Metal Oxide, Peroxide, Or Hydroxide Coating Patents (Class 427/126.3)
  • Publication number: 20150004480
    Abstract: Electrodes, energy storage devices using such electrodes, and associated methods are disclosed. In an example, an electrode for use in an energy storage device can comprise porous silicon having a plurality of channels and a surface, the plurality of channels opening to the surface; and a structural material deposited within the channels; wherein the structural material provides structural stability to the electrode during use.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Donald S. Gardner, Charles W. Holzwarth
  • Publication number: 20140377660
    Abstract: Provided is a lithium composite oxide having a uniform and suitable particle size and high specific surface area due to a hollow structure that can be produced on an industrial scale. A nickel composite hydroxide as a raw material thereof is obtained controlling the particle size distribution of the nickel composite hydroxide, the nickel composite hydroxide having a structure comprising a center section that comprises minute primary particles, and an outer-shell section that exists on the outside of the center section and comprises plate shaped primary particles that are larger than the primary particles of the center section, by a nucleation process and a particle growth process that are separated by controlling the pH during crystallization, and by controlling the reaction atmosphere in each process and the manganese content in a metal compound that is supplied in each process.
    Type: Application
    Filed: December 20, 2012
    Publication date: December 25, 2014
    Inventors: Atsushi Fukui, Hiroyuki Toya
  • Publication number: 20140377655
    Abstract: A composite cathode active material, a method of preparing the composite cathode active material, a cathode including the composite cathode active material, and a lithium battery including the cathode. The composite cathode active material includes a lithium intercalatable material; and a garnet oxide, wherein an amount of the garnet oxide is about 1.9 wt % or less, based on a total weight of the composite cathode active material.
    Type: Application
    Filed: April 25, 2014
    Publication date: December 25, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jun-young MUN, Jae-myung LEE, Gue-sung KIM, Yoon-sok KANG, Myung-hoon KIM, Jun-ho PARK, Jin-hwan PARK, Jae-gu YOON, Byung-jin CHOI
  • Publication number: 20140377661
    Abstract: Disclosed are an electrode for secondary batteries including an electrode mixture coated on one surface or opposite surface of an electrode current collector, and a method of manufacturing the same. The electrode mixture includes an electrode mixture layer A, which is a portion close to a current collector, and an electrode mixture layer, which is a portion distant from a current collector. The electrode mixture layer A includes a mixture of two active materials, average diameters of which are different, and the electrode mixture layer B includes active materials, average diameters of which are the same.
    Type: Application
    Filed: September 15, 2014
    Publication date: December 25, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Iljoon Lee, Jae Hyun Lee, Jihyun Kim
  • Patent number: 8911821
    Abstract: A method for forming nanometer scale dot-shaped materials is provided. The method includes providing a sub-micrometer scale material and a metallo-organic compound. The sub-micrometer scale material and the metallo-organic compound are mixed in a solvent. Then, the metallo-organic compound is decomposed by thermal decomposition process and reduced to form a plurality of nanometer scale dot-shaped materials on the sub-micrometer scale material, wherein the sub-micrometer scale material and the nanometer-scale dot-shaped materials are heterologous materials. Then, the plurality of nanometer scale dot-shaped materials is melted, such that a plurality of the adjacent sub-micrometer scale materials is connected to each other to form a continuous interface between the sub-micrometer scale materials.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: December 16, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Chun-An Lu, Hong-Ching Lin, Kuo-Chan Chiou, Szu-Po Huang
  • Publication number: 20140363741
    Abstract: The present invention relates to an electrode active material for a lithium secondary battery and the preparation thereof. The electrode active material for a lithium secondary battery according to the present invention comprises a core including (a) first particulates consisting of an oxide of a metal (metalloid) capable of alloying with lithium, and (b) second particulates consisting of an oxide containing the same metal (metalloid) together with lithium; and a conductive carbon layer coated on the surface of the core. The electrode active material of the present invention has high capacity and improved electric conductivity, thereby providing good charge and discharge rate capability.
    Type: Application
    Filed: August 25, 2014
    Publication date: December 11, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Yong-Ju Lee, Je-Young Kim, Seung-Youn Choi, Dong-Sub Jung
  • Patent number: 8906449
    Abstract: A method for making a cathode composite material of a lithium ion battery is disclosed. In the method, a composite precursor is formed. The composite precursor includes a cathode active material precursor and a coating layer precursor coated on a surface of the cathode active material precursor. The composite precursor is reacted with a lithium source chemical compound, to lithiate both the cathode active material precursor and the coating layer precursor in the composite precursor.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: December 9, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Ya-Dong Li, Jun Lu, Wei-Yang Wang, Qing Peng
  • Publication number: 20140356705
    Abstract: Encapsulated lithium sulfide particles, e.g., Li2S nanoparticles, as well as associated or corresponding novel cathodes of or for Li/S batteries and methods of fabrication such as to effectively minimize or desirably overcome or resolve one or more of the issues that commonly contribute to rapid capacity fading of conventional Li/S batteries during cycling.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 4, 2014
    Inventor: Leon L. Shaw
  • Publication number: 20140349834
    Abstract: Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1-z))O3 [wherein 0.9<x<1.3, 0?y<0.1, and 0?z<0.9 are satisfied] with a composite oxide (B) or a carboxylic acid (B) represented by general formula (2): CnH2n+1COOH [wherein 3?n?7 is satisfied]. The composite oxide (B) contains one or at least two elements selected from the group consisting of P (phosphorus), Si, Ce, and Bi and one or at least two elements selected from the group consisting of Sn, Sm, Nd, and Y (yttrium).
    Type: Application
    Filed: July 31, 2014
    Publication date: November 27, 2014
    Inventors: Jun Fujii, Hideaki Sakurai, Takashi Noguchi, Nobuyuki Soyama
  • Publication number: 20140349139
    Abstract: Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1-z))O3 [wherein 0.9<x<1.3, 0?y<0.1, and 0?z<0.9 are satisfied] with a composite oxide (B) or a carboxylic acid (B) represented by general formula (2): CnH2n+1COOH [wherein 3?n?7 is satisfied]. The composite oxide (B) contains one or at least two elements selected from the group consisting of P (phosphorus), Si, Ce, and Bi and one or at least two elements selected from the group consisting of Sn, Sm, Nd, and Y (yttrium).
    Type: Application
    Filed: July 31, 2014
    Publication date: November 27, 2014
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Jun Fujii, Hideaki Sakurai, Takashi Noguchi, Nobuyuki Soyama
  • Publication number: 20140340854
    Abstract: An electronic device includes a substrate; and a plurality of thin-film elements formed on the substrate. Further, the thin-film element includes a thin-film section having a function selected from a group including piezoelectric effect, inverse piezoelectric effect, charge storage, semiconductivity, and conductivity, and the plurality of thin-film elements includes the thin-film sections having two or more different functions.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 20, 2014
    Inventors: Yoshikazu Akiyama, Akira Shimofuku, Atsushi Takeuchi, Osamu Machida
  • Publication number: 20140339511
    Abstract: A quantum-dots containing multi-component inorganic oxide thin film is provided to include an amorphous inorganic oxide bulk region and a plurality of crystalline inorganic oxide regions, wherein the crystalline inorganic oxide regions are discontinuously formed to be surrounded by the amorphous inorganic oxide of the bulk region.
    Type: Application
    Filed: September 17, 2013
    Publication date: November 20, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventors: Dong Chan KIM, Seok Gyu YOON, Kyu Hwan HWANG, Eung Do KIM, Bo Ra JUNG, Dong Kyu SEO, Won Jong KIM, Young Woo SONG, Jong Hyuk LEE
  • Publication number: 20140329067
    Abstract: A dispersion includes metallic, metal oxide, or metal precursor nanoparticles; a thermally cleavable polymeric dispersant; an optional dispersion medium; and a thermally cleavable agent. Pastes, coated layers, and patterns may contain the dispersion. A method for producing the specific thermally cleavable dispersant and for producing the metallic nanoparticle dispersions. The dispersions allow the reduction or avoidance of organic residue in coated layers and patterns on substrates, the use substrates of low thermal resistance, and faster processing times.
    Type: Application
    Filed: December 18, 2012
    Publication date: November 6, 2014
    Inventors: Xavier André, Dirk Bollen
  • Publication number: 20140329006
    Abstract: Transparent conductive coatings are polished using particle slurries in combination with mechanical shearing force, such as a polishing pad. Substrates having transparent conductive coatings that are too rough and/or have too much haze, such that the substrate would not produce a suitable optical device, are polished using methods described herein. The substrate may be tempered prior to, or after, polishing. The polished substrates have low haze and sufficient smoothness to make high-quality optical devices.
    Type: Application
    Filed: September 27, 2012
    Publication date: November 6, 2014
    Applicant: VIEW, INC.
    Inventors: Yashraj Bhatnagar, Robert T. Rozbicki, Rao Mulpuri
  • Publication number: 20140329005
    Abstract: A method for depositing a thin film of a coating material onto an electrically conductive particle surface via supercritical fluid deposition includes providing electrically conductive particles, providing a precursor of a coating material, dissolving the precursor of the coating material into a supercritical fluid solvent to form a supercritical solution of the precursor and subsequently exposing the conductive particles to the supercritical solution in a reactor under conditions at which supercritical fluid deposition of a thin film of the coating material onto surfaces of the conductive particles occurs.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 6, 2014
    Applicant: MICROREACTOR SOLUTIONS LLC
    Inventors: BRIAN NELTNER, RICK BRYAN WOODRUFF
  • Patent number: 8877520
    Abstract: A method for manufacturing a ferroelectric film including the steps of forming a burnable material film containing hydrogen of not less than 1% by weight on a substrate; forming an amorphous thin film including a ferroelectric material on the burnable material film; and oxidizing and crystallizing the amorphous thin film while supplying hydrogen to the amorphous thin film by burning the burnable material film through heating of the burnable material film and the amorphous thin film in an oxygen atmosphere, to thereby form a first ferroelectric film on the substrate.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: November 4, 2014
    Assignee: Youtec Co., Ltd
    Inventors: Takeshi Kijima, Yuuji Honda, Haruhito Hayakawa, Takekazu Shigenai
  • Publication number: 20140322868
    Abstract: Some implementations provide a semiconductor device that includes a die, an under bump metallization (UBM) structure coupled to the die, and a barrier layer. The UBM structure has a first oxide property. The barrier layer has a second oxide property that is more resistant to oxide removal from a flux material than the first oxide property of the UBM structure. The barrier layer includes a top portion, a bottom portion and a side portion. The top portion is coupled to the UBM structure, and the side portion is substantially oxidized.
    Type: Application
    Filed: July 10, 2014
    Publication date: October 30, 2014
    Inventors: Omar James Bchir, Milind Pravin Shah, Houssam Wafic Jomaa, Manuel Aldrete, Chin-Kwan Kim
  • Publication number: 20140312003
    Abstract: A mechanism is provided for forming a nanodevice. A reservoir is filled with a conductive fluid, and a membrane is formed to separate the reservoir in the nanodevice. The membrane includes an electrode layer having a tunneling junction formed therein. The membrane is formed to have a nanopore formed through one or more other layers of the membrane such that the nanopore is aligned with the tunneling junction of the electrode layer. The tunneling junction of the electrode layer is narrowed to a narrowed size by electroplating or electroless deposition. When a voltage is applied to the electrode layer, a tunneling current is generated by a base in the tunneling junction to be measured as a current signature for distinguishing the base. When an organic coating is formed on an inside surface of the tunneling junction, transient bonds are formed between the electrode layer and the base.
    Type: Application
    Filed: August 20, 2013
    Publication date: October 23, 2014
    Applicant: International Business Machines Corporation
    Inventors: Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Deqiang Wang
  • Publication number: 20140315092
    Abstract: The disclosure describes an exemplary binding layer formed on Aluminum (Al) substrate that binds the substrate with a coated material. Additionally, an extended form of the binding layer is described. By making a solution containing Al-transition metal elements-P—O, the solution can be used in slurry making (the slurry contains active materials) in certain embodiments. The slurry can be coated on Al substrate followed by heat treatment to form a novel electrode. Alternatively, in certain embodiments, the solution containing Al-transition metal elements-P—O can be mixed with active material powder, after heat treatment, to form new powder particles bound by the binder.
    Type: Application
    Filed: April 18, 2013
    Publication date: October 23, 2014
    Inventors: Chun-Chieh Chang, Tsun Yu Chang
  • Publication number: 20140312002
    Abstract: A mechanism is provided for forming a nanodevice. A reservoir is filled with a conductive fluid, and a membrane is formed to separate the reservoir in the nanodevice. The membrane includes an electrode layer having a tunneling junction formed therein. The membrane is formed to have a nanopore formed through one or more other layers of the membrane such that the nanopore is aligned with the tunneling junction of the electrode layer. The tunneling junction of the electrode layer is narrowed to a narrowed size by electroplating or electroless deposition. When a voltage is applied to the electrode layer, a tunneling current is generated by a base in the tunneling junction to be measured as a current signature for distinguishing the base. When an organic coating is formed on an inside surface of the tunneling junction, transient bonds are formed between the electrode layer and the base.
    Type: Application
    Filed: April 18, 2013
    Publication date: October 23, 2014
    Inventors: Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Deqiang Wang
  • Publication number: 20140306664
    Abstract: The present invention relates to the manufacture of a high capacity electrode by synthesizing an excellent Li2MnO3-based composite material Li(LixNiyCozMnwO2) to improve the characteristics of an inactive Li2MnO3 material with a specific capacity of about 460 mAh/g. Here, a manufacturing method of a cathode material for a lithium secondary battery uses a Li2MnO3-based composite material Li(LixNiyCozMnwO2) by reacting a starting material wherein a nickel nitrate solution, a manganese nitrate solution and a cobalt nitrate solution are mixed, with a complex agent by co-precipitation.
    Type: Application
    Filed: October 19, 2012
    Publication date: October 16, 2014
    Applicant: Korea Institute of Industrial Technology
    Inventors: Ho Sung Kim, Ju Hee Kang, Ik Hyun Oh, Seong Jae Boo, Duck Rye Chang, Tae Won Kim, Sung Hee Park, Kyeong Wan Kim
  • Patent number: 8859332
    Abstract: The present invention relates to a liquid phase process for producing indium oxide-containing layers, in which a coating composition preparable from a mixture comprising at least one indium oxide precursor and at least one solvent and/or dispersion medium, in the sequence of points a) to d), a) is applied to a substrate, and b) the composition applied to the substrate is irradiated with electromagnetic radiation, c) optionally dried and d) converted thermally into an indium oxide-containing layer, where the indium oxide precursor is an indium halogen alkoxide of the generic formula InX(OR)2 where R is an alkyl radical and/or alkoxyalkyl radical and X is F, Cl, Br or I and the irradiation is carried out with electromagnetic radiation having significant fractions of radiation in the range of 170-210 nm and of 250-258 nm, to the indium oxide-containing layers producible with the process, and the use thereof.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: October 14, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Juergen Steiger, Duy Vu Pham, Heiko Thiem, Alexey Merkulov, Arne Hoppe
  • Patent number: 8859104
    Abstract: The invention provides a transparent conducting film which comprises a compound of formula (I): Zn1-x[M]xO1-y[X]y(I) wherein: x is greater than 0 and less than or equal to 0.25; y is from 0 to 0.1; [X] is at least one dopant element which is a halogen; and [M] is: (a) a dopant element which is selected from: a group 14 element other than carbon; a lanthanide element which has an oxidation state of +4; and a transition metal which has an oxidation state of +4 and which is other than Ti or Zr; or (b) a combination of two or more different dopant elements, at least one of which is selected from: a group 14 element other than carbon; a lanthanide element which has an oxidation state of +4; and a transition metal which has an oxidation state of +4 and which is other than Ti or Zr. The invention further provides coatings comprising the films of the invention, processes for producing such films and coatings, and various uses of the films and coatings.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: October 14, 2014
    Assignee: ISIS Innovation Limited
    Inventors: Peter P. Edwards, Martin Owen Jones, Malek Moshari Al-Mamouri, John Stuart Abell
  • Publication number: 20140302231
    Abstract: The invention relates to a method for preparing a material based on metal element(s) oxide(s) on a substrate, comprising the following successive steps: a) depositing, by liquid means, on at least one face of this substrate, at least one layer of a sol-gel precursor solution of the constituent metal element(s) oxide(s) of said material; b) depositing, by liquid means, on said layer deposited in a), at least one layer of a dispersion comprising a powder of metal element(s) oxide(s) and a sol-gel solution identical to or different from that used in step a), said solution being a precursor of the constituent metal element(s) oxide(s) of said material and the powder consisting of constituent metal element(s) oxide(s) of said material; c) heat treating said layers deposited in a) and b) in order to transform them into said material.
    Type: Application
    Filed: October 5, 2012
    Publication date: October 9, 2014
    Applicant: COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES
    Inventors: Philippe Boy, Emilie Courtin, Thierry Piquero, Agnès Biller
  • Publication number: 20140302397
    Abstract: A method of forming an electrode for a lithium-ion battery. The method includes providing a metallic substrate and coating the metallic substrate with a substantially solvent free electroactive coating composition. Coating the metallic substrate includes buffing the electroactive coating composition onto a major surface of the metallic substrate.
    Type: Application
    Filed: December 13, 2012
    Publication date: October 9, 2014
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Andrew T. J. van Bommel, Ranjith Divigalpitiya
  • Patent number: 8852460
    Abstract: Methods and compositions for the deposition of a film on a substrate. In general, the disclosed compositions and methods utilize a precursor containing calcium or strontium.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: October 7, 2014
    Assignees: Air Liquide Electronics U.S. LP, American Air Liquide, Inc.
    Inventors: Olivier Letessier, Christian Dussarrat, Benjamin J. Feist, Vincent M. Omarjee
  • Publication number: 20140293485
    Abstract: A flexure for a suspension of a head gimbal assembly includes a substrate layer, a dielectric layer formed thereon, a conducting layer formed on the dielectric layer, and an insulating cover layer covered on the conducting layer, wherein at least one window is configured at a surface of the insulating cover layer thereby a portion of the conducting layer is exposed, and an antistatic adhesive is adhered to at least one side wall of the window and contacted with the conducting layer. The new structure of the flexure can avoid or eliminate electro-static discharges enduringly without dipping water. A head gimbal assembly and a disk drive unit with the same, a manufacturing method for the flexure are also disclosed.
    Type: Application
    Filed: May 6, 2013
    Publication date: October 2, 2014
    Applicant: SAE Technologies Development (Dongguan) Co., Ltd.
    Inventors: Bing Hui Li, Wei Qiang Zhou, Dong Lan Huang, Cheng Yuan Luo, Zong Qiang Yu
  • Publication number: 20140295265
    Abstract: The present disclosure provides a lithium-rich electrode plate of a lithium-ion battery and a preparation method thereof. The lithium-rich electrode plate comprises a collector; a film containing an active material and forming on the collector, and forming an elementary electrode plate together with the collector; and a porous lithium sheet covering on the film, wherein a resulting capacity of the porous lithium sheet matches a planned lithium-supplemental capacity to an anode of a lithium-ion battery. The present disclosure can accurately control lithium-supplemental quantity to the anode, improve lithium-supplemental uniformity, improve the first coulombic efficiency, energy density, and electrochemical performance of the battery, and decrease deformation of the cell, furthermore the method can be performed simply and the cost thereof is low.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 2, 2014
    Applicant: Dongguan Amperex Technology Limited
    Inventors: Conghui YOU, Yanjie XU, Fubiao CAO, Hongxin FANG, Baiqing ZHANG
  • Publication number: 20140295197
    Abstract: In a PZT-based ferroelectric thin film-forming composition, a ratio of a PZT precursor to 100 wt % of the composition is 17 to 35 wt % in terms of oxides, a ratio of a diol to 100 wt % of the composition is 16 to 56 wt %, a ratio of a polyvinyl pyrrolidone or a polyethylene glycol to 1 mol of the PZT precursor is 0.01 to 0.25 mol in terms of monomers, a ratio of the water to 1 mol of the PZT precursor is 0.5 to 3 mol, and the composition does not further contain a linear monoalcohol having 6 to 12 carbon chains which has a ratio of 0.6 to 10 wt % with respect to 100 wt % of the composition.
    Type: Application
    Filed: February 16, 2014
    Publication date: October 2, 2014
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Toshihiro Doi, Hideaki Sakurai, Nobuyuki Soyama
  • Publication number: 20140295071
    Abstract: Barium, strontium, tantalum and lanthanum precursor compositions useful for atomic layer deposition (ALD) and chemical vapor deposition (CVD) of titanate thin films. The precursors have the formula M(Cp)2, wherein M is strontium, barium, tantalum or lanthanum, and Cp is cyclopentadienyl, of the formula wherein each of R1-R5 is the same as or different from one another, with each being independently selected from among hydrogen, C1-C12 alkyl, C1-C12 amino, C6-C10 aryl, C1-C12 alkoxy, C3-C6 alkylsilyl, C2-C12 alkenyl, R1R2R3NNR3, wherein R1, R2 and R3 may be the same as or different from one another and each is independently selected from hydrogen and C1-C6 alkyl, and pendant ligands including functional group(s) providing further coordination to the metal center M. The precursors of the above formula are useful to achieve uniform coating of high dielectric constant materials in the manufacture of flash memory and other microelectronic devices.
    Type: Application
    Filed: June 11, 2014
    Publication date: October 2, 2014
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Chongying Xu, Tianniu Chen, Thomas M. Cameron, Jeffrey F. Roeder, Thomas H. Baum
  • Publication number: 20140291591
    Abstract: A nanocomposite structure, including: TiO2 nanotubes; and nanoparticles uniformly formed on surfaces of the TiO2 nanotubes.
    Type: Application
    Filed: January 17, 2014
    Publication date: October 2, 2014
    Applicant: Intellectual Discovery Co., Ltd.
    Inventors: Hyeong tag Jeon, Seokyoon Shin, Hagyoung Choi, Giyul Ham
  • Patent number: 8845931
    Abstract: A method for preparing a nanometal-polymer composite conductive film includes the steps of (1) mixing a metal oxide with a polymer solution; (2) coating a substrate with a solution resulting from step (1), followed by drying the resultant solution to form a film; (3) performing thermal treatment on the film formed in step (2); and (4) sintering the film thermally treated in step (3). The method dispenses with any reducing agent or dispersing agent but allows nanometallic particles to be formed in situ and thereby reduces surface resistance of the polymer film efficiently.
    Type: Grant
    Filed: October 24, 2011
    Date of Patent: September 30, 2014
    Assignee: National Taiwan University
    Inventors: Jiang-Jen Lin, Ying-Nan Chan, Wei-Li Lin
  • Publication number: 20140272569
    Abstract: A battery with a sulfur-containing cathode, an anode, and a separator between the cathode and the anode has a coating comprising a single-lithium ion conductor on at least one of the cathode or the separator.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Mei Cai, Mark W. Verbrugge, Xiaosong Huang, Li Yang
  • Publication number: 20140272584
    Abstract: A Li-ion battery is disclosed, the Li-ion battery including an anode, a cathode, a lithium donor formed from a Li-containing material, and an electrolyte in communication with the anode, the cathode, and the lithium donor. The lithium donor may be incorporated into the anode, incorporated into the cathode, a layer formed on either an anode side or a cathode side of a separator of the battery. The lithium donor is formed from Li-containing material insensitive to oxygen and aqueous moisture.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Meng Jiang, Xingcheng Xiao, Mei Cai, Li Yang, Bob R. Powell, JR.
  • Patent number: 8835023
    Abstract: Dramatic improvements in metallization integrity and electroceramic thin film performance can be achieved by the use of the ZnO buffer layer to minimize interfacial energy between metallization and adhesion layers. In particular, the invention provides a substrate metallization method utilizing a ZnO adhesion layer that has a high work of adhesion, which in turn enables processing under thermal budgets typically reserved for more exotic ceramic, single-crystal, or metal foil substrates. Embodiments of the present invention can be used in a broad range of applications beyond ferroelectric capacitors, including microelectromechanical systems, micro-printed heaters and sensors, and electrochemical energy storage, where integrity of metallized silicon to high temperatures is necessary.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: September 16, 2014
    Assignee: Sandia Corporation
    Inventor: Jon Ihlefeld
  • Publication number: 20140248479
    Abstract: A coating for a polymeric insulating material, includes 1 to 10 layers, each of the 1-10 layers having a coat thickness in a range from 0.1 to 100 ?m and being wet-chemically produced from at least one precursor selected from the group consisting of silane, siloxane and silicate. The coating is silicatic and includes a silicatic base unit with organic radicals at a ratio so as to enable application of the coating onto flexible substrates.
    Type: Application
    Filed: February 12, 2014
    Publication date: September 4, 2014
    Applicant: Siemens Aktiengesellschaft
    Inventors: Sven Pihale, Christian Seidel
  • Patent number: 8821969
    Abstract: A method for making a modified current collector of a lithium ion battery is provided. In the method, the modifier and a metal plate are provided. The modifier is a mixture of a phosphorus source having a phosphate radical, a trivalent aluminum source, and a metallic oxide provided in a liquid phase solvent. The modifier is coated on a surface of the metal plate to form a coating layer. The coated metal plate is heat treated to transform the coating layer into a protective film formed on the surface of the metal plate.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: September 2, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Xiang-Ming He, Jian-Jun Li, Li-Chun Zhang, Wei-Hua Pu, Jian Gao, Jian-Guo Ren
  • Publication number: 20140242457
    Abstract: An aluminum ion battery includes an aluminum anode, a vanadium oxide material cathode and an ionic liquid electrolyte. In particular, the vanadium oxide material cathode comprises a monocrystalline orthorhombic vanadium oxide material. The aluminum ion battery has an enhanced electrical storage capacity. A metal sulfide material may alternatively or additionally be included in the cathode.
    Type: Application
    Filed: September 26, 2012
    Publication date: August 28, 2014
    Applicant: CORNELL UNIVERSITY
    Inventors: Lynden A. Archer, Shyamal Kumar Das, Jayaprakash Navaneedhakrishnan
  • Publication number: 20140242362
    Abstract: The invention provides a composition set comprising: a conductor layer-forming composition comprising a dispersing medium and inorganic particles comprising a metallic oxide; and a conductive adhesive composition comprising a binder and conductive particles having a number average particle size of from 1 nm to 3000 nm.
    Type: Application
    Filed: July 30, 2012
    Publication date: August 28, 2014
    Inventors: Hideo Nakako, Kazunori Yamamoto, Yasushi Kumashiro, Shunya Yokosawa, Takaaki Noudou, Maki Inada, Kyoko Kuroda
  • Publication number: 20140234538
    Abstract: The present invention produces a laminated porous film which improves the stability of an aqueous dispersion of a metal oxide without lowering battery characteristics, while having high binding properties and excellent heat resistance. This laminated porous film exhibits excellent characteristics when used as a separator for batteries. This laminated porous film is produced by forming a porous coating layer on at least one outer surface of a resin porous film, which is formed of a single layer or a laminate of a plurality of layers, by applying a coating liquid that contains a metal oxide, a resin binder and a volatile acid thereto and drying the applied coating liquid. The coating liquid is prepared so that the difference between the pH (pH1) of the coating liquid and the pH (pH2) of the coating layer is not less than 2.
    Type: Application
    Filed: September 18, 2012
    Publication date: August 21, 2014
    Applicant: MITSUBISHI PLASTICS, INC.
    Inventors: Hiroto Yamada, Tomoyuki Nemoto
  • Publication number: 20140234537
    Abstract: The invention relates to a method for fabricating an electrode which includes coating of an aqueous ink over the whole or part of a current collector followed by drying of said ink. The aqueous ink is produced by acidification of an aqueous dispersion including an electrochemically active material having a titanium and lithium oxide base until a pH value comprised between 9.0±0.1 and 10.0±0.1 is obtained. The invention also relates to an aqueous ink for an electrode including an electrochemically active material having a titanium and lithium oxide base and having a pH between 9.0±0.1 and 10.0±0.1, preferably equal to 10±0.1.
    Type: Application
    Filed: September 6, 2012
    Publication date: August 21, 2014
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, RENAULT S.A.S
    Inventors: Sophie Chazelle, Willy Porcher
  • Patent number: 8808915
    Abstract: The rechargeable lithium battery includes a positive electrode which includes a positive active material, a negative electrode, and an electrolyte which includes a non-aqueous organic solvent and a lithium salt. The positive active material includes a core including at least one of a compound represented by Formula 1 and a compound represented by Formula 2, and a surface-treatment layer which is formed on the core and includes a compound represented by Formula 3. The lithium salt includes LiPF6 and a lithium imide-based compound. LiaNibCocMndMeO2??(1) LihMn2MiO4??(2) M?xPyOz??(3) wherein each of M and M? is independently selected from the group consisting of an alkali metal, an alkaline-earth metal, a Group 13 element, a Group 14 element, a transition element, a rare earth element, and combinations thereof, 0.95?a?1.1, 0?b?0.999, 0?c?0.999, 0?d?0.999, 0.001?e?0.2, 0.95?h?1.1, 0.001?i?0.2, 1?y?4, 0?y?7, and 2?z?30.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: August 19, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: So-Hyun Hur, Euy-Young Jung, Duck-Chul Hwang, Yong-Chul Park, Jong-Hwa Lee, Jeom-Soo Kim, Jae-Yul Ryu, Jin-Bum Kim
  • Patent number: 8808918
    Abstract: The rechargeable lithium battery of the present invention includes a positive electrode including a positive active material, a negative electrode including a negative active material, and a non-aqueous electrolyte. The positive active material includes a core and a coating layer formed on the core. The core is made of a material such as LiCo0.98M?0.02O2, and the coating layer is made of a material such as MxPyOz. The electrolyte solution includes a nitrile-based additive. The rechargeable lithium battery of the present invention shows higher cycle-life characteristics and longer continuous charging time at high temperature.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: August 19, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Euy-Young Jung, Duck-Chul Hwang, Jeom-Soo Kim, Jong-Hwa Lee, Yong-Chul Park, Jae-Yul Ryu, So-Hyun Hur
  • Publication number: 20140227526
    Abstract: Provided is a belt for electrophotography which is capable of suppressing the occurrence of adhesion to other members and blocking and which is less liable to cause image defects due to a singular protrusion. The belt for electrophotography comprises a surface layer which comprises heteroaggregate including an inorganic oxide particle having an average primary particle diameter of from 10 to 30 nm and an electroconductive metal oxide particle having an average primary particle diameter of from 5 to 40 nm, and a ten-point average roughness Rzjis of a surface of the surface layer satisfies a relationship: 0.3 ?m?Rzjis?0.7 ?m.
    Type: Application
    Filed: April 28, 2014
    Publication date: August 14, 2014
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Noriaki Egawa
  • Publication number: 20140224666
    Abstract: Electrocatalyst, electrode coating and an electrode for preparing chlorine and process for producing the electrode, the electrocatalyst comprising a noble metal oxide and/or a noble metal of transition groups VIIIa of the Periodic Table of the Elements and at least one finely divided pulverulent oxide of another metal, in which one or more components are doped and the base metal oxide powder is chemically stable in the presence of aqueous electrolytes.
    Type: Application
    Filed: February 6, 2014
    Publication date: August 14, 2014
    Inventors: Jürgen KINTRUP, Andreas BULAN, Elin HAMMARBERG, Stefan SEPEUR, Gerald FRENZER, Frank GROß, Stefanie EIDEN
  • Publication number: 20140217992
    Abstract: This invention, in some variations, provides a separator for a lithium-sulfur battery, comprising a porous substrate that is permeable to lithium ions; and a lithium-ion-conducting metal oxide layer on the substrate, wherein the metal oxide layer includes deposits of sulfur that are intentionally introduced prior to battery operation. The deposits of sulfur may be derived from treatment of the metal oxide layer with one or more sulfur-containing precursors (e.g., lithium polysulfides) prior to operation of the lithium-sulfur battery. Other variations provide a method of charging a lithium-sulfur battery that includes the disclosed separator, the charging being accomplished by continuously applying a substantially constant voltage to the lithium-sulfur battery until the battery charging current is at or below a selected current.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 7, 2014
    Applicant: HRL Laboratories, LLC
    Inventors: Wen LI, Ping LIU, Jocelyn HICKS-GARNER
  • Publication number: 20140220362
    Abstract: The present invention provides an electrochromic nanocomposite film. In an exemplary embodiment, the electrochromic nanocomposite film, includes (1) a solid matrix of oxide based material and (2) transparent conducting oxide (TCO) nanostructures embedded in the matrix. In a further embodiment, the electrochromic nanocomposite film farther includes a substrate upon which the matrix is deposited. The present invention also provides a method of preparing an electrochromic nanocomposite film.
    Type: Application
    Filed: July 24, 2012
    Publication date: August 7, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Delia Milliron, Anna Llordes, Raffaella Buonsanti, Guillermo Garcia
  • Publication number: 20140220239
    Abstract: This invention relates to a copper thick film paste composition paste comprising copper powder, a Pb-free, Bi-free and Cd-free borosilicate glass frit, a component selected from the group consisting of ruthenium-based powder, copper oxide powder and mixtures thereof and an organic vehicle. The invention also provides methods of using the copper thick film paste composition to make a copper conductor on a substrate. Typical substrates are selected from the group consisting of aluminum nitride, aluminum oxide and silicon nitride.
    Type: Application
    Filed: February 4, 2013
    Publication date: August 7, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventor: MARC Henry LABRANCHE
  • Patent number: 8795774
    Abstract: Compositions containing certain organometallic oligomers suitable for use as spin-on, metal hardmasks are provided, where such compositions can be tailored to provide a metal oxide hardmask having a range of etch selectivity. Also provided are methods of depositing metal oxide hardmasks using the present compositions.
    Type: Grant
    Filed: September 23, 2012
    Date of Patent: August 5, 2014
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Deyan Wang, Jibin Sun, Peng-Wei Chuang, Peter Trefonas, III, Cong Liu
  • Publication number: 20140212759
    Abstract: A lithium metal oxide powder for use as a cathode material in a rechargeable battery, consisting of a core material and a surface layer, the core having a layered crystal structure consisting of the elements Li, a metal M and oxygen, wherein the Li content is stoichiometrically controlled, wherein the metal M has the formula M=Co1-aM?a, with 0?a?0.05, wherein M? is either one or more metals of the group consisting of Al, Ga and B; and the surface layer consisting of a mixture of the elements of the core material and inorganic N-based oxides, wherein N is either one or more metals of the group consisting of Mg, Ti, Fe, Cu, Ca, Ba, Y, Sn, Sb, Na, Zn, Zr and Si.
    Type: Application
    Filed: May 29, 2012
    Publication date: July 31, 2014
    Inventors: Maxime Blangero, Kyubo Kim, Hyun-Joo Je