Carbon Filament Patents (Class 427/112)
  • Patent number: 11390761
    Abstract: A polymer nanocomposite coating of an elastomeric film containing at least 30 wt % conductive nanoparticles based on combined weight of elastomer and conductive nanoparticles is provided. The conductive nanoparticles have an average particle size along each dimension of less than 500 nm for nanoparticles having an aspect ratio of less than 20:1 or have an average particle size along each dimension of less than 2000 nm for nanoparticles having an aspect ratio of 20:1 or greater. The conductive nanoparticles are formed into hierarchical micro- and nano-sized aggregates having re-entrant morphology. The coating is both superoleophobic and conductive and retains these properties even when stretched under strain to over 100%. The coatings may be produced with simple spray technology.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: July 19, 2022
    Assignee: University of Western Ohio
    Inventors: Lorenzo Ferrari, Dana K. Adkinson, Jun Yang, Binyu Yu, Maxim Paliy, Brad Kobe
  • Patent number: 8993170
    Abstract: A composite carbon material of negative electrode in lithium ion, which is made of composite graphite, includes a spherical graphite and a cover layer, wherein the cover layer is pyrolytic carbon of organic substance. Inserted transition metal elements are contained between layers of graphite crystal. Preparation of the negative electrode includes the steps of: crushing graphite, shaping to form a spherical shape, purifying treatment, washing, dewatering and drying, dipped in salt solution doped by transition metal in multivalence, mixed with organic matter, covering treatment, and carbonizing treatment or graphitization treatment. The negative electrode provides advantages of reversible specific capacity larger than 350 mAh/g, coulomb efficiency higher than 94% at first cycle, conservation rate for capacity larger than 8-% in 500 times of circulation.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: March 31, 2015
    Assignee: BTR New Energy Materials Inc.
    Inventors: Min Yue, Wanhong Zhang
  • Patent number: 8889215
    Abstract: The present disclosure relates to a method for making a plurality of touch panels one time. The method includes following steps. A substrate is provided. The substrate has a surface defining a number of target areas with each including two areas: a touch-view area and a trace area. An adhesive layer is formed on the surface of the substrate. A carbon nanotube film is formed on the adhesive layer. The adhesive layer is solidified. An electrode and a conductive trace are formed on each target area so that part of the carbon nanotube film is exposed from a space between adjacent conductive lines of the conductive trace to form an exposed carbon nanotube film on each trace area. The exposed carbon nanotube film on each trace area is removed to obtain a plurality of transparent conductive layers spaced from each other. A number of touch panels is obtained by cutting the substrate.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: November 18, 2014
    Assignee: Shih Hua Technology Ltd.
    Inventors: Jia-Shyong Cheng, Hung-Yi Hung, Jeah-Sheng Wu
  • Patent number: 8883248
    Abstract: The present disclosure relates to a method for making a touch panel. The method includes following steps. A substrate is provided, wherein the substrate has a surface and defines two areas: a touch-view area and a trace area; applying an adhesive layer on the surface of the substrate. A carbon nanotube film is placed on a surface of the adhesive layer. The adhesive layer is solidified. An electrode and a conductive trace are formed on a surface of the carbon nanotube film so that part of the carbon nanotube film on the trace area is exposed from space between adjacent conductive lines of the conductive trace to form an exposed carbon nanotube film. The exposed carbon nanotube film is removed.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: November 11, 2014
    Assignee: Shih Hua Technology Ltd.
    Inventors: Jia-Shyong Cheng, Hung-Yi Hung, Jeah-Sheng Wu
  • Patent number: 8871293
    Abstract: The present disclosure relates to a method for making touch panel. A substrate having a surface is provided. The substrate defines two areas: a touch-view area and a trace area. An adhesive layer is formed on the surface of the substrate. The adhesive layer on the trace area is solidified. A carbon nanotube layer is formed on the adhesive layer. The adhesive layer on the touch-view area is solidified. The carbon nanotube layer on the trace area is removed. At least one electrode and a conductive trace is formed.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: October 28, 2014
    Assignee: Shih Hua Technology Ltd.
    Inventors: Jia-Shyong Cheng, Po-Shan Huang, Po-Sheng Shih, Chun-Yi Hu, Chih-Han Chao, Jeah-Sheng Wu
  • Patent number: 8697180
    Abstract: Certain example embodiments of this invention relate to large-area transparent conductive coatings (TCCs) including carbon nanotubes (CNTs) and nanowire composites, and methods of making the same. The ?dc/?opt ratio of such thin films may be improved via stable chemical doping and/or alloying of CNT-based films. The doping and/or alloying may be implemented in a large area coating system, e.g., on glass and/or other substrates. In certain example embodiments, a CNT film may be deposited and then doped via chemical functionalization and/or alloyed with silver and/or palladium. Both p-type and n-type dopants may be used in different embodiments of this invention. In certain example embodiments, silver and/or other nanowires may be provided, e.g., to further decrease sheet resistance. Certain example embodiments may provide coatings that approach, meet, or exceed 90% visible transmission and 90 ohms/square target metrics.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: April 15, 2014
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy
  • Patent number: 8277872
    Abstract: Methods of manufacturing a carbon structure including exposing a carbon fiber substrate to oxygen at a first predetermined temperature and activating the carbon fiber substrate by exposure to oxygen at a second predetermined temperature. A catalyst including palladium is deposited on the activated carbon fiber substrate. The deposited catalyst on the carbon fiber structure is exposed to a hydrocarbon at a third predetermined temperature to grow carbon structures thereon. The carbon structures grown can be multimodal in nature with structures that are nano-scale and/or submicron-scale.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: October 2, 2012
    Assignee: STC.UNM
    Inventors: Marwan S. Al-Haik, Jonathan Phillips, Claudia Luhrs, Mahmoud Reda Taha
  • Patent number: 8178155
    Abstract: A method of manufacturing a high surface area per unit weight carbon electrode includes providing a substrate, depositing a carbon-rich material on the substrate to form a film, and after the depositing, activating the carbon-rich material to increase the surface area of the film of carbon-rich material. Due to the activation process being after deposition, this method enables use of low cost carbon-rich material to form a carbon electrode in the capacitor. The electrode may be used in capacitors, ultracapacitors and lithium ion batteries. The substrate may be part of the electrode, or it may be sacrificial—being consumed during the activation process. The carbon-rich material may include any of carbonized material, carbon aerogel and metal oxides, such as manganese and ruthenium oxide. The activation may include exposing the carbon-rich material to carbon dioxide at elevated temperature, in the range of 300 to 900 degrees centigrade.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: May 15, 2012
    Assignee: Applied Materials, Inc.
    Inventor: Nag B. Patibandla
  • Patent number: 7985114
    Abstract: A method for making a field emission lamp generally includes the steps of: (a) providing a cathode emitter; (b) providing a transparent glass tube having a carbon nanotube transparent conductive film and a fluorescent layer, wherein the carbon nanotube transparent conductive film and the fluorescent layer are both disposed on an inner surface of the transparent glass tube; (c) providing a first glass feedthrough, a second glass feedthrough, and a nickel pipe, wherein the first glass feedthrough has an anode down-lead pad and an anode down-lead pole connected to the anode down-lead pad, and the second glass feedthrough has a cathode down-lead pole; (d) securing the nickel pipe to one end of the cathode emitter and securing the other end of the cathode emitter to one end of the cathode down-lead pole of the second glass feedthrough; and (e) melting and assembling the first and second glass feedthroughs to ends of the transparent glass tube respectively.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: July 26, 2011
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Lin Xiao, Feng Zhu, Liang Liu, Shou-Shan Fan
  • Patent number: 7943196
    Abstract: Methods, manufactures, machines and compositions are described for nanotransfer and nanoreplication using deterministically grown sacrificial nanotemplates. A method includes depositing a catalyst particle on a surface of a substrate to define a deterministically located position; growing an aligned elongated nanostructure on the substrate, an end of the aligned elongated nanostructure coupled to the substrate at the deterministically located position; coating the aligned elongated nanostructure with a conduit material; removing a portion of the conduit material to expose the catalyst particle; removing the catalyst particle; and removing the elongated nanostructure to define a nanoconduit.
    Type: Grant
    Filed: November 14, 2005
    Date of Patent: May 17, 2011
    Assignee: UT-Battelle, LLC
    Inventors: Anatoli V. Melechko, Timothy E. McKnight, Michael A. Guillorn, Bojan Ilic, Vladimir I. Merkulov, Mitchel J. Doktycz, Douglas H. Lowndes, Michael L. Simpson
  • Publication number: 20030219653
    Abstract: A method for forming a corrosion resistant electrode for a battery includes supplying an electrode for use in the battery and exposing the electrode to an environment including vaporized carbon. At least some of the carbon from the environment may be transferred to the electrode.
    Type: Application
    Filed: April 25, 2003
    Publication date: November 27, 2003
    Applicant: Caterpillar Inc.
    Inventors: Kurtis C. Kelley, Steven C. Taylor
  • Patent number: 4892402
    Abstract: A contact lens is made hydrophilic by contacting the lens with a treating solution containing a hydrophilic monomer, at least one photosensitizer selected from aromatic ketones or quinones, and a sovlent, and thereafter irradiating the contact lens with ultraviolet light.
    Type: Grant
    Filed: April 28, 1988
    Date of Patent: January 9, 1990
    Assignee: Hoya Corporation
    Inventors: Takeyuki Sawamoto, Koichi Ishida, Niro Tarumi, Tetsuro Izumitani
  • Patent number: 4142008
    Abstract: The invention is directed to a method of making a high strength-high modulus boron filament on a carbon substrate which is coated with pyrolytic graphite. Boron is deposited over the pyrolytic graphite. A preferred method of making such a filament citing specific pyrolytic graphite deposition temperatures is described.
    Type: Grant
    Filed: June 27, 1977
    Date of Patent: February 27, 1979
    Assignee: Avco Corporation
    Inventor: Harold E. DeBolt
  • Patent number: 4131697
    Abstract: A coating of silicon carbide is formed on carbon filaments by passing the heated filaments into an atmosphere of hydrogen and silicon tetrachloride to deposit silicon, and then into a silicon carbide-forming atmosphere. Carbon filaments having a coating of silicon carbide up to 0.2 micron or over 10 microns thick are described.
    Type: Grant
    Filed: September 12, 1977
    Date of Patent: December 26, 1978
    Assignee: Association pour la Recherches et le Developpement des Methodes et Processus Industriels
    Inventors: Jean-Louis R. G. Randon, Georges S. Slama
  • Patent number: 4029829
    Abstract: The invention provides a more economical carbon-fiber-reinforced carbon surfaced friction member, such as a brake disc, by replacing a disc which is of fiber-reinforced carbon throughout its thickness by a disc in which a fiber-reinforced surface layer is bonded to a base of a less expensive material, such as bulk graphite. A textile may be applied to the base and carbonized and carbon deposited on the textile layer by the multiple impregnation process or the chemical vapor deposition process. In the latter process the base is preferably heated above the temperature of the textile layer, e.g. by electrical induction or resistance, to obtain carbon deposition from the base outward through the textile layer.
    Type: Grant
    Filed: January 27, 1975
    Date of Patent: June 14, 1977
    Assignee: Dunlop Limited
    Inventors: John Victor Weaver, Ronald Fisher
  • Patent number: 3975482
    Abstract: An improved process for drawing a continuous length of an acrylic multifilament fibrous material is provided. Prior to drawing at an elevated temperature by continuous passage through a suitable drawing zone the surface of the fibrous material is coated with powdered graphite (e.g. colloidal graphite) via contact with a dipersion containing the graphite paticles which serve to improve the drawing properties of the same. The process is suited for the hot drawing of a continuous length of an acrylic multifilament fibrous material (e.g. a substantially untwisted tow) which is intended for subsequent thermal stabilization, and cabonization to form a carbonaceous fibrous material.
    Type: Grant
    Filed: June 10, 1974
    Date of Patent: August 17, 1976
    Assignee: Celanese Corporation
    Inventor: Richard N. Rulison