Forming Insoluble Compound Containing Group Ivb Metal Patents (Class 423/85)
  • Patent number: 6991678
    Abstract: A process for the preparation of crystalline microporous titanium silicates using ethylsilicate-40 and titanium peroxide as silicon and titanium sources respectively is described. The process permits a significant decrease in the production cost of titanium silicate containing higher amount of titanium (Si/Ti=20) because of cheaper raw materials as well as reduction in the quantity of tetarpropylammonium hydroxide (TPAOH) template (SiO2:TPAOH=1:0.06–0.1) required for preparation. The material obtained by the present invention is useful as an active catalyst in the reactions such as oxidation of hydrocarbons, alcohols, sulphides, and thioethers.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: January 31, 2006
    Assignee: Council of Scientific and Industrial Research
    Inventors: Mohan Keraba Dongare, Pratap Tukaram Patil, Kusum Madhukar Malshe
  • Patent number: 6806295
    Abstract: Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: October 19, 2004
    Assignee: UT-Battelle, LLC
    Inventor: Zhong-Cheng Hu
  • Patent number: 6800260
    Abstract: Processes for treating iron containing waste streams are provided. According to these processes, metal-containing compounds, particularly iron oxides are produced. These methods may, for example, be used in the processing of the waste streams from the chlorination of titanium-bearing raw materials and involve the use of certain combinations of neutralization and precipitation steps.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: October 5, 2004
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Peter Carter, Christopher John Davis, Michael Robinson, Kirit Talati
  • Patent number: 6733559
    Abstract: A process for reducing plant availability of heavy metals in substrates such as soils wherein the substrates treated with cross-linked polymethacrylates. The poly (meth)acrylates can be worked into the soils.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: May 11, 2004
    Assignee: Stockhausen GmbH
    Inventors: Aloys Hüttermann, Moitoba Zomorrodi
  • Patent number: 6713038
    Abstract: A titanium dioxide compound was isolated from a rare type of naturally occurring ore. Processes for efficiently isolating and obtaining these TiO2 compounds, as well as methods for using them have been developed. These TiO2 compounds may be used directly in applications such as paper, plastics and paints without being subjected to the chloride or sulfate processes. Also they made be used as a feedstock for the chloride or sulfate processes. In order to obtain these TiO2 compounds, one may grind or pulverize the naturally occurring ore, disperse it in a solution or suspension, and process it by selective flocculation or aqueous biphasic extraction.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: March 30, 2004
    Assignee: Millenium Inorganic Chemicals, Inc.
    Inventors: Ling Zhou, Thomas Messer, Fu-Chu Wen, Mark Banash
  • Patent number: 6685761
    Abstract: The invention is a method and apparatus for producing beneficiated titanium oxides using a modified rotary hearth furnace, that is a finisher-hearth-melter (FHM) furnace. In the method the refractory surface of the hearth is coated with carbonaceous hearth conditioners and refractory compounds, where onto said hearth is charged with pre-reduced agglomerates. The pre-reduced agglomerates is leveled, then heated until molten, and then reacted with the carbon and reducing gas burner gases until any residual iron oxide is converted to iron having a low sulfur content. Fluid slag and molted iron forms melted agglomerates. The fluid slag is rich in titanium. The melted agglomerates are cooled, and then the melted agglomerates and the hearth conditioners, including the refractory compounds, are discharged onto a screen, which separate the melted agglomerates from the hearth conditioner.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: February 3, 2004
    Assignee: Midrex International B.V. Rotterdam, Zurich Branch
    Inventors: Glenn E. Hoffman, Ronald D. Gray
  • Publication number: 20040007531
    Abstract: The present invention features a method of making hydrous zirconium oxide having desirable properties, including resistance to moisture content, predetermined particle size, and developed porosity and surface area. The inventive material is suitable for use as an ion exchanger, a catalyst and a catalyst support. The process comprises providing a liquid comprising a zirconium compound and an alkali metal-containing reagent. The alkali metal-containing reagent may comprise a compound selected from the group consisting of MOH-M2SO4, MOH-M3PO4, and combinations thereof, where M is at least one of Li, Na and K. The zirconium compound may be treated with the alkali metal-containing reagent effective to form a mixture which achieves an uptake of alkali metal in an amount ranging from 0.5 to 2.5 meq/g. The mixture is reacted to form the hydrous zirconium oxide. A molar ratio of SO4/Zr and PO4/Zr in the mixture may range from 0.2-0.7:1. The mixture may be heated at a temperature ranging from 80 to 150° C.
    Type: Application
    Filed: July 15, 2002
    Publication date: January 15, 2004
    Inventors: Anatoly I. Bortun, Clive J. Butler
  • Patent number: 6610135
    Abstract: A titanium-containing finely divided particulate material, characterized by exhibiting a light transmittance of at least 85% as measured at a wavelength of 450-700 nm for a thickness of 10 mm on an aqueous liquid containing the titanium-containing material in a concentration of 0.1 to 6.5 moles per liter as titanium even when the temperature of the liquid is elevated to the boiling point. The titanium-containing material usually has an average particle diameter of 0.8-50 nm, and gives a film having high photocatalytic activity and transparency. The titanium-containing finely divided particulate material is obtained by hydrolyzing titanium tetrachloride in an aqueous solution in the presence of a carboxylic acid.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: August 26, 2003
    Assignee: Showa Denko K.K.
    Inventors: Masahiro Ohmori, Katsutoshi Tamura
  • Patent number: 6471743
    Abstract: Disclosed and claimed are efficient methods for leaching minerals from ores using an acidic solution such as sulfuric acid. Additional factors which can improve mineral recovery include the use of an alkali metal halide, grinding the ore, addition of a carbon source, and/or, adjustment of the temperature at which the process is carried out. Minerals such as titanium, iron, nickel, cobalt, silver and gold may be recovered by the methods of the present invention.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: October 29, 2002
    Assignee: MBX Systems, Inc.
    Inventors: Tom L. Young, Michael G. Greene, Dennis R. Rice, Kelly L. Karlage, Sean P. Premeau
  • Patent number: 6468483
    Abstract: A method for processing alumina-bearing ores such as bauxite to recover iron, aluminum, silicon and titanium metal values therefrom the method comprising the steps of adding the alumina-bearing ores to a digester containing an acid to provide a mixture of acid and alumina-bearing ores and heating the mixture to dissolve soluble compounds of at least one of iron, aluminum, silicon and titanium to provide a digest containing dissolved salts of the soluble compounds and to provide a gas component. Thereafter, the digest is treated with water to dissolve water soluble salts therein to provide a slurry comprised of a liquid containing water and the dissolved soluble salts and a solid component comprised of silica. The solid component is separated from the liquid and the pH of the liquid is adjusted to form an aluminate and an iron-containing precipitate.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: October 22, 2002
    Assignee: Goldendale Aluminum Company
    Inventors: Robert J. Barnett, Michael B. Mezner
  • Publication number: 20020132734
    Abstract: A titanium hydroxide is provided which can be utilized for producing a photocatalyst exhibiting a superior photocatalytic activity by irradiation of visible light. The titanium hydroxide has a primary differential spectrum (of radial structure function in connection with titanium K absorption edge) having maximal intensities (U1 and U2) and minimal intensities (L1 and L2) at interatomic distances in the range of from 1.4 Å to 2.8 Å, the maximal intensities being at an interatomic distance of from 1.4 Å to 1.7 Å and of from 2.2 Å to 2.5 Å and the minimal intensities being at an interatomic distance of from 1.9 Å to 2.2 Å and of from 2.5 Å to 2.8 Å; and index X calculated by the equation X=(U2−L2)/(U1−L1) of about 0.06 or more.
    Type: Application
    Filed: December 21, 2001
    Publication date: September 19, 2002
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Yoshiaki Sakatani, Hiroyuki Ando, Hironobu Koike
  • Patent number: 6375923
    Abstract: A hydrometallurgical process is provided for producing pigment grade TiO2 from titaniferous mineral ores, and in particular from ilmenite ore. The ore is leached with a hydrochloric acid, preferably a recycled solution at high hydrochloric acid concentration, to form a leachate containing titanium and iron chloride and a residue. The leachate may be filtered to separate the leachate from the residue. The leachate is cooled to a temperature sufficient to form crystals of FeCl2, which are separated from the leachate. The leachate may be subjected to a reduction step to reduce Fe+3 to Fe+2, before crystallizing. The leachate is subjected to a first solvent extraction to form a pregnant strip solution containing titanium and ferric ions and a raffinate containing ferrous ions. This strip solution is subjected to a second solvent extraction to form a second strip solution containing ferric ions and a raffinate containing titanium ions.
    Type: Grant
    Filed: February 7, 2000
    Date of Patent: April 23, 2002
    Assignee: Altair Nanomaterials Inc.
    Inventors: Willem P. C. Duyvesteyn, Bruce James Sabacky, Dirk Edmund Victor Verhulst, Paul George West-Sells, Timothy Malcome Spitler, Andrew Vince, James R. Burkholder, Bernardus Josephus Paulus Maria Huls
  • Patent number: 6358484
    Abstract: A process for providing a zirconium basic sulfate includes providing a zirconium oxychloride solution, and then dialyzing the solution against a liquid selected from water and an aqueous solution across at least one anion exchange membrane to provide a dialyzate and diffusate. The dialyzate includes at least 90 percent of the zirconium ions of the zirconium oxychloride chloride solution and has a total acidity that is lower than the original zirconium oxychloride solution. A precipitate including zirconium basic sulfate may be formed from at least a portion of the diffusate. The zirconium oxychloride solution may be provided, for example, by dissolving zirconium tetrachloride in one of water and a hydrochloric acid solution. A material including zirconium basic sulfate produced by the process of the invention also is disclosed.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: March 19, 2002
    Assignee: ATI Properties, Inc.
    Inventor: James A. Sommers
  • Publication number: 20010051121
    Abstract: A method for processing alumina-bearing ores such as bauxite to recover iron, aluminum, silicon and titanium metal values therefrom the method comprising the steps of adding the alumina-bearing ores to a digester containing an acid to provide a mixture of acid and alumina-bearing ores and heating the mixture to dissolve soluble compounds of at least one of iron, aluminum, silicon and titanium to provide a digest containing dissolved salts of the soluble compounds and to provide a gas component. Thereafter, the digest is treated with water to dissolve water soluble salts therein to provide a slurry comprised of a liquid containing water and the dissolved soluble salts and a solid component comprised of silica. The solid component is separated from the liquid and the pH of the liquid is adjusted to form an aluminate and an iron-containing precipitate.
    Type: Application
    Filed: May 3, 2001
    Publication date: December 13, 2001
    Inventors: Robert J. Barnett, Michael B. Mezner
  • Patent number: 6306195
    Abstract: The present invention relates to an improved process for the preparation of high grade synthetic rutile from ilmenite with pig iron as a by-product. The process comprises subjecting ilmenite to reduction with coal, cooling and removing unreacted coal to obtain a product having 80-95% metallization, smelting the metallized ilmenite mixed with less than 10% carbon (w/w) in a transferred arc plasma using arc current, under flow of inert gas for a fixed time. The metal is then separated as pig iron and TiO2 as slag, the slag ground followed by oxidation at high temperature in the presence of an oxidizing gas, the oxidized product being leached with dilute HCl followed by filtration, washing and drying to obtain synthetic rutile.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: October 23, 2001
    Assignee: Council of Scientific and Industiral Research
    Inventors: Pawvathu Narayanan Nair Mohan Das, Karval Harikrishna Bhat, Melay Eriyat Kochu Janaki, Sreedharan Sasibhushanan, Parthasarathi Mukherjee, Bishnu Charan Rabindha Mohanty, Hem Shanker Ray
  • Publication number: 20010007646
    Abstract: A method for the production of titanium metal from titanium-bearing ore. The method comprises leaching said ore or a concentrate thereof with an aqueous solution of a hydrogen halide; separating solids from the leach solution, to provide a leachate solution. The leachate solution may be subjected to extraction with an immiscible organic phase to selectively remove iron values to provide high purity iron products. Titanium may be separated from raffinate as TiO2 or solvent extract and thermal stripping. TiO2 may also be separated in the initial leach solution. Preferably, the titanium halide is titanium tetrachloride.
    Type: Application
    Filed: January 25, 2001
    Publication date: July 12, 2001
    Inventors: Vaikuntam Iyer Lakshmanan, Ramamritham Sridhar, Marc Murray Rishea, Robert Joseph de Laat
  • Patent number: 6248302
    Abstract: A method for processing red mud to recover iron, aluminum, silicon and titanium metal values therefrom the method comprising the steps of adding the red mud to a digester containing an acid to provide a mixture of acid and red mud and heating the mixture to dissolve soluble compounds of at least one of iron, aluminum, silicon and titanium to provide a digest containing dissolved salts of the soluble compounds and to provide a gas component. Thereafter, the digest is treated with water to dissolve water soluble salts therein to provide a slurry comprised of a liquid containing water and the dissolved soluble salts and a solid component comprised of silica. The solid component is separated from the liquid and the pH of the liquid is adjusted to form an aluminate and an iron-containing precipitate.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: June 19, 2001
    Assignee: Goldendale Aluminum Company
    Inventors: Robert J. Barnett, Michael B. Mezner
  • Patent number: 6214301
    Abstract: Hafnium is recovered from irradiated tantalum by: (a) contacting the irradiated tantalum with at least one acid to obtain a solution of dissolved tantalum; (b) combining an aqueous solution of a calcium compound with the solution of dissolved tantalum to obtain a third combined solution; (c) precipitating hafnium, lanthanide, and insoluble calcium complexes from the third combined solution to obtain a first precipitate; (d) contacting the first precipitate of hafnium, lanthanide and calcium complexes with at least one fluoride ion complexing agent to form a fourth solution; (e) selectively adsorbing lanthanides and calcium from the fourth solution by cationic exchange; (f) separating fluoride ion complexing agent product from hafnium in the fourth solution by adding an aqueous solution of ferric chloride to obtain a second precipitate containing the hafnium and iron; (g) dissolving the second precipitate containing the hafnium and iron in acid to obtain an acid solution of hafnium and iron; (h) selectively ad
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: April 10, 2001
    Assignee: The Regents of the University of California
    Inventors: Wayne A. Taylor, David J. Jamriska
  • Patent number: 5945035
    Abstract: The invention relates to electrically conductive pigments which as a conductive layer on a platelet-shaped or needle-shaped substrate have a niobium- and/or tantalum-doped tin oxide or titanium dioxide layer.
    Type: Grant
    Filed: November 14, 1997
    Date of Patent: August 31, 1999
    Assignee: Merck Patent Gesellschaft Mit Beschrankter Haftung
    Inventors: Reiner Vogt, Gerhard Pfaff
  • Patent number: 5656175
    Abstract: A process for recovering metal oxides from waste water using anionic and cationic polymeric emulsions is disclosed. The treated metal oxides may then be recovered using a clarification step. Steps requiring the adjustment of pH based on the use of acids and base are thereby eliminated.
    Type: Grant
    Filed: July 5, 1995
    Date of Patent: August 12, 1997
    Assignee: Cytec Technology Corp.
    Inventor: Jody Elbert Bossier
  • Patent number: 5470550
    Abstract: Zirconium containing less than about 400 ppm aluminum/zirconium is produced by precipitating zirconium sulfate from an aqueous stream containing from 0.5 M to 2 M zirconium oxychloride and contaminated with from 1000 to 3000 ppm aluminum/zirconium and having an acidity of greater than 1.5 N total acid per M zirconium. Ammonium hydroxide having a concentration of at least 14% by weight is added to the zirconium-containing solution to adjust the acidity to between 0.6 and 1.2 N total acid/M zirconium. Because the acidity adjustment results in the premature and undesired precipitation of zirconium hydroxide and aluminum hydroxide, the solution is maintained at a temperature of 60.degree. C. or more for 15 minutes to 60 minutes to dissolve at least some of the zirconium hydroxide without permitting the undissolved zirconium hydroxide to dehydrate to the extent that a gelatinous zirconium oxide precipitate forms. Ammonium sulfate or sulfuric acid is then added to the acid adjusted solution to provide a 0.6 to 0.
    Type: Grant
    Filed: December 30, 1993
    Date of Patent: November 28, 1995
    Assignee: Westinghouse Electric Corporation
    Inventor: Donald O. Voit
  • Patent number: 5425927
    Abstract: Hafnium dioxide contaminated with 0.1 to 1 weight percent uranium dioxide is contacted with an aqueous acid such as nitric acid, hydrochloric acid, sulfuric acid and mixtures thereof to leach the uranium dioxide from the hafnium dioxide, thereby producing a slurry of a uranium-containing leachate containing hafnium dioxide solids. The slurry is filtered to separate the uranium-containing leachate from the hafnium dioxide solids, which are then dried to produce hafnium dioxide containing less than about 0.005 wt % uranium dioxide. The hafnium dioxide may then be released for uncontrolled commercial uses.The separated uranium-containing leachate is neutralized to precipitate uranyl hydroxide, which is then separated from the leachate. The uranyl hydroxide may be processed to produce uranium-containing products or may be disposed of as radioactive wastes having a fraction of the total volume of radioactive wastes which would need to be buried if the hafnium dioxide could not be recovered for commercial uses.
    Type: Grant
    Filed: June 27, 1994
    Date of Patent: June 20, 1995
    Assignee: Westinghouse Electric Corporation
    Inventor: Roy G. Walker
  • Patent number: 5411719
    Abstract: Accordingly the present invention provides a process for producing acid soluble titania which process comprises the steps of:(i) adding a manganese or magnesium compound to a titaniferous mineral if the mineral does not contain sufficient manganese and magnesium to satisfy the following relationship: ##EQU1## where a represents the percentage by weight of MgO contained in the mineral,b represents the percentage by weight of MnO contained in the mineral, andd represents the percentage by weight of TiO.sub.
    Type: Grant
    Filed: September 24, 1993
    Date of Patent: May 2, 1995
    Assignee: Wimmera Industrial Minerals Pty. Ltd.
    Inventors: Michael J. Hollitt, Brian A. O'Brien
  • Patent number: 5407650
    Abstract: A process for purifying an acidic technical-grade iron chloride solution formed from cyclone dust from the production of TiO.sub.2 in accordance with the chloride process by adjusting the pH with a first neutralizing agent and thereafter introducing the pH adjusted solution in a controlled manner into a solution containing a second neutralizing agent. In this process undesired ions which are to be separated, such as chromium, vanadium, zirconium and/or niobium, precipitate in the form of efficiently filterable hydroxides which can be separated industrially under economical conditions by filtration. The filter cake is non-hazardous and can safely be disposed of by dumping. Calcium carbonate is the preferred neutralizing agent, and the pH adjustment may also advantageously be effected by using scrap iron or by using iron sinters with reduction of any Fe(III) ions before the second neutralization step.
    Type: Grant
    Filed: December 21, 1993
    Date of Patent: April 18, 1995
    Assignee: Kronos, Inc.
    Inventors: Achim Hartmann, Ulrich Rothe, Dieter Schinkitz
  • Patent number: 5397554
    Abstract: Hydrolyzing finely divided, solid Group IVB metal chlorides by gradually introducing the finely divided solids into the mixing zone of a high intensity mixer operating on an aqueous solution produces solid Group IVB metal oxy salts such as ZrOCl.sub.2.8H.sub.2 O.
    Type: Grant
    Filed: February 15, 1994
    Date of Patent: March 14, 1995
    Assignee: Westinghouse Electric Corporation
    Inventor: Donald O. Voit
  • Patent number: 5391362
    Abstract: The invention relates to a high surface area zirconia, having a surface area of above 125 m.sup.2 /g and preferably of above 200 m.sup.2 /g after calcination. The high surface area zirconia product of the invention can be prepared by mixing a zirconium salt solution with an alkali or ammonium compound, the zirconium hydroxide precipitate being aged in the presence of an oxygen acid of an element of group 5 or 6 of the Periodic Table of Elements and subsequently being calcined, optionally after a washing step. The preferred acid is phosphoric acid.
    Type: Grant
    Filed: March 13, 1991
    Date of Patent: February 21, 1995
    Assignee: Shell Oil Company
    Inventors: Donald Reinalda, Anke Derking
  • Patent number: 5389355
    Abstract: Synthetic rutile is prepared from titaniferous slags containing alkaline-earth metal impurities, such as magnesium oxide, by a method comprising contacting the slag with chlorine at a temperature of at least about 800.degree. C., and then leaching the chlorine-treated slag with hydrochloric acid at a temperature of at least about 150.degree. C.
    Type: Grant
    Filed: December 9, 1987
    Date of Patent: February 14, 1995
    Assignee: QIT-Fer et Titane, Inc.
    Inventor: Michel Gueguin
  • Patent number: 5334362
    Abstract: In order to treat metal chlorides obtained in the form of dust collector solids in the production of titanium dioxide by the chloride process, the inert constituents, especially particulate coke, is separated then the metals are selectively precipitated and a maturing phase under oxidative conditions is provided for. The residue consisting of metal hydroxides is also not thixotropic in the absence of inerts. As a result, the material to be deposited has been cut in half.
    Type: Grant
    Filed: September 23, 1992
    Date of Patent: August 2, 1994
    Assignee: Kronos, Inc.
    Inventors: Dieter Schinkitz, Hans Thumm
  • Patent number: 5298169
    Abstract: Disclosed is a process for treating waste sulfuric acid generated from a process for producing titanium dioxide pigment by treating titanium slag with sulfuric acid. The waste acid is treated in a first step with a calcium-containing material to produce a gypsum suspension which is filtered and from which a filtrate is recovered. The filtrate is treated in a second step with a calcium-containing substance and clarification solids from the treatment of the titanium slag with sulfuric acid. A precipitate is produced in this second step which is subsequently filtered. The precipitate is suitable for disposal in a landfill.
    Type: Grant
    Filed: August 21, 1992
    Date of Patent: March 29, 1994
    Assignee: Kronos, Inc.
    Inventors: Roger Laferriere, Pierre Beaupre
  • Patent number: 5282977
    Abstract: For economical and assured separation of chromium, vanadium and titanium ions from acidic waste waters, which accrue in great quantities in preparation of titanium dioxide, the pH is first raised to around a value of 3 by addition of dolomite brick powder. Directly thereafter, the pH is fine tuned into the range of 4.3 to 4.7 through addition of calcium hydroxide and/or sodium hydroxide, and the hydroxides are separated with the aid of a flocculating agent. Since iron ions and calcium ions remain mainly dissolved in the waste water through such selective precipitation, only a relatively small volume of slush has to be disposed of.
    Type: Grant
    Filed: September 24, 1992
    Date of Patent: February 1, 1994
    Assignee: Kronos, Inc.
    Inventor: Dieter Schinkitz
  • Patent number: 5238673
    Abstract: A composition consisting essentially of 60.0-70.0 mol % TiO.sub.2, 14.3-20.0 mol % Nd.sub.2 O.sub.3, 11.0-16.7 mol % BaO, 1.0-8.0 mol % ZrO.sub.2 and 0.05-0.30 mol % CeO.sub.2. This composition is useful for forming densified ceramic dielectric bodies having a dielectric constant of at least 65 and which meet COG specifications, and multilayer capacitors that contain such dielectric bodies.
    Type: Grant
    Filed: May 26, 1992
    Date of Patent: August 24, 1993
    Assignee: E. I. Du Pont de Nemours and Company
    Inventors: Salvatore A. Bruno, Ian Burn
  • Patent number: 5219611
    Abstract: Low porosity titania forms containing only a small amount of hydroxyl groups and possessing a high refractive index which are property stable regardless of humidity level and which prohibit electrical and gas leakage and optical loss, are obtained in a sol-gel process by rapidly heating to curing temperature, e.g. at a rate of 8000.degree. C./min. One application provides more stable, longer-lasting sol-gel prepared optical interference filters. Other applications provide capacitors with high capacitance and optical planar waveguides.
    Type: Grant
    Filed: September 30, 1991
    Date of Patent: June 15, 1993
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Emmanuel P. Giannelis, Joseph L. Keddie
  • Patent number: 5186920
    Abstract: The iron content of the TiO.sub.2 -containing precursor is subjected to a direct reduction to effect a metallization of at least 90%. The reduced product is separated into magnetic and nonmagnetic fractions by magnetic separation. To oxidize the metallic iron, the magnetic fraction is subjected to an oxidation in an acid medium with agitation at a pH value below 2, under a pressure of 12 to 24 bars, and at a temperature from 150.degree. to 210.degree. C. with a supply of an oxygen-containing gas that contains at least 90% oxygen. When the suspension has been pressure-relieved, the hematite which has been formed is separated from the TiO.sub.2 concentrate.
    Type: Grant
    Filed: November 19, 1991
    Date of Patent: February 16, 1993
    Assignee: Metallgesellschaft Aktiengesellschaft
    Inventors: Rudolf Heng, Walter Koch, Ali-Naghi Beyzavi
  • Patent number: 5176741
    Abstract: A process for producing salt free titanium powder by reacting zinc and a titanium halide in the presence of a reducing agent to form a solid zinc titanium product. Titanium halide vapor is introduced into a liquid alloy of zinc and the reducing agent at a temperature between 650.degree.-907.degree. C. The titanium halide is introduced beyond the titanium solubility limit in zinc to precipitate a zinc titanium intermetallic compound and also produce a liquid halide salt. The intermetallic compound forms and accumulates at an interface between the salt and liquid alloy. The compound is periodically removed from the interface, crushed into a powder, and the zinc is evaporatively separated from the titanium to produce pure titanium powder. The process preferably occurs above the peritectic decomposition temperature of Zn.sub.3 Ti, and most preferably above the peritectic decomposition temperature of Zn.sub.2 Ti, to maximize the titanium content of the resulting product.
    Type: Grant
    Filed: October 11, 1990
    Date of Patent: January 5, 1993
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Robert W. Bartlett, Lee S. Richardson, Kay D. Bowles, James J. Hemenway
  • Patent number: 5152974
    Abstract: Process for the manufacture of a powder of mixed metal oxides by cohydrolysis of metal alcoholates in the presence of an acidic organic compound and mixed metal oxide powders in which the molar relationships R1 and R2 of a metal oxide to the sum of the metal oxides in the powder and in a particle of the powder are such that ##EQU1## The process applies especially well to powders of zirconia doped with yttrium oxide or other oxides.
    Type: Grant
    Filed: May 20, 1991
    Date of Patent: October 6, 1992
    Assignee: Solvay S.A.
    Inventors: Franz Legrand, Luc Lerot, Patricia De Bruycker
  • Patent number: 5149510
    Abstract: A process for the preparation of improved zirconium oxides comprising A) providing a zirconium oxide which has been produced by thermal decomposition of zircon followed by chemical digestion of the resultant silicate phases, B) reacting the zirconium oxide at high temperature with an alkali metal hydroxide or carbonate so as to form an alkali metal zirconate, C) hydrolyzing the resultant alkali metal zirconate so as to produce a suspension of zirconium oxide hydrate in a concentrated solution of alkali metal hydroxide, D) separating the zirconium oxide hydrate from the concentrated solution and washing the zirconium oxide hydrate which has been isolated, and E) drying the zirconium oxide hydrate at a temperature in the range of from 110.degree. to 570.degree. C.
    Type: Grant
    Filed: May 25, 1990
    Date of Patent: September 22, 1992
    Assignee: Societe Europeen des Produits Refractaires
    Inventors: Joseph Recasens, Daniel Urffer, Pierre Ferlanda
  • Patent number: 5094834
    Abstract: In the production of TiO.sub.2 pigments by the steps of digesting titanium-containing raw materials with sulfuric acid, hydrolyzing the titanyl sulfate obtained, separating the waste acid from the hydrolyzate, bleaching the hydrolyzate and calcining the hydrolyzate after addition of rutilizing nuclei and standardizing chemicals to form TiO.sub.2 pigments, and recovering sulfuric acid from the waste acid, the improvement which comprises employing as the rutilizing nuclei nuclei produced from part of the bleached and then washed hydrolyzate, which nuclei are added to the remainder of the bleached and washed hydrolyzate before calcination.
    Type: Grant
    Filed: October 31, 1990
    Date of Patent: March 10, 1992
    Assignee: Bayer Aktiengesellschaft
    Inventors: Gerhard Wiederhoft, Gunter Lailach
  • Patent number: 5085837
    Abstract: Process for purifying TiO.sub.2 ore consisting essentially of subjecting the ore to two or more leaching treatments, said leaching treatments alternating between use of an aqueous solution of a mineral acid and an aqueous solution of an alkali metal compound selected from the group consisting essentially of alkali metal carbonates, hydroxides or mixtures thereof.
    Type: Grant
    Filed: December 27, 1990
    Date of Patent: February 4, 1992
    Assignee: E. I. Du Pont de Nemours and Company
    Inventors: Tze Chao, George H. Senkler, Jr.
  • Patent number: 5076884
    Abstract: A spent pickling solution containing a relatively small percentage of hydrofluoric acid and used for pickling zirconium or hafnium so as to be saturated with zirconium or hafnium fluoride, is treated by the addition thereto of sodium sulfate, Na.sub.2 SO.sub.4, to precipitate sodium zirconium or hafnium fluoride. The remaining solution is recycled for further pickling use, and may have fluoride concentration increased by the addition of calcium fluoride thereto resulting in the precipitation of calcium sulfate.
    Type: Grant
    Filed: July 19, 1990
    Date of Patent: December 31, 1991
    Assignee: Westinghouse Electric Corp.
    Inventors: Carlos L. Aguilar, Roy G. Walker
  • Patent number: 5068093
    Abstract: Titanium slag and ilmenite are subjected to a parallel treatment with sulphuric acid obtained by mixing different proportions of sulphuric acid having concentrations of about 98.5% by weight and about 85% by weight, respectively. The reaction mixtures have a temperature slightly below a predetermined starting temperature and the reactions are started by adding small quantities of superheated steam having a temperature above the predetermined starting temperature. The thus obtained solutions are separated from the respective treatment residues and combined. The combined solutions are further processed for obtaining titanium dioxide. The mother liquor constitutes sulphuric acid of a concentration in the range of about 23% by weight and containing metal sulphates. This mother liquor is concentrated to a sulphuric acid concentration of approximately 85% by weight and recycled.
    Type: Grant
    Filed: November 17, 1988
    Date of Patent: November 26, 1991
    Assignee: Sulzer-Escher Wyss AG
    Inventor: Josef Mauer
  • Patent number: 4988495
    Abstract: A process for the preparation of an improved quality TiO.sub.2 pigment by hydrolysis of titanyl sulphate, isolation of the hydrolysis product form the waste acid produced during the hydrolysis, washing of the hydrolysis product and calcination of the hydrolysis product to form the TiO.sub.2 pigment, wherein the hydrolysis of the titanyl sulphate is carried out using separately produced hydrolysis nuclei which have been produced by a reaction of titanium salts with alkaline reagents, and in which waste acid and/or wash liquid containing waste acid is added after at least 50% of the total duration of the hydrolysis process.
    Type: Grant
    Filed: December 15, 1989
    Date of Patent: January 29, 1991
    Assignee: Bayer Aktiengesellschaft
    Inventors: Gerhard Wiederhoft, Eckhard Bayer, Wolfgang D. Muller, Gunter Lailach
  • Patent number: 4933153
    Abstract: A synthetic rutile is prepared from a titaniferous slag, typically containing at least about 1.0 weight percent magnesium oxide and at least some portion of its titanium values as Ti.sub.2 O.sub.3, by a method comprising contacting the slag with chlorine gas at a temperature between about 400.degree. C.-800.degree. C., such that the magnesium oxide and chlorine gas react to form magnesium chloride, and then removing the magnesium chloride from the slag, typically by washing the slag with water. In one embodiment, the synthetic rutile can be further upgraded by subjecting it to either a caustic or acid leaching treatment.
    Type: Grant
    Filed: December 9, 1987
    Date of Patent: June 12, 1990
    Assignee: QIT Fer et Titane, Inc.
    Inventor: Michel Gueguin
  • Patent number: 4917872
    Abstract: A method for producing titanium fluoride comprises: a dissolution process, wherein iron-containing titanium material is dissolved in solutions containing hydrofluoric acid, fluoride solutions being produced; a first crystallization and separation process, wherein ferric fluoride is crystallized and ferric fluoride crystals thus obtained are separated from the fluoride solutions by cooling the fluoride solutions, crude titanium fluoride solutions being produced; a second crystallization and separation process, wherein a mixed salt of (NH.sub.4).sub.2 TiF.sub.6 and (NH).sub.3 FeF.sub.6 is crystallized and separated by mixing ammonium fluoride solutions with the crude titanium fluoride solutions to obtain a mixture and concentrating the mixture; a first pyrolysis process, wherein the ammonium fluoride salt is pyrolyzed at a temperature of from 300.degree. to 800.degree. C. in a stream of dry gas after having dried the ammonium fluoride, solid ferric fluoride (FeF.sub.3) and gaseous TF.sub.4, HF and NH.sub.
    Type: Grant
    Filed: November 25, 1988
    Date of Patent: April 17, 1990
    Assignee: NKK Corporation
    Inventors: Keisuke Nakahara, Hideyuki Yoshikoshi, Toshio Hinami, Takaho Kawawa
  • Patent number: 4902485
    Abstract: A process for the production of TiO.sub.2 pigments by the sulfate process by digestion of titanium-containing raw materials with sulfuric acid, hydrolysis of the titanyl sulfate formed, purification of the hydrolyzate and calcination of the hydrolyzate in rotary kilns, wherein the calcination conditions are regulated through adjustment of the SO.sub.2 content of the waste gases issuing from the rotary kilns used for calcination.
    Type: Grant
    Filed: November 23, 1988
    Date of Patent: February 20, 1990
    Assignee: Bayer Aktiengesellschaft
    Inventors: Eckhard Bayer, Gunter Lailach
  • Patent number: 4888309
    Abstract: Three dimensional hydrophobic substantially inorganic porous structure comprises a myriad of cavities interconnected by holes in which the diameters of the cavities are in the range of from 0.5 to 100 .mu.m and the diameters of the holes are in the range of from 0.1 to 20 .mu.m the porosity of the structure having a narrow pore size distribution with the cavities having a pore volume of at least 2 cc/g for a predetermined 10 .mu.m range of sizes. The structure is preferably an inorganic oxide selected from the group comprising alumina, silica, titania, zirconia and mixtures thereof. The structure is preferably made from an oil-in-water emulsion with a silylating agent in the internal phase so as to render the structure hydrophobic.
    Type: Grant
    Filed: October 16, 1987
    Date of Patent: December 19, 1989
    Assignee: Unilever Patent Holdings BV
    Inventor: Abraham Araya
  • Patent number: 4885098
    Abstract: An elastic bar member is coupled to an orbiting mass oscillator and the entire assembly is suspended from a cable or the like such that the bar member has freedom of lateral motion and is nakedly immersed in a slurry having particulate material contained therein such as a mineral ore reject from which metal has been extracted. The rotor of the orbiting mass oscillator is driven at a speed such as to generate cycloidal sonic energy in the bar preferably at a frequency such as to set up resonant standing wave vibration of the bar in a cycloidal quadrature pattern. The cycloidal vibrational energy tends to set the surrounding fluid material into a whirling rotation or rotary traveling wave which facilitates the agglomeration or coagulation of the particles in the material and enhances the settling operation to make for more complete separation of the particles from the liquid.
    Type: Grant
    Filed: October 21, 1988
    Date of Patent: December 5, 1989
    Inventor: Albert G. Bodine
  • Patent number: 4883532
    Abstract: An elastic bar member is clamped to an orbiting mass oscillator and the entire assembly is suspended from a cable or the like such that the bar member has freedom of lateral motion and is nakedly immersed in a leachant having a material contained therein such as a mineral ore from which metal is to be extracted. The rotor of the orbiting mass oscillator is driven at a speed such as to generate cycloidal sonic energy in the bar preferably at a frequency such as to set up resonant standing wave vibration of the bar in a cycloidal nutating pattern. The cycloidal vibrational energy tends to set the surrounding fluid material into a whirling rotation or rotary traveling wave which facilitates the mixing of the ore and leachant and enhances the leaching operation to make for more complete separation of the mineral from the ore.
    Type: Grant
    Filed: July 22, 1988
    Date of Patent: November 28, 1989
    Inventor: Albert G. Bodine
  • Patent number: 4873064
    Abstract: Calcined powder of coagulated spherical particles having a secondary coagulated particle size of 0.2 .mu.m to 3 .mu.m, composed of primary particles of less than 500 .ANG. in the crystalline size, and obtained by calcining ultrafine zirconia particles with or without other metal compounds is disclosed. As the ultrafine zirconia particles, coagulated spherical zirconia particles composed of ultrafine monoclinic primary particles of less than 100 .ANG. in the crystalline size, coagulated with each other into a substantially spherical shape with the size of the coagulated particles being in a range from 0.2 .mu.m to 3 .mu.m is preferably used.
    Type: Grant
    Filed: March 4, 1986
    Date of Patent: October 10, 1989
    Assignee: Nissan Chemical Industries, Ltd.
    Inventor: Etsuro Kato
  • Patent number: 4853205
    Abstract: Process of using supercritical fluid to selectively separate, purify and recover metal halides.
    Type: Grant
    Filed: March 12, 1987
    Date of Patent: August 1, 1989
    Assignee: The United states of America as represented by the Secretary of the Interior
    Inventors: William K. Tolley, Alton B. Whitehead
  • Patent number: 4822575
    Abstract: The invention concerns processes for the preparation of zirconium compositions which on calcination form zirconia. The zirconium compositions are prepared by the addition of an ammonia source to an aqueous zirconium sulfate solution to give a solution pH in the range of from 0.1 to 2.5 and preferably 1.0 to 2.0. The zirconium composition precipitated from solution appears crystalline, is readily collected by filtration and has low levels of metallic impurities. Therefore, the process of the invention may be used to advantage in the purification zirconium compounds.The invention also includes the zirconium compositions and processes for the purification of zirconium compounds including zirconia.
    Type: Grant
    Filed: January 2, 1987
    Date of Patent: April 18, 1989
    Assignee: ICI Australia Limited
    Inventors: Kian F. Ngian, Angus J. Hartshorn, David H. Jenkins