen Chen
  • Patent number: 8168145
    Abstract: The present invention provides a porous titanium oxide having improved ultraviolet protection ability, usability, and transparency in the visible region and a process for producing thereof. The porous titanium oxide powder according to the present invention can be obtained by adding an alkali to a titanium salt solution containing a polyalcohol and then thermally hydrolyzing the solution. In addition, it is possible that after the addition of the alkali, an acid is further added to the solution and then the thermal hydrolysis is conducted, or that after thermal hydrolysis, further heat treatment with an acid is conducted. A porous titanium oxide has a mean particle size of 0.01 to 1.0 ?m and a specific surface area of 50 m2/g or more.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: May 1, 2012
    Assignee: Shiseido Company Ltd.
    Inventors: Masayoshi Wada, Shoichiro Shio
  • Publication number: 20110280778
    Abstract: The present invention relates to a method of precipitation of metal ions. Mineral(s), oxide(s), hydroxide(s) of magnesium and/or calcium are adopted as raw materials, and the raw material(s) is processed through at least one step of calcination, slaking, or carbonization to produce aqueous solution(s) of magnesium bicarbonate and/or calcium bicarbonate, and then the solution(s) is used as precipitant(s) to deposit rare earth, such as nickel, cobalt, iron, aluminum, gallium, indium, manganese, cadmium, zirconium, hafnium, strontium, barium, copper and zinc ions. And at least one of metal carbonates, hydroxides or basic carbonates is obtained, or furthermore the obtained products are calcined to produce metal oxides. The invention takes the cheap calcium and/or magnesium minerals or their oxides, hydroxides with low purity as raw materials to instead common precipitants such as ammonium bicarbonate and sodium carbonate etc.
    Type: Application
    Filed: February 9, 2010
    Publication date: November 17, 2011
    Inventors: Xiaowei Huang, Zhiqi Long, Hongwei Li, Dali Cui, Xinlin Peng, Guilin Yang, Yongke Hou, Chunmei Wang, Shunli Zhang
  • Patent number: 8048389
    Abstract: The present invention provides a cerium oxide-zirconium oxide-based mixed oxide having superior platinum dispersibility and a suitable OSC, and a simple production process thereof. The cerium oxide-zirconium oxide-based mixed oxide comprises cerium oxide and zirconium oxide, wherein (1) the weight ratio of CeO2:ZrO2 is 60:40 to 90:10, and (2) the cerium oxide and the zirconium oxide are present as a mixture, the zirconium oxide being composed of a solid solution in which tetragonal or cubic zirconium oxide contains cerium.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: November 1, 2011
    Assignee: Daiichi Kigenso Kagaku Kogyo Co., Ltd.
    Inventors: Hiroshi Okamoto, Masatoshi Maruki
  • Patent number: 8007562
    Abstract: The cost-effective hydrogenated, purified titanium powder is manufactured by the semi-continuous process including: (a) magnesium-thermic reduction of titanium chlorides at 830-880° C. in the hydrogen atmosphere characterized by the formation of a hollow porous block of the reaction mass having an open cavity in the center of the block, (b) full thermal-vacuum separation of the hollow block from excessive Mg and MgCl2 at 850-980° C. and residual pressure of 26-266 Pa using a multi-step cycle including: (i) purging hydrogen at 800-950° C. into the reactor at the pressure 10 kPa to 24.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: August 30, 2011
    Assignee: ADMA Products, Inc.
    Inventors: Sergey A. Kasparov, Andrey G. Klevtsov, Aleksandr I. Cheprasov, Vladimir S. Moxson, Volodymyr A. Duz
  • Patent number: 7964164
    Abstract: An improved process for recovering a titanium dioxide product from a titanium oxide-containing roasted mass of the type derived from roasting an ilmenite, anatase or perovskite ore by exploiting an organic acid, such as mixture of oxalic acid and ascorbic acid.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: June 21, 2011
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Graham Cooke, Animesh Jha, Abhishek Lahiri
  • Patent number: 7803336
    Abstract: A process for leaching a value metal from a titanium-bearing ore material comprising the step of leaching the ore material at atmospheric pressure with a lixiviant comprising a chloride and hydrochloric acid is disclosed. The leaching conditions are such that titanium is leached and remains in solution. The temperature is maintained at less that 85° C., and the concentration of hydrochloric acid is preferably less than 20% (mass ratio). The preferred chloride is magnesium chloride. The lixiviant may contain oxidant e.g. sodium chlorate or chlorine.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: September 28, 2010
    Assignee: Process Research Ortech, Inc.
    Inventors: Vaikuntum I. Lakshmanan, Ramamritham Sridhar, G. Bryn Harris, George Puvvada
  • Publication number: 20100226838
    Abstract: The present invention relates to a process for the removal of metal catalyst degradation products from a bleed stream of a catalytic chemical reaction process, wherein the catalyst is based on a metal selected from those in group VIII of the periodic table, chromium, copper, molybdenum, tungsten, rhenium, vanadium, titanium and zirconium, said process comprising treatment of the bleed stream with an alkali metal carbonate or ammonium carbonate source to form a solid complex or an aqueous solution of said solid complex, and removal of the solid complex or the aqueous solution of said solid complex from the bleed stream.
    Type: Application
    Filed: May 28, 2008
    Publication date: September 9, 2010
    Inventors: Anand Kumar Bachasingh, Arie Van Zon
  • Patent number: 7771679
    Abstract: The present invention seeks to improve beneficiation of a titanium oxide-containing composition (such as a low-grade or highly radioactive TiO2 ore) by combining a roasting and selective leaching steps.
    Type: Grant
    Filed: September 14, 2004
    Date of Patent: August 10, 2010
    Assignee: The University of Leeds
    Inventors: Animesh Jha, Vilas Dattatray Tathavadkar
  • Patent number: 7700057
    Abstract: The invention provides a method for the Industrial purification of a titanium feed stream of purity P1, by the formation of a titanium-double-salt precipitate of purity P2 and a titanium solution with purity P3, wherein P2>P1>P3, the method comprising the steps of: i. forming, from the feed, a medium comprising water, titanium ion, a cation selected from the group consisting of ammonium, cations of alkali metals, protons and a combination thereof, and an anion selected from the group consisting of OH, SO4, HSO4, halides and a combination thereof, which formed medium is further characterized by the presence of (a) a double-salt precipitate comprising titanium ion, at least one of the cations and at least one of the anions; and (b) a titanium solution; and wherein the concentration of the anion in the titanium solution is higher than 15% and the ratio between the concentrations of the cation and the anion in the titanium solution is higher than 0.2 and lower than 1.6; and ii.
    Type: Grant
    Filed: October 15, 2006
    Date of Patent: April 20, 2010
    Assignees: Joma International AS, Asher Vitner Ltd.
    Inventors: Asher Vitner, Aharon Eyal, Revital Mali
  • Patent number: 7642210
    Abstract: A zirconia porous body with excellent stability of heat resistance is manufactured. This relates to a zirconia porous body having peaks at pore diameters of 8 to 20 nm and 30 to 100 nm in a pore distribution based on the BJH method, with a total pore volume of 0.4 cc/g or more, and to a zirconia porous body having a peak at a pore diameters of 20 to 110 nm in a pore distribution based on the BJH method, with a total pore volume of 0.4 cc/g or more.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: January 5, 2010
    Assignee: Daiichi Kigenso Kagaku Kogyo Co., Ltd.
    Inventor: Hiroshi Okamoto
  • Patent number: 7632769
    Abstract: A zirconia porous body with excellent stability of heat resistance is manufactured. This relates to a zirconia porous body having peaks at pore diameters of 8 to 20 nm and 30 to 100 nm in a pore distribution based on the BJH method, with a total pore volume of 0.4 cc/g or more, and to a zirconia porous body having a peak at a pore diameters of 20 to 110 nm in a pore distribution based on the BJH method, with a total pore volume of 0.4 cc/g or more.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: December 15, 2009
    Inventor: Hiroshi Okamoto
  • Patent number: 7618601
    Abstract: A process for the enrichment of anatase mechanical concentrates, in order to obtain synthetic rutile with low contents of rare earth and radioactive elements, comprising the steps of: calcination of the anatase concentrate; reduction of the calcined product; dry or wet low-intensity magnetic separation of the reduced product; dry, high-intensity, high-gradient magnetic separation of the non-magnetic fraction from the low-intensity separation; leaching of the high-intensity magnetic fraction; oxidation of the dried product; leaching of the quenched product; filtering of the product from the second leaching; drying of the filtered product; and dry, high-intensity, high-gradient magnetic separation of the product of the second leaching.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: November 17, 2009
    Assignee: Companhia Vale Do Rio Doce
    Inventors: Lino Rodrigues De Freitas, Ronaldo Moreira De Horta, Joao Alberto Lessa Tude
  • Patent number: 7582276
    Abstract: The invention relates to nanoscale rutile or oxide powder that is obtained by producing amorphous TiO2 by mixing an alcoholic solution with a titanium alcoholate and with an aluminum alcohalate and adding water and acid. The amorphous, aluminum-containing TiO2 is isolated by removing the solvent, and is redispersed in water in the presence of a tin salt. Thermal or hydrothermal post-processing yields rutile or oxide that can be redispersed to primary particle size. The n-rutile or the obtained oxide having a primary particle size ranging between 5 and 20 nm can be incorporated into all organic matrices so that they remain transparent. Photocatalytic activity is suppressed by lattice doping with trivalent ions. If the amorphous precursor is redispersed in alcohol, or not isolated, but immediately crystallized, an anatase is obtained that can be redispersed to primary particle size.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: September 1, 2009
    Assignee: ITN Nanovation AG
    Inventor: Ralph Nonninger
  • Patent number: 7575629
    Abstract: Sorbents for removal of mercury and other pollutants from gas streams, such as a flue gas stream from coal-fired utility plants, and methods for their manufacture and use are disclosed. The methods include mixing fly ash particles with a sulfide salt and a metal salt to form a metal sulfide on the outer surface of the fly ash particles.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: August 18, 2009
    Assignee: BASF Catalysts LLC
    Inventors: Xiaolin David Yang, Pascaline Harrison Tran, Lawrence Shore, Stanley Scott Mack, James Eugene Staudt
  • Patent number: 7537741
    Abstract: A method for treating a polymetallic sulfide ore containing gold and/or silver, and further containing base metals selected from the group consisting of iron, aluminum, chromium, titanium, copper, zinc, lead, nickel, cobalt, mercury, tin, and mixtures thereof, is disclosed. The method comprises the steps of grinding the polymetallic sulfide ore to produce granules, oxidizing the granules to produce oxidized granules, and chloride leaching the granules using a brine solution including dissolved halogens, as well as chloride and bromide salts.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: May 26, 2009
    Assignee: Nichromet Extraction Inc.
    Inventor: Jean-Marc Lalancette
  • Patent number: 7494631
    Abstract: This invention relates to a process for beneficiating a titaniferous ore. The process comprises calcining the titaniferous ore, at least one alkali or alkaline earth metal salt, and at least one alumina-containing material in the presence of oxygen to form a calcined ore mixture, then leaching the calcined ore mixture with a solution comprising ammonium, sodium or magnesium chloride in the presence of oxygen to form a leached ore mixture, and contacting the leached ore with an acid to form a beneficiated ore.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: February 24, 2009
    Assignee: Millennium Inorganic Chemicals
    Inventors: Animesh Jha, Ephraim Jeya Kumari, Abhishek Lahiri
  • Patent number: 7476378
    Abstract: This disclosure relates to a process for producing titanium dioxide, comprising: a) providing a quantity of liquid titanium tetrahalide for reacting with an oxygen-containing gas; b) vaporizing a first portion of the liquid titanium tetrahalide and reacting the titanium tetrahalide vapor and the oxygen-containing gas, in a first stage of a reaction zone, the reaction zone temperature ranging from at least about 650° C.—to form a reaction product at least containing titanium dioxide and oxygen-containing gas and passing the reaction product, more typically in the vapor phase, to at least one additional stage of the reaction zone; and c) charging at least one additional portion of the liquid titanium tetrahalide to the at least one additional stage of the reaction zone to cool the titanium dioxide and to react with the oxygen-containing gas to form additional titanium dioxide.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: January 13, 2009
    Assignee: E.I. DuPont deNemours & Company
    Inventors: Narayanan Sankara Subramanian, Richard P. Bernard, Yung-Hsing Samson Hsu, Charles David Musick, Kunle Ogunde, James Nelson Tilton
  • Patent number: 7431903
    Abstract: The process for preparing tubular titanium oxide particles comprises subjecting a water dispersion sol, which is obtained by dispersing (i) titanium oxide particles and/or (ii) titanium oxide type composite oxide particles comprising titanium oxide and an oxide other than titanium oxide in water, said particles having an average particle diameter of 2 to 100 nm, to hydrothermal treatment in the presence of an alkali metal hydroxide. After the hydrothermal treatment, reduction treatment (including nitriding treatment) may be carried out. The tubular titanium oxide particles obtained in this process are useful as catalysts, catalyst carriers, adsorbents, photocatalysts, decorative materials, optical materials and photoelectric conversion materials. Especially when the particles are used for semiconductor films for photovoltaic cells or photocatalysts, prominently excellent effects are exhibited.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: October 7, 2008
    Assignee: Catalysts & Chemicals Industries Co., Ltd.
    Inventors: Tsuguo Koyanagi, Katsuhiro Shirono, Atsushi Tanaka, Michio Komatsu
  • Patent number: 7252767
    Abstract: The present invention features a method of making hydrous zirconium oxide having desirable properties, including resistance to moisture content, predetermined particle size, and developed porosity and surface area. The inventive material is suitable for use as an ion exchanger, a catalyst and a catalyst support. The process comprises providing a liquid comprising a zirconium compound and an alkali metal-containing reagent. The alkali metal-containing reagent may comprise a compound selected from the group consisting of MOH-M2SO4, MOH-M3PO4, and combinations thereof, where M is at least one of Li, Na and K. The zirconium compound may be treated with the alkali metal-containing reagent effective to form a mixture which achieves an uptake of alkali metal in an amount ranging from 0.5 to 2.5 meq/g. The mixture is reacted to form the hydrous zirconium oxide. A molar ratio of SO4/Zr and PO4/Zr in the mixture may range from 0.2-0.7:1. The mixture may be heated at a temperature ranging from 80 to 150° C.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: August 7, 2007
    Assignee: Magnesium Elektron, Inc.
    Inventors: Anatoly I. Bortun, Clive J. Butler
  • Patent number: 7223378
    Abstract: Process for preparing barium titanate or strontium titanate by reacting titanium alkoxides with barium hydroxide hydrate or strontium hydroxide hydrate in a C1–C8-alcohol or a glycol ether at from 50 to 150° C.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: May 29, 2007
    Assignee: BASF Aktiengesellschaft
    Inventor: Hans-Josef Sterzel
  • Patent number: 7211230
    Abstract: The present invention discloses a process for producing nanometer powders, comprising the following steps: (a) providing reactant solution A and reactant solution B that can rapidly react to form precipitate; (b) continuously adding said solution A and solution B into a mixing and reacting precipitator with a stator and a rotor in operation, respectively; and (c) post-treating the precipitate-containing slurry discharged continuously from the mixing and reacting precipitator. The present process could produce nanometer powders with adjustable particle size, good homogeneity in size and good dispersity. The method also has the characteristics of high production yield, simplicity in process and low consumption of energy. It could be applied to produce various nanometer powders of metals, oxides, hydroxides, salts, phosphides and sulfides as well as organic compounds.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: May 1, 2007
    Assignee: Anshan University of Science and Technology
    Inventors: Yingyan Zhou, Shoushan Gao, Hongxia Li, Kaiming Wang, Xiaoqi Li, Lixiang Li, Chuangeng Wen
  • Patent number: 7208126
    Abstract: Titanium dioxide nanopowder is produced by a process, comprising: (a) reacting titanium tetrachloride and an oxygen containing gas in the vapor phase in a flame reactor, at a flame temperature of at least about 800° C. in the presence of (i) water vapor in an amount ranging from about 1000 to about 50,000 parts per million, based on the weight of titanium dioxide under production, (ii) a diluent gas in an amount greater than about 100 mole percent based on the titanium tetrachloride and oxygen containing gas and (iii) a nucleant consisting essentially of a cesium substance wherein the cesium substance is present in an amount ranging from about 10 to about 5000 parts per million, based on the weight of the titanium dioxide under production, the pressure of reaction being sufficient to form titanium dioxide nanopowder.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: April 24, 2007
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Charles David Musick, Austin H. Reid, Jr., Lu Zhang
  • Patent number: 7157072
    Abstract: Provided is a cathode composition for lithium secondary battery that includes a lithium-chromium-titanium-manganese oxide that has the formula Li[Li(1-x)/3CrxTi(2/3)yMn2(1-x-y)/3]O2 where 0?x?0.3, 0?y?0.3 and 0.1?x+y?0.3, and layered a-LiFeO2 structure. A method of synthesizing the lithium-chromium-titanium manganese oxide includes preparing a first mixed solution by dispersing titanium dioxide (TiO2) in a mixed solution of chrome acetate (Cr3(OH)2(CH3CO2)7) and manganese acetate ((CH3CO2)2Mn.4H2O), adding a lithium hydroxide (LiOH) solution to the first mixed solution to obtain homogeneous precipitates, forming precursor powder that has the formula Li[Li(1-x)/3CrxTi(2/3)yMn2(1-x-y)/3]O2 where 0?x?0.3, 0?y?0.3 and 0.1?x+y?0.3 by heating the homogeneous precipitates, and heating the precursor powder to form oxide powder having a layered structure.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: January 2, 2007
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Xianglan Wu, Yong Joon Park, Kwang Sun Ryu, Soon Ho Chang
  • Patent number: 7135156
    Abstract: Methods of producing zirconium oxide compositions and using same are provided. The zirconium oxide compositions in crystalline form can be prepared by a synthetic process wherein the hydrolysis of zirconyl chloride and particle formation can be achieved simultaneously. Alternatively, the particle formation can occur first and then followed by hydrolysis with a base solution. The processes utilize a zirconyl salt solution that includes a zirconyl salt in isopropanol and water.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: November 14, 2006
    Assignees: Baxter International Inc., Baxter Healthcare S.A.
    Inventors: Ton That Hai, Mark Nordhaus, Paul Sanders, Cong Jiang, Sujatha Karoor
  • Patent number: 7101519
    Abstract: Methods of making zirconium basic carbonate are further described which involve titrating an aqueous slurry of sodium zirconium carbonate to a pH of from about 3.5 to about 4.0 with an acidic agent wherein the sodium zirconium carbonate has a moisture content of from about 15% to about 25% LOD in solid form. The process further involves washing the aqueous slurry containing the formed zirconium basic carbonate with water. A novel zirconium basic carbonate is further disclosed which has a minimum adsorption capacity of from about 30 to about 35 mg/PO4-P/gm SCZ; a minimum HCO3- content of from about 2 to about 4 mEq HCO3-gm/SCZ; a leachable Na+ content of from about 1.5 to about 2.0 mEq Na+/gm SCZ; and/or a pH range of titrated sodium zirconium carbonate of from about 6 to about 7.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: September 5, 2006
    Assignee: Renal Solutions, Inc.
    Inventor: Raymond J. Wong
  • Patent number: 7078009
    Abstract: Lepidocrocite lithium potassium titanate characterized as having a composition represented by the formula K0.5-0.7Li0.27Ti1.73O3.85-3.95, and preferably having an arithmetic mean of major and minor diameters of 0.1–100 ?m, a proportion of a major to minor diameter of from 1 to below 10, a mean thickness of 50–5,000 nm and a flaky shape. A friction material characterized as containing 1–80% by weight of the lepidocrocite lithium potassium titanate as a friction control agent.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: July 18, 2006
    Assignee: Otsuka Chemical Co., Ltd.
    Inventors: Hiroshi Ogawa, Nobuki Itoi, Kousuke Inada
  • Patent number: 7063824
    Abstract: This invention relates to a process of treating a zirconium containing product such as zircon. The process comprises providing an alkali fusion decomposed zircon product (AFDZ) formed from reading zircon with a source of alkali metal at elevated temperatures, and treating the AFDZ to form a solid containing hydrated zirconium oxide and/or hydrated zirconium basic carbonate (hereinafter referred to as the hydrated zirconium product). The process further comprises treating the solid hydrated zirconium product to obtain in situ formation of basic zirconium sulphate as a solid thereon. The invention also relates to such a process for producing zircon derived material suitable for pigments and to such a process to produce opacifier material. The invention also relates to products of such processes.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: June 20, 2006
    Assignee: University of Pretoria
    Inventors: Gert Hendrik Jacobus Coetzee, legal representative, Willem Johannes De Wet, deceased
  • Patent number: 7041150
    Abstract: A method and apparatus for making alloys or ceramics by the subsurface injection of an equilibrium vapor of a boiling liquid of the ceramic or alloys constituents is disclosed. Various powders and products are disclosed.
    Type: Grant
    Filed: September 3, 2003
    Date of Patent: May 9, 2006
    Assignee: The University of Chicago
    Inventors: Donn Reynolds Armstrong, Richard Paul Anderson, Lance E. Jacobsen
  • Patent number: 6929786
    Abstract: A method of separating zirconium and hafnium tetrachlorides using a solvent comprising firstly an alkaline metallic solvent comprising a salt made up of an alkali metal chloride and an acidic metal chloride A, for example a chloroaluminate or an alkaline chloroferrate, and secondly an acidic metal or metalloid chloride B of acidity that is less than that of the acidic metal chloride A. The acidic metal or metalloid chloride B may be selected from chlorides of Mg, Zn, and Cu. The method may be a continuous separation method by selective absorption of the tetrachloride vapors by the solvent in the substantially or totally molten state.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: August 16, 2005
    Assignee: Compagnie Europeenne du Zirconium CEZUS
    Inventors: Laurence Delons, Gérard Picard, Delphine Tigreat
  • Patent number: 6890647
    Abstract: Highly transparent alumina hydrate particles having a large pore volume, having a pore diameter which falls in a specified range and, when formed into a high-concentration dispersion sol, exhibiting a low viscosity are provided. Alumina hydrate particles having a composition represented by the general formula xM2O.y(NH4)2O.Al2O3.zH2O (2×10?4?x?25×10?4, 0.1×10?4?y?20×10?4, 0.6?z?2.5, M represents an alkali metal; when the alkali metal is in the form of M2O, x is the number of moles thereof per mol of Al2O3; when ammonia is in the form of (NH4)2O, y is the number of moles thereof per mol of Al2O3; and z is the number of moles of hydration water (H2O) per mol of Al2O3), the alumina hydrate particles having an average particle diameter of 0.02 to 0.2 ?m, a total pore volume of 0.5 to 1.5 ml/g, and a volume of pores whose diameter is from 15 to 30 nm ranging from 0.3 to 1.0 ml/g.
    Type: Grant
    Filed: August 9, 2000
    Date of Patent: May 10, 2005
    Assignee: Catalysts & Chemicals Industries Co., Ltd.
    Inventors: Hiroyasu Nishida, Naoyuki Enomoto, Michio Komatsu
  • Patent number: 6656588
    Abstract: Doped, nanosize metal oxide particles have been shown to exhibit stimulated emission and continuous-wave laser action when energized appropriately, for example by electron beams. The doped particles are useful as solid state lasing devices and “laser paints”. Particles containing homogeneously distributed dopant atoms in concentrations greater than the thermodynamic solubility in the metal oxide matrix, and having in some circumstances, unusual oxidation states, have been produced.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: December 2, 2003
    Assignee: The Regents of the University of Michigan
    Inventors: Richard M. Laine, Stephen C. Rand, Thomas Hinklin, Guy R. Williams
  • Patent number: 6645445
    Abstract: A process for efficiently removing titanium oxide or red oxide from an ethylene glycol solvolysis product of a polyester containing titanium oxide or red oxide. The process comprises the steps of: (1) mixing at least one calcium compound selected from the group consisting of calcium oxide, calcium carbonate and calcium hydroxide with a polyester decomposition product containing titanium oxide which is an ethylene glycol solvolysis product of a polyester containing titanium oxide to agglomerate titanium oxide contained in the polyester decomposition product, or mixing titanium oxide with a polyester decomposition product containing red oxide which is an ethylene glycol solvolysis product of a polyester containing red oxide to agglomerate red oxide contained in the polyester decomposition product; and (2) subjecting the agglomerates to solid-liquid separation to remove titanium oxide or red oxide from the polyester decomposition product.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: November 11, 2003
    Assignee: Aies Co., Ltd.
    Inventors: Shuji Inada, Kikuchi Sato
  • Patent number: 6627165
    Abstract: A process for upgrading of titaniferous material containing silica, including pretreating the titaniferous material by alkaline leaching to precipitate the silica as an aluminosilicate which is amenable to further leaching. Subsequently, the pretreated titaniferous material is leached under acid conditions, causing the silica to enter solution under conditions such that the silica is not hydrolysed or precipitated as a silicate.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: September 30, 2003
    Assignee: Technological Resources PTY LTD
    Inventors: Ross Alexander McClelland, Michael John Hollitt
  • Patent number: 6627164
    Abstract: A method of making sodium zirconium carbonate is described which involves forming a mixture of zirconium oxychloride with soda ash and then heating at a sufficient temperature and for a sufficient time to form the sodium zirconium carbonate. Subsequent washing and filtration steps can further form parts of this process. A novel sodium zirconium carbonate is further described which contains from about 2 wt % to about 5 wt % Na+; from about 44 wt % to about 50 wt % ZrO2; from about 12 wt % to about 18 wt % CO32−; and from about 32 wt % to about 35 wt % H2O.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: September 30, 2003
    Assignee: Renal Solutions, Inc.
    Inventor: Raymond J. Wong
  • Patent number: 6471743
    Abstract: Disclosed and claimed are efficient methods for leaching minerals from ores using an acidic solution such as sulfuric acid. Additional factors which can improve mineral recovery include the use of an alkali metal halide, grinding the ore, addition of a carbon source, and/or, adjustment of the temperature at which the process is carried out. Minerals such as titanium, iron, nickel, cobalt, silver and gold may be recovered by the methods of the present invention.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: October 29, 2002
    Assignee: MBX Systems, Inc.
    Inventors: Tom L. Young, Michael G. Greene, Dennis R. Rice, Kelly L. Karlage, Sean P. Premeau
  • Patent number: 6346223
    Abstract: A process for the production of titanium concentrates from anatase ores with high utilization of the iron contents of the raw ore involving the steps of calcining mechanically treated ore in the presence of an alkali metal carbonate followed by dilute leachings in both alkaline and acid media. No reducing agents are employed during calcination, avoiding the iron contents of the ore to be solubilized in the leaching steps. The final concentrate, which is rich in titanium and iron and has a low content of impurities, can be used as a raw material for the production of titanium slag.
    Type: Grant
    Filed: October 19, 1998
    Date of Patent: February 12, 2002
    Assignee: Companhia Vale Do Rio Doce
    Inventors: Marcelo De Matos, Lino Rodrigues De Freitas, Ronaldo De Moreira Horta
  • Publication number: 20010051120
    Abstract: The present invention is related to a process for concentrating highly impure titanium ore, such as anatase, with the main purpose of obtaining a final concentrate having a chemical composition similar to that of ilmenite. The proposed process is based on the utilization as best as possible of the iron contents of the raw ore, in such a way that the final concentrate obtained can be used as an intermediate raw material for the production of titanium slag.
    Type: Application
    Filed: October 19, 1998
    Publication date: December 13, 2001
    Inventors: MARCELO DE MATOS, LINO RODRIGUES DE FREITAS, RONALDO DE MOREIRA HORTA
  • Patent number: 6231636
    Abstract: A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.
    Type: Grant
    Filed: February 3, 1999
    Date of Patent: May 15, 2001
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Francis H. Froes, Baburaj G. Eranezhuth, Keith Prisbrey
  • Patent number: 6162752
    Abstract: The present invention provides barium titanate powder having a withstanding voltage of 800 V/mm or more and a specific resistance at room temperature of 100 .OMEGA..multidot.cm or less, the specific resistance at room temperature undergoing substantially no time-course change. Barium titanate of the powder of the present invention assumes a cubic crystal system. The powder has a particle size of about 0.1 .mu.m or less; the ratio represented by BaCO.sub.3 /BaO as obtained through XPS is about 0.42 or less; the lattice constant is about 0.4020 nm or more; and the ratio represented by Ba/Ti is about 0.988-0.995.
    Type: Grant
    Filed: May 11, 1999
    Date of Patent: December 19, 2000
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Mitsutoshi Kawamoto, Hideaki Niimi
  • Patent number: 5885536
    Abstract: A process for alkaline leaching of a titaniferous material containing silica and alumina impurities in which spent leachant is recycled by treating to remove the silica and alumina impurities therefrom, by heating, maintaining the leachant at leaching temperature, or treating with an additive. The removal of the silica and alumina impurities by the method of the invention enables further use of the leachant.
    Type: Grant
    Filed: January 6, 1997
    Date of Patent: March 23, 1999
    Assignee: Technological Resources Pty Ltd
    Inventor: Michael John Hollitt