Metal Is Ni, Fe, Or Co Patents (Class 427/126.6)
  • Patent number: 11962010
    Abstract: Provided are a binder aqueous solution for a lithium-ion battery electrode, a slurry for a lithium-ion battery electrode, a lithium-ion battery electrode, and a lithium-ion battery. The binder aqueous solution for a lithium-ion battery electrode contains a water-soluble polymer (A). The water-soluble polymer (A) is a polymer of a monomer group containing, with respect to 100 mol % of the monomer group, 5 mol % to 80 mol % of a hydroxyl group-containing vinyl ether (a). In one embodiment, the monomer group contains 20 mol % to 95 mol % of a (meth)acrylamide group-containing compound (b).
    Type: Grant
    Filed: September 2, 2020
    Date of Patent: April 16, 2024
    Assignee: ARAKAWA CHEMICAL INDUSTRIES, LTD.
    Inventors: Katsuya Okubo, Hideki Goda, Naoki Sasagawa, Satoru Aoyama
  • Patent number: 11831014
    Abstract: A positive electrode active material for a secondary battery including: a lithium complex transition metal oxide which contains nickel (Ni) and cobalt (Co), and contains at least one selected from the group consisting of manganese (Mn) and aluminum (Al); and a composite coating portion which is formed on a surface of the lithium complex transition metal oxide is provided. The lithium complex transition metal oxide has a nickel (Ni) content of 65 mol % or more with respect to the total transition metal content, and the composite coating portion contains cobalt (Co) and boron (B), and contains at least one selected from the group consisting of lanthanum (La), titanium (Ti), and aluminum (Al).
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: November 28, 2023
    Inventors: Won Tae Kim, Jong Yeol Yu, Hong Kyu Park, Sun Sik Shin, Seong Hoon Kang
  • Patent number: 11772088
    Abstract: Provided is a method of manufacturing a porous core-shell catalyst structure. The method of manufacturing a porous core-shell catalyst structure includes preparing a bulk metal oxide; providing a first reaction gas containing nitrogen to the bulk metal oxide to prepare an intermediate product containing a porous metal oxide; and providing a second reaction gas containing sulfur to the intermediate product to prepare a core-shell catalyst structure including a core formed of the porous metal oxide and a shell formed of metal sulfide.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: October 3, 2023
    Assignee: INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY ERICA CAMPUS
    Inventors: Jin Ho Bang, Min Soo Kim
  • Patent number: 11764356
    Abstract: Making a positive electrode active material for lithium ion secondary batteries includes: weighting and mixing lithium carbonate and a compound containing respective metallic elements other than Li in a composition formula Li?NixCoyM21-x-y-zM2zO2+? so as to have a metallic constituent ratio of the formula to obtain a mixture, and firing the mixture to obtain a lithium composite compound. Performing, on the mixture, a first heat treatment at 200° C. to 400° C. for 0.5 to 5 hours to obtain a first precursor. A step of performing a heat treatment on the first precursor under an oxidizing atmosphere at 450° C. to 800° C. for 0.5 to 50 hours, and reacting 92 mass % or more of the lithium carbonate to obtain a second precursor, and a finishing step of performing a heat treatment on the second precursor under an oxidizing atmosphere at 755° C. to 900° C. for 0.5 to 50 hours to obtain the lithium composite compound.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: September 19, 2023
    Assignee: Proterial, Ltd.
    Inventors: Hisato Tokoro, Takashi Nakabayashi, Shuichi Takano, Akira Gunji, Tatsuya Tooyama, Shin Takahashi
  • Patent number: 11735712
    Abstract: A stabilized lithium ion cathode material comprising a calcined manganese oxide powder wherein the manganese on a surface is MnPO4, comprises an manganese phosphate bond, or the phosphate is bonded to the surface of the cathode material.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: August 22, 2023
    Assignee: Nano One Materials Corp.
    Inventors: Stephen A. Campbell, O'Rian Reid
  • Patent number: 11728475
    Abstract: A lithium-ion secondary battery positive electrode active material complex, a lithium-ion secondary battery positive electrode, and a lithium-ion secondary battery using the lithium-ion secondary battery positive electrode containing the lithium-ion secondary battery positive electrode active material complex are provided so that a lithium-ion secondary battery having high output properties, excellent durability, and a high energy density can be attained. A positive electrode active material for a lithium-ion secondary battery contains a complex in which a surface of a first positive electrode active material made of a lithium transition metal complex oxide containing nickel is covered with a covering layer containing an olivine type second positive electrode active material on a surface of which carbon is carried and a carbon nanotube.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: August 15, 2023
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Kazuhiro Araki, Taku Matsuzaka
  • Patent number: 11679438
    Abstract: A deployable manufacturing center (DMC) system includes a foundry module containing a metallurgical system configured to convert a raw material into an alloy powder, and an additive manufacturing (AM) module containing an additive manufacturing system configured to form the alloy powder into metal parts. The deployable manufacturing center (DMC) system can also include a machining module containing a machining system configured to machine the metal parts into machined metal parts, and a quality conformance (QC) module containing an inspection and evaluation system configured to inspect and evaluate the metal parts. A process for manufacturing metal parts includes the steps of providing the deployable manufacturing center (DMC) system; deploying the (DMC) system to a desired location; forming an alloy powder from a raw material using the deployable foundry module; and then forming the metal parts from the alloy powder using the additive manufacturing (AM) module.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: June 20, 2023
    Assignee: MolyWorks Materials Corporation
    Inventors: Andrew VanOs LaTour, Christopher Paul Eonta, Matthew Charles, Scott Steiner, Joel Cheng
  • Patent number: 11664528
    Abstract: An electrode includes a current collector; a first active material layer including a first active material; and a second active material layer including a second active material; wherein the first active material layer is arranged between the current collector and the second active material layer. The first active material layer is formed on a surface of the current collector, and a particle size of 90% accumulative volume of the first active material is less than 40 ?m. The active material layer is used in the present application to ensure that the electrochemical device and the electronic device do not generate a short circuit when pressed by an external force, thereby ensuring the mechanical safety performance of the electrochemical device and the electronic device.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: May 30, 2023
    Assignee: Ningde Amperex Technology Limited
    Inventors: Chaowang Lin, Fan Yang, Yisong Su, Huawei Zhong, Changming Qu, Xiaozhen Zhang
  • Patent number: 11631865
    Abstract: The present invention relates to a transition metal nitride support, a method of manufacturing the same, a metal catalyst and a platinum-alloy catalyst including the transition metal nitride support, and manufacturing methods thereof. The manufactured transition metal support prevents corrosion of the support and aggregation of the platinum catalyst, thereby exhibiting high oxygen reduction catalytic activity. Also, strong metal-support interaction (SMSI) can be stabilized, thus improving the durability of the catalyst. The transition metal support includes large pores uniformly distributed therein, thereby increasing the amount of the catalyst supported and minimizing mass-transfer resistance in a membrane- electrode assembly, increasing the performance of a polymer electrolyte membrane fuel cell. The metal catalyst includes platinum particles loaded on the transition metal nitride support, thus exhibiting superior durability and activity.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: April 18, 2023
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Korea Advanced Institute of Science and Technology
    Inventors: Jee Youn Hwang, Eun Jik Lee, Ji Hoon Jang, Song I Oh, Jin Woo Lee, Sol Youk, Dong Yoon Woo
  • Patent number: 11605804
    Abstract: An object is to suppress electrochemical decomposition of an electrolyte solution and the like at a negative electrode in a lithium ion battery or a lithium ion capacitor; thus, irreversible capacity is reduced, cycle performance is improved, or operating temperature range is extended. A negative electrode for a power storage device including a negative electrode current collector, a negative electrode active material layer which is over the negative electrode current collector and includes a plurality of particles of a negative electrode active material, and a film covering pan of the negative electrode active material. The film has an insulating property and lithium ion conductivity.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: March 14, 2023
    Assignee: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Nobuhiro Inoue, Sachiko Kataniwa, Kazutaka Kuriki, Junpei Momo
  • Patent number: 11522187
    Abstract: The invention provides a positive electrode active material for a lithium ion battery, comprising a lithium transition metal-based oxide powder, the powder comprising single crystal monolithic particles comprising Ni and Co and having a general formula Li1+a ((Niz (Ni1/2 Mn1/2)y Cox)1?kAk)1-a 02, wherein A is a dopant, ?0.02<a?0.06, 0.10?x?0.35, 0?z?0.90, x+y+z=1 and k?0.01, the particles having a cobalt concentration gradient wherein the particle surface has a higher Co content than the particle center.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: December 6, 2022
    Assignees: UMICORE, UMICORE KOREA LTD.
    Inventors: Yagmur Celasun, Jens Paulsen, Shinichi Kumakura, Areum Park, Jukyoung Lee, Taehyeon Yang
  • Patent number: 11450848
    Abstract: Provided herein is a method for preparing a surface modified cathode material for lithium-ion battery, wherein the cathode material comprises lithium multi-metal composite oxide particles capped with a thin film of an oxide of the metal, wherein the lithium multi-metal composite oxide is represented by Li1+zNixMnyCo1?x?yO2; and wherein z is from 0 to 0.2; x is from 0.35 to 0.8; y is from 0.1 to 0.45; and the metal is one or more elements selected from the group consisting of Fe, Mn, Al, Mg, Zn, Ti, La, Ce, Sn, Zr, Ru and combination thereof. The cathode material disclosed herein exhibits a high initial specific capacity from 150 mAh/g to 200 mAh/g, possesses good safety characteristics and shows impressive energy retention of about 91% after 1000 cycles.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: September 20, 2022
    Assignee: GRST International Limited
    Inventors: Peihua Shen, Sing Hung Eric Wong
  • Patent number: 10522877
    Abstract: There is provided a positive electrode for nonaqueous electrolyte secondary batteries in which a decrease in the initial charge capacity can be suppressed even when a positive electrode exposed to the air is used. A positive electrode for a nonaqueous electrolyte secondary battery according to an aspect of the present invention contains a lithium transition metal composite oxide represented by general formula Li1+xMnaMbO2+c (in the formula, x, a, b, and c satisfy x+a+b=1, 0<x?0.2, 0.09?a, and ?0.1?c?0.1, and M is at least one element selected from the group consisting of transition metal elements other than Mn, alkali metal elements, alkaline-earth metal elements, group 12 elements, group 13 elements, and group 14 elements) and also contains tungsten oxide and a phosphate compound.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: December 31, 2019
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Fumiharu Niina, Kazunari Ookita
  • Patent number: 10446836
    Abstract: The present invention provides a method for preparing a positive active material for a secondary lithium battery. The method includes the steps of: synthesizing an intermediate product of a core represented by formula LixMyN1-yO2-?A?; adding P source into the intermediate product to obtain a phosphate which does not contain lithium; and adding lithium source into the mixture of the phosphate and LixMyN1-yO2-?A? and sintering to obtain the positive active material for secondary lithium battery. The method for preparing a positive active material for a secondary lithium battery of the present invention has the following advantages: 1) the P source can be dispersed on the surface of the core more uniformly; 2) the coating layer can be bonded to the core more tightly; and 3) the positive active material has higher rate discharge performance.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: October 15, 2019
    Assignee: Ningde Amperex Technology Limited
    Inventors: Xiangpeng Fang, Chengren Wu, Na Liu, Xuguang Gao
  • Patent number: 10336648
    Abstract: A slip composition includes an electromagnetic-absorbing, magnetic powder having a mean particle size of not more than about 6 microns, a glass or vitreous frit having a mean particle size of not more than about 6 microns, and a methyl alcohol vehicle. A method of making a slip composition void of clay and aluminum oxide, includes mixing a wet milled vitreous frit, a powdered magnetic material, and a methyl alcohol vehicle. The disclosed embodiment is particularly useful in making an electromagnetic wave absorption coating suitable for application to stainless steel and many nickel base alloys.
    Type: Grant
    Filed: August 19, 1988
    Date of Patent: July 2, 2019
    Inventor: Alvin R. Stetson
  • Publication number: 20150140206
    Abstract: A method of forming an electrode active material by reacting a metal fluoride and a reactant. The method includes a coating step and a comparatively low temperature annealing step. Also included is the electrode formed following the method.
    Type: Application
    Filed: January 23, 2015
    Publication date: May 21, 2015
    Inventors: Cory O'Neill, Steven Kaye
  • Publication number: 20150132653
    Abstract: A method of producing a positive electrode active material for a non-aqueous electrolyte secondary battery, the method including: stirring core particles including a lithium-transition metal composite oxide represented by a formula: LiaNi1-x-y-zCoxM1yM2zO2 wherein 1.00?a?1.50, 0.00?x?0.50, 0.00?y?0.50, 0.00?z?0.02, x+y?0.70, M1 is at least one element selected from the group consisting of Mn and Al, and M2 is at least one element selected from the group consisting of Zr, W, Ti, Mg, Ta, Nb and Mo; mixing the core particles with a first solution containing a rare earth element and a second solution containing a fluorine-containing compound, each independently, by adding dropwise the first solution and the second solution as the core particles are being stirred until the amount of the rare earth element added reaches 0.02 mol % to 0.15 mol % based on the amount of the core particles and the amount of the elemental fluorine added reaches 0.07 mol % to 0.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 14, 2015
    Inventors: Yoshitomo MIYASHITA, Keisuke FUJIHARA
  • Patent number: 8980797
    Abstract: A method for manufacturing a base material 2 for a superconductive conductor which includes: a conductive bed layer forming process of forming a non-oriented bed layer 24 having conductivity on a substrate 10; and a biaxially oriented layer forming process of forming a biaxially oriented layer 26 on the bed layer 24.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: March 17, 2015
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yoshikazu Okuno, Hiroyuki Fukushima, Yuko Hayase, Eiji Kojima
  • Publication number: 20150064557
    Abstract: Provided are a cathode active material including lithium transition metal phosphate particles, wherein the lithium transition metal phosphate particles include a first secondary particle formed by agglomeration of two or more first primary particles, and a second secondary particle formed by agglomeration of two or more second primary particles in the first secondary particle, and a method of preparing the same. Since the cathode active material according to an embodiment of the present invention may include first primary particles and second primary particles having different average particle diameters, the exfoliation of the cathode active material from a cathode collector may be minimized and performance characteristics, such as high output characteristics and an increase in available capacity, of a secondary battery may be further improved. In addition, since the first secondary particles are porous, the secondary particles are collapsed and fractured due to rolling when used in a cathode.
    Type: Application
    Filed: October 21, 2014
    Publication date: March 5, 2015
    Applicant: LG Chem, Ltd.
    Inventors: Ji Hye Kim, Wang Mo Jung, Sang Seung Oh, Byung Chun Park, Sung Bin Park
  • Publication number: 20150064057
    Abstract: A method for producing a nickel-containing surface coating that is metallic and conductive is provided. The method includes contacting a surface of a substrate with a liquid composition that includes nickel oxide nanoparticles, and modifying the nickel oxide nanoparticles to produce a nickel-containing metallic and conductive surface coating on the surface of the substrate. Also provided are nickel-containing (e.g., NiO and Ni containing) surface coatings and methods for making a liquid composition that includes nickel oxide nanoparticles. The methods and compositions find use in a variety of different applications.
    Type: Application
    Filed: August 5, 2014
    Publication date: March 5, 2015
    Inventors: Costas P. Grigoropoulos, Daeho Lee
  • Publication number: 20150027615
    Abstract: The present invention provides additive manufacturing methods of forming multilayer energy storage devices on a surface by formulating all components of the multilayer energy storage device into liquid compositions and: (1) applying a first liquid current collector composition above the surface to form a first current collector layer above the surface; (2) applying a first liquid electrode composition above the first current collector layer to form a first electrode layer above the first current collector layer; (3) applying a liquid electrically insulating composition above the first electrode layer to form an electrically insulating layer above the first electrode layer; (4) applying a second liquid electrode composition above the electrically insulating layer to form a second electrode layer above the electrically insulating layer; and (5) applying a second liquid current collector composition above the second electrode layer to form a second current collector layer above the second electrode layer.
    Type: Application
    Filed: March 15, 2013
    Publication date: January 29, 2015
    Applicant: William Marsh Rice University
    Inventors: Neelam Singh, Charudatta Galande, Akshay Mathkar, Leela M. Reedy Arava, Pulickel M. Ajayan, Alexandru Vlad
  • Publication number: 20150027613
    Abstract: EC film stacks and different layers within the EC film stacks are disclosed. Methods of manufacturing these layers are also disclosed. In one embodiment, an EC layer comprises nanostructured EC layer. These layers may be manufactured by various methods, including, including, but not limited to glancing, angle deposition, oblique angle deposition, electrophoresis, electrolyte deposition, and atomic layer deposition. The nanostructured EC layers have a high specific surface area, improved response times, and higher color efficiency.
    Type: Application
    Filed: July 25, 2014
    Publication date: January 29, 2015
    Inventors: Anita TRAJKOVSKA-BROACH, Ying Sun, William Kokonaski, Pie Paolo Monticone, Niklaus Schneeberger
  • Publication number: 20150017322
    Abstract: The invention relates to an electrode material. Said material is characterized in that it contains, as positive electrode active material, at least one sulphate of iron in the +II oxidation state and of alkali metal corresponding to the formula (Na1?aLib)xFey(SO4), (I) in which the subscripts a, b, x, y and z are chosen so as to ensure the electroneutrality of the compound, with 0?a?1, 0?b?1, 1?x?3, 1?y?2, 1?z?3, and 2?(2z?x)/y<3 so that at least one portion of the iron is in the +II oxidation state, with the exclusion of the compound Li2Fe2(SO4)3. It is of use in particular as a positive electrode material in an alkali metal ion battery.
    Type: Application
    Filed: February 27, 2013
    Publication date: January 15, 2015
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE DE PICARDIE JULES VERNE
    Inventors: Marine Reynaud, Mohamed Ati, Jean-Noel Choland, Jean-Marie Tarascon
  • Publication number: 20140377661
    Abstract: Disclosed are an electrode for secondary batteries including an electrode mixture coated on one surface or opposite surface of an electrode current collector, and a method of manufacturing the same. The electrode mixture includes an electrode mixture layer A, which is a portion close to a current collector, and an electrode mixture layer, which is a portion distant from a current collector. The electrode mixture layer A includes a mixture of two active materials, average diameters of which are different, and the electrode mixture layer B includes active materials, average diameters of which are the same.
    Type: Application
    Filed: September 15, 2014
    Publication date: December 25, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Iljoon Lee, Jae Hyun Lee, Jihyun Kim
  • Publication number: 20140339511
    Abstract: A quantum-dots containing multi-component inorganic oxide thin film is provided to include an amorphous inorganic oxide bulk region and a plurality of crystalline inorganic oxide regions, wherein the crystalline inorganic oxide regions are discontinuously formed to be surrounded by the amorphous inorganic oxide of the bulk region.
    Type: Application
    Filed: September 17, 2013
    Publication date: November 20, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventors: Dong Chan KIM, Seok Gyu YOON, Kyu Hwan HWANG, Eung Do KIM, Bo Ra JUNG, Dong Kyu SEO, Won Jong KIM, Young Woo SONG, Jong Hyuk LEE
  • Patent number: 8883352
    Abstract: To provide a surface modified lithium-containing composite oxide having excellent discharge capacity, volume capacity density, safety, durability for charge and discharge cycles, and high rate property. A surface modified lithium-containing composite oxide, comprising particles of a lithium-containing composite oxide having a predetermined composition and a lithium titanium composite oxide containing lithium, titanium and element Q (wherein Q is at least one element selected from the group consisting of B, Al, Sc, Y and In) contained in the surface layer of the particles, wherein the lithium titanium composite oxide is contained in the surface layer of the particles in a proportion of the total amount of titanium and element Q in the lithium titanium composite oxide contained in the surface layer to the lithium-containing composite oxide particles is from 0.01 to 2 mol %, and the lithium titanium composite oxide has a peak at a diffraction angle 2? within a range of 43.8±0.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: November 11, 2014
    Assignee: AGC Seimi Chemical Co., Ltd.
    Inventors: Remi Hiraki, Takeshi Kawasato
  • Publication number: 20140329145
    Abstract: An alkaline, rechargeable electrochemical cell includes a pasted electrode structure in which a composition comprising a paste matrix component includes cobalt in an amount greater than 6 weight percent ranging up to 14 weight percent. The matrix may also include a rare earth such as yttrium. The composition further includes particles of nickel hydroxide dispersed in the matrix, and these particles include cobalt levels ranging from greater than 8 atomic percent up to 15 atomic percent. Cells incorporating these materials have good charging efficiency at elevated temperatures.
    Type: Application
    Filed: February 6, 2013
    Publication date: November 6, 2014
    Applicant: Ovonic Battery Company, Inc.
    Inventor: Ovonic Battery Company, Inc.
  • Publication number: 20140329005
    Abstract: A method for depositing a thin film of a coating material onto an electrically conductive particle surface via supercritical fluid deposition includes providing electrically conductive particles, providing a precursor of a coating material, dissolving the precursor of the coating material into a supercritical fluid solvent to form a supercritical solution of the precursor and subsequently exposing the conductive particles to the supercritical solution in a reactor under conditions at which supercritical fluid deposition of a thin film of the coating material onto surfaces of the conductive particles occurs.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 6, 2014
    Applicant: MICROREACTOR SOLUTIONS LLC
    Inventors: BRIAN NELTNER, RICK BRYAN WOODRUFF
  • Publication number: 20140322868
    Abstract: Some implementations provide a semiconductor device that includes a die, an under bump metallization (UBM) structure coupled to the die, and a barrier layer. The UBM structure has a first oxide property. The barrier layer has a second oxide property that is more resistant to oxide removal from a flux material than the first oxide property of the UBM structure. The barrier layer includes a top portion, a bottom portion and a side portion. The top portion is coupled to the UBM structure, and the side portion is substantially oxidized.
    Type: Application
    Filed: July 10, 2014
    Publication date: October 30, 2014
    Inventors: Omar James Bchir, Milind Pravin Shah, Houssam Wafic Jomaa, Manuel Aldrete, Chin-Kwan Kim
  • Publication number: 20140287136
    Abstract: This LaNiO3 thin film-forming composition includes: LaNiO3 precursors; and acetic acid, wherein a ratio of an amount of the LaNiO3 precursors to 100 mass % of an amount of the LaNiO3 thin film-forming composition is in a range of 1 mass % to 20 mass % in terms of oxides, and the composition further includes a stabilizer containing N-methyl formamide in an amount of more than 0 mol to 10 mol or less per 1 mol of the total amount of the LaNiO3 precursors in the composition.
    Type: Application
    Filed: February 19, 2014
    Publication date: September 25, 2014
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Jun Fujii, Hideaki Sakurai, Nobuyuki Soyama
  • Publication number: 20140272590
    Abstract: A precursor of a modified ternary material for a lithium ion battery positive material belongs to the technical field of application of lithium ion battery positive materials. A molecular formula of the precursor is: (Ni1/3Co1/3Mn1/3)(OH)2, and the precursor consists of three layers. An inner layer of the precursor is a ternary material with the Co content of more than ? and equal Ni and Mn content, and the molecular formula of the inner layer of the precursor is: (Ni1/3?xCo1/3+2xMn1/3?x(OH)2, where 0<x??. An outer layer of the precursor is a ternary material with the Co content of 0 to ? and equal Ni and Mn content, and the molecular formula of the outer layer of the precursor is: (Ni0.5?yCo2yMn0.5?y)(OH)2, where 0?y<?. An intermediate layer of the precursor is a concentration gradient composite material of the two materials of the inner layer and the outer layer of the precursor. The modified ternary material containing the precursor has the chemical formula of Li(Ni1/3CO1/3Mn1/3)O2.
    Type: Application
    Filed: October 26, 2012
    Publication date: September 18, 2014
    Applicant: SHANGHAI PYLON TECHNOLOGY CO., LTD.
    Inventors: Jun Zhang, Jian Guo, Lianqi Zhang, Ruijuan Yang, Peiyu Hou
  • Publication number: 20140272560
    Abstract: A method for improving the lithium cobalt oxide (LiCoO2) film (such as films in thin film batteries) morphology includes using oxygen (O2) and argon (Ar) gases during sputtering deposition of the LiCoO2 film. This may allow for the manufacturing of thicker LiCoO2 films. Such a method may also significantly reduce or eliminate cracking and obvious columnar structures within the resulting LiCoO2 film layer. Sputtering using a mixture of O2 and Ar also may produce a LiCoO2 film layer that requires lower annealing temperatures to reach good utilization and has higher lithium diffusion rates.
    Type: Application
    Filed: September 29, 2013
    Publication date: September 18, 2014
    Applicant: Apple Inc.
    Inventors: Lili Huang, Richard M. Mank, Yanfeng Chen
  • Publication number: 20140272564
    Abstract: Provided herein are energy storage device cathodes with high capacity electrochemically active material including compounds that include iron, fluorine, sulfur, and optionally oxygen. Batteries with active materials including a compound of the formula FeFaSbOc exhibit high capacity, high specific energy, high average discharge voltage, and low hysteresis, even when discharged at high rates. Iron, fluorine, and sulfur-containing compounds may be ionically and electronically conductive.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: QuantumScape Corporation
    Inventors: Timothy P. Holme, Joseph Han, Weston Arthur Hermann, Rainer J. Fasching, Bradley O. Stimson, Cheng Chieh Chao
  • Publication number: 20140234537
    Abstract: The invention relates to a method for fabricating an electrode which includes coating of an aqueous ink over the whole or part of a current collector followed by drying of said ink. The aqueous ink is produced by acidification of an aqueous dispersion including an electrochemically active material having a titanium and lithium oxide base until a pH value comprised between 9.0±0.1 and 10.0±0.1 is obtained. The invention also relates to an aqueous ink for an electrode including an electrochemically active material having a titanium and lithium oxide base and having a pH between 9.0±0.1 and 10.0±0.1, preferably equal to 10±0.1.
    Type: Application
    Filed: September 6, 2012
    Publication date: August 21, 2014
    Applicants: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, RENAULT S.A.S
    Inventors: Sophie Chazelle, Willy Porcher
  • Patent number: 8808915
    Abstract: The rechargeable lithium battery includes a positive electrode which includes a positive active material, a negative electrode, and an electrolyte which includes a non-aqueous organic solvent and a lithium salt. The positive active material includes a core including at least one of a compound represented by Formula 1 and a compound represented by Formula 2, and a surface-treatment layer which is formed on the core and includes a compound represented by Formula 3. The lithium salt includes LiPF6 and a lithium imide-based compound. LiaNibCocMndMeO2??(1) LihMn2MiO4??(2) M?xPyOz??(3) wherein each of M and M? is independently selected from the group consisting of an alkali metal, an alkaline-earth metal, a Group 13 element, a Group 14 element, a transition element, a rare earth element, and combinations thereof, 0.95?a?1.1, 0?b?0.999, 0?c?0.999, 0?d?0.999, 0.001?e?0.2, 0.95?h?1.1, 0.001?i?0.2, 1?y?4, 0?y?7, and 2?z?30.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: August 19, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: So-Hyun Hur, Euy-Young Jung, Duck-Chul Hwang, Yong-Chul Park, Jong-Hwa Lee, Jeom-Soo Kim, Jae-Yul Ryu, Jin-Bum Kim
  • Patent number: 8808918
    Abstract: The rechargeable lithium battery of the present invention includes a positive electrode including a positive active material, a negative electrode including a negative active material, and a non-aqueous electrolyte. The positive active material includes a core and a coating layer formed on the core. The core is made of a material such as LiCo0.98M?0.02O2, and the coating layer is made of a material such as MxPyOz. The electrolyte solution includes a nitrile-based additive. The rechargeable lithium battery of the present invention shows higher cycle-life characteristics and longer continuous charging time at high temperature.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: August 19, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Euy-Young Jung, Duck-Chul Hwang, Jeom-Soo Kim, Jong-Hwa Lee, Yong-Chul Park, Jae-Yul Ryu, So-Hyun Hur
  • Publication number: 20140227433
    Abstract: A LaNiO3 thin film having extremely few voids is uniformly formed. Provided is a LaNiO3 thin film-forming composition for forming a LaNiO3 thin film. It includes: a LaNiO3 precursor; a first organic solvent; a stabilizer; and a second organic solvent. The first organic solvent includes carboxylic acids, alcohols, esters, ketones, ethers, cycloalkanes, aromatic compounds, or tetrahydrofuran. The stabilizer includes ?-diketones, ?-ketones, ?-keto esters, oxyacids, diols, triols, carboxylic acids, alkanolamines, or polyvalent amines. The second organic solvent has a boiling point of 150° C. to 300° C. and a surface tension of 20 to 50 dyn/cm. The LaNiO3 precursor content is 1 to 20 mass % with respect to 100 mass % of the composition. The stabilizer content is 0 to 10 mol with respect to 1 mol of a total amount of the LaNiO3 precursors. The second organic solvent content is 5 to 20 mass % with respect to the composition.
    Type: Application
    Filed: February 5, 2014
    Publication date: August 14, 2014
    Applicant: Mitsubishi Materials Corporation
    Inventors: Jun Fujii, Hideaki Sakurai, Nobuyuki Soyama
  • Publication number: 20140220433
    Abstract: The present invention provides one with a novel coated iron electrode. Provided is an iron based electrode comprising a single layer conductive substrate coated on at least one side with a multilayered coating, with each coating layer comprising an iron active material, and preferably a binder. The coating is comprised of at least two layers. Each layer has at least a different porosity or composition than an adjacent layer. The iron based electrode is useful in alkaline rechargeable batteries, particularly as a negative electrode in a Ni—Fe battery.
    Type: Application
    Filed: January 31, 2014
    Publication date: August 7, 2014
    Applicant: Encell Technology, Inc.
    Inventors: Randy Gene Ogg, Craig Hinton Welch
  • Publication number: 20140220256
    Abstract: Provided is a continuous process for preparing a high quality and high performance iron electrode. The process comprises preparing a formulation comprising an iron active material and a binder and coating a continuous substrate material on a least one side with the formulation. The coated continuous substrate material is dried, compacted and blanked. A tab is then attached to the electrode.
    Type: Application
    Filed: January 31, 2014
    Publication date: August 7, 2014
    Applicant: Encell Technology, Inc.
    Inventor: Randy Gene OGG
  • Patent number: 8790827
    Abstract: A positive electrode active material includes: a secondary particle obtained upon aggregation of a primary particle that is a lithium complex oxide particle in which at least nickel (Ni) and cobalt (Co) are solid-solved as transition metals, wherein an average composition of the whole of the secondary particle is represented by the following formula (1): LixCoyNizM1-y-zOb-aXa ??Formula (1) wherein an existent amount of cobalt (Co) becomes large from a center of the primary particle toward the surface thereof; and an existent amount of cobalt (Co) in the primary particle existing in the vicinity of the surface of the secondary particle is larger than an existent amount of cobalt (Co) in the primary particle existing in the vicinity of the center of the secondary particle.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: July 29, 2014
    Assignee: Sony Corporation
    Inventors: Asuki Yanagihara, Tomoyo Ooyama, Yoshihiro Kudo, Guohua Li
  • Publication number: 20140205901
    Abstract: The lithium rechargeable battery of the present invention is provided with a current collector and an active material layer containing active material particles 10 supported on this current collector. The active material particles 10 are secondary particles 14 in which a plurality of primary particles 12 of a lithium transition metal oxide are aggregated, and have a hollow structure that contains a hollow section 16 formed inside the secondary particle 14 and a shell section 15 that surrounds the hollow section 16. A through hole 18 that penetrates from the outside to the hollow section 16 is formed in the secondary particle 14. The ratio (A/B) in a powder x-ray diffraction pattern of the active material particles 10, where A is the full width at half maximum of the diffraction peak obtained for the (003) plane and B is the full width at half maximum of the diffraction peak obtained for the (104) plane, satisfies the equation (A/B)?0.7.
    Type: Application
    Filed: August 2, 2012
    Publication date: July 24, 2014
    Inventors: Hiroki Nagai, Yutaka Oyama
  • Publication number: 20140205746
    Abstract: Process for preparing a multi-layer electrochromic structure comprising depositing a film of a liquid mixture onto a substrate and treating the deposited film to form an anodic electrochromic layer comprising a lithium nickel oxide composition, the anodic electrochromic layer comprising lithium, nickel and the bleached state stabilizing element(s) wherein in the film (i) the ratio of lithium to the combined amount of nickel and the bleached state stabilizing element(s) is at least 0.4:1, (ii) the ratio of the combined amount of the bleached state stabilizing element(s) to the combined amount of nickel and the bleached state stabilizing elements in the lithium nickel oxide composition is at least about 0.025:1, and (iii) the bleached state stabilizing element(s) is/are selected from the group consisting of Y, Ti, Zr, Hf, V, Nb, Ta, Mo, W, B, Al, Ga, In, Si, Ge, Sn, P, Sb and combinations thereof.
    Type: Application
    Filed: January 21, 2014
    Publication date: July 24, 2014
    Applicant: Kinestral Technologies, Inc.
    Inventors: Hye Jin CHOI, Mark BAILEY, John David BASS, Stephen Winthrop von KUGELGEN, Eric LACHMAN, Howard W. TURNER, Julian P. BIGI
  • Publication number: 20140205898
    Abstract: In an aspect, a composite cathode active material a cathode and a lithium battery including the composite cathode active material, and a method of preparing the composite cathode active material is disclosed.
    Type: Application
    Filed: May 16, 2013
    Publication date: July 24, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Young-Hun Lee, Soon-Rewl Lee, Na-Ri Park, Young-Ki Kim, Na-Leum Yoo, Ick-Kyu Choi, Yong-Chul Park
  • Publication number: 20140146856
    Abstract: An apparatus comprises a head transducer and a resistive temperature sensor provided on the head transducer. The resistive temperature sensor comprises a first layer comprising a conductive material and having a temperature coefficient of resistance (TCR) and a second layer comprising at least one of a specular layer and a seed layer. A method is disclosed to fabricate such sensor with a laminated thin film structure to achieve a large TCR. The thicknesses of various layers in the laminated thin film are in the range of few to a few tens of nanometers. The combinations of the deliberately optimized multilayer thin film structures and the fabrication of such films at the elevated temperatures are disclosed to obtain the large TCR.
    Type: Application
    Filed: November 28, 2012
    Publication date: May 29, 2014
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Wei Tian, Declan Macken, Huaqing Yin, Venkateswara Rao Inturi, Eric Walter Singleton
  • Publication number: 20140132366
    Abstract: Disclosed herein is a filter chip element including a ferrite substrate, internal coil patterns formed on the ferrite substrate; and a ferrite composite layer filled between the internal coil patterns formed on the ferrite substrate, wherein the ferrite composite layer includes foaming resin, thereby increasing magnetic permeability and a Q value which are important characteristics of a filter chip element for noise prevention among electromagnetic shielding components.
    Type: Application
    Filed: November 12, 2013
    Publication date: May 15, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Yong Suk KIM, Sung Kwon WI, Hyeog Soo SHIN, Sang Moon LEE, Young Seuck YOO, Sung Jin PARK
  • Publication number: 20140099547
    Abstract: Compositions and methods of making are provided for surface modified electrodes and batteries comprising the same. The compositions may comprise a base composition having an active material capable of intercalating the metal ions during a discharge cycle and deintercalating the metal ions during a charge cycle, wherein the active material is selected from the group consisting of LiCoO2, LiMn2O4, Li2MnO3, LiNiO2, LiMn1.5Ni0.5O4, LiFePO4, Li2FePO4F, Li3CoNiMnO6, Li(LiaNixMnyCoz)O2, LiaMn1.5-bNi0.5-cMdO4-x, and mixtures thereof. The compositions may also comprise an annealed composition covering a portion of the base composition, formed by a reaction of the base composition in a reducing atmosphere. The methods of making comprise providing the base composition and annealing the base electrode in a reducing atmosphere.
    Type: Application
    Filed: October 5, 2012
    Publication date: April 10, 2014
    Applicant: UT-Battelle, LLC
    Inventors: Mariappan Parans Paranthaman, Craig A. Bridges
  • Patent number: 8663843
    Abstract: A lithium secondary battery (10) provided by the present invention has an iron oxide film-coated electrode employing a configuration in which an iron oxide film (144) capable of reversibly absorbing and desorbing lithium is retained on an electrically conductive base (142). The electrically conductive base (142) has a roughened surface having a surface roughness Rz of 3 ?m or more, and the iron oxide film (144) is provided on the roughened surface.
    Type: Grant
    Filed: February 16, 2009
    Date of Patent: March 4, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hideki Nakayama, Noritoshi Kasama
  • Publication number: 20140057175
    Abstract: Provided is a cathode active material for a lithium secondary battery and a method for preparing the same. The cathode active material for a lithium secondary battery allows a lithium secondary battery to realize high capacity and to maintain maximum capacity even at high voltage, prevents a drop in capacity during repeated charge/discharge cycles, and improves the lifespan of a lithium secondary battery.
    Type: Application
    Filed: January 15, 2013
    Publication date: February 27, 2014
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventor: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
  • Publication number: 20140036335
    Abstract: Electrooptical cell, including, on a substrate (1), a layer of ferroelectric massive material (4), with an electrode (2) forming an earth plane, provided between the substrate (1) and the ferroelectric layer (4), another electrode (5), narrow, mounted opposite the first above the ferroelectric layer and grooves (6) made in the ferroelectric layer, on either side of the upper electrode (5).
    Type: Application
    Filed: January 23, 2012
    Publication date: February 6, 2014
    Inventor: Marc Alexandre Bouvrot
  • Publication number: 20140023921
    Abstract: The present invention provides an electrode comprising a current collector; an electrode active material layer formed on at least one surface of the current collector and comprising a mixture of electrode active material particles and a first binder polymer; and a porous coating layer formed on the surface of the electrode active material layer, comprising a mixture of inorganic particles and a second binder polymer and having a thickness deviation defined by the following Formula (1), and a manufacturing method thereof: (Tmax?Tmin)/Tavg?0.35??(1) wherein Tmax is a maximum thickness of the porous coating layer formed on the surface of the electrode active material layer, Tmin is a minimum thickness of the porous coating layer and Tavg is an average thickness of the porous coating layer.
    Type: Application
    Filed: August 13, 2013
    Publication date: January 23, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Joo-Sung Lee, Jong-Hun Kim, Jeong-Min Ha, Sun-Mi Jin, Bo-Kyung Ryu, Jin-Woo Kim