Glass Patents (Class 427/165)
  • Patent number: 9929037
    Abstract: A support member for a thermal processing chamber is described. The support member has a sol coating on at least one surface. The sol coating contains a material that blocks a desired wavelength or spectrum of radiation from being transmitted by the material of the support member. The sol coating may be a multi-layer structure that may include adhesion layers, transition layers, and cap layers, in addition to radiation-blocking layers.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: March 27, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Joseph M. Ranish
  • Patent number: 9625742
    Abstract: Disclosed is an optical article, preferably an ophthalmic lens, including a substrate having at least one main surface and a precursor coating of an anti-fog coating, the precursor coating in direct contact with either the main surface of the substrate, or with a first coating, when the main surface of the substrate is coated with a first coating, the precursor coating being formed by a deposition of at least one hydrophilic compound A on the substrate or on the first coating, including an inner portion in which the compound A is grafted on the substrate or on the first coating, and an outer portion that can be removed by washing and/or wiping, resulting from the deposition of the compound A, and being coated with a temporary layer, in direct contact with the compound, including at least one compound selected from the metal fluorides and the compounds including magnesium and oxygen.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: April 18, 2017
    Assignee: ESSILOR INTERNATIONAL (COMPAGNIE GENERALE D'OPTIQUE)
    Inventors: Arnaud Igier, Francis Henky, Alexis Theoden, David Robin
  • Patent number: 9586857
    Abstract: A method of manufacturing a glass substrate to control the fragmentation characteristics by etching and filling trenches in the glass substrate is disclosed. An etching pattern may be determined. The etching pattern may outline where trenches will be etched into a surface of the glass substrate. The etching pattern may be configured so that the glass substrate, when fractured, has a smaller fragmentation size than chemically strengthened glass that has not been etched. A mask may be created in accordance with the etching pattern, and the mask may be applied to a surface of the glass substrate. The surface of the glass substrate may then be etched to create trenches. A filler material may be deposited into the trenches.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: March 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Fuad E. Doany, Gregory M. Fritz, Michael S. Gordon, Qiang Huang, Eric P. Lewandowski, Xiao Hu Liu, Kenneth P. Rodbell, Thomas M. Shaw
  • Patent number: 9403300
    Abstract: The present disclosure generally relates to patterned gradient polymer films and methods for making the same, and more particularly to patterned gradient optical films that have regions that include variations in optical properties such as refractive index, haze, transmission, clarity, or a combination thereof. The variation in optical properties can occur across a transverse plane of the film as well as through a thickness direction of the film.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: August 2, 2016
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: William Blake Kolb, Michael Benton Free, Brant U. Kolb, Fei Lu, John A. Wheatley
  • Patent number: 9217895
    Abstract: A display apparatus includes plural light guide plates each including a light incident surface and a light output surface, plural light sources providing light to the light guide plates, and a display panel receiving the light to display an image. The light guide plates have a rectangular shape, are spaced apart from each other and are in a same plane. The light sources are disposed between two adjacent light guide plates. Each of the light sources includes a light emitting surface, and provides the light to the light guide plates through the light emitting surface. The light emitting surface of the light sources is inclined with respect to one side of the light guide plates.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: December 22, 2015
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Dongmin Yeo, GiCherl Kim, Byungchoon Yang
  • Publication number: 20150132564
    Abstract: The invention relates to a coating composition for making a porous inorganic oxide coating layer on a substrate, the composition comprising an inorganic oxide precursor as binder, a solvent, and a synthetic polyampholyte as pore forming agent. The size of the pores in the coating can be advantageously controlled by the comonomer composition of the polyampholyte, and/or by selecting conditions like temperature, pH, salt concentration, and solvent composition when making the composition. The invention also relates to a method of making such coating composition, to a process of applying a coating on a substrate using such composition, and to such coated substrate showing a specific combination of optical and mechanical properties.
    Type: Application
    Filed: May 17, 2013
    Publication date: May 14, 2015
    Inventors: Nanning Joerg Arfsten, Roberto Arnoldus Dominicus Maria Habets, Michael Alphonsus Cornelis Johannes Van Dijck
  • Publication number: 20150124480
    Abstract: Methods and apparatus for providing one or more components for a display system, particularly for producing diffused light.
    Type: Application
    Filed: April 5, 2013
    Publication date: May 7, 2015
    Inventors: David Eugene Baker, Michael Etienne, Stephan Lvovich Logunov, Daniel Aloysius Nolan, Wageesha Senaratne, Luis Alberto Zenteno
  • Publication number: 20150097166
    Abstract: Various embodiments may relate to a process for producing a scattering layer for electromagnetic radiation. The process may include applying scattering centers onto a carrier, applying glass onto the scattering centers, and liquefying of the glass so that a part of the liquefied glass flows between the scattering centers toward the surface of the carrier, in such a way that a part of the liquefied glass still remains above the scattering centers.
    Type: Application
    Filed: April 11, 2013
    Publication date: April 9, 2015
    Inventors: Daniel Steffen Setz, Manfred Deisenhofer, Angela Eberhardt, Christina Wille
  • Publication number: 20150099131
    Abstract: The present disclosure, in one aspect, relates to a polyamide solution including an aromatic polyamide and a solvent, wherein the aromatic polyamide includes at least two types of constitutional units, and a change rate of coefficient of thermal expansion (CTE) of a cast film produced by casting the polyamide solution on a glass plate and CTE of the same cast film after being subjected to a heat treatment at temperature of 200° C. to 450° C. (=CTE after heat treatment/CTE before heat treatment) is 1.3 or less.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 9, 2015
    Applicants: AKRON POLYMER SYSTEMS, INC., SUMITOMO BAKELITE CO., LTD.
    Inventors: Limin SUN, Dong Zhang, Jiaokai Jing, Frank W. Harris, Hideo Umeda, Ritsuya Kawasaki, Toshihiko Katayama, Yusuke Inoue, Jun Okada, Mizuho Inoue, Manabu Naito
  • Publication number: 20150092117
    Abstract: Provided is a retardation element, including: a transparent substrate; a retardation imparting antireflection layer; a first birefringent layer; and a second birefringent layer which has approximately the same average thickness as that of the first birefringent layer and contacts the first birefringent layer such that an angle formed between a first line segment representing the principal axis of refractive index anisotropy of the first birefringent layer and a second line segment representing the principal axis of refractive index anisotropy of the second birefringent layer is neither 0° nor 180° when the first line segment and the second line segment are projected on the transparent substrate such that an end A of the first line segment at a side of the transparent substrate and an end B of the second line segment at a side of the transparent substrate coincide with each other.
    Type: Application
    Filed: September 23, 2014
    Publication date: April 2, 2015
    Inventors: Nobuyuki Koike, Akio Takada, Naoki Hanashima
  • Publication number: 20150090571
    Abstract: An illuminated glass keycap having a glyph diffuser layer that may diffuse light through a glyph window opened in a background layer. The background layer may be opaque and the glyph window may be transparent. The keycap is adhered to a scissor mechanism positioned above electrical switch circuitry. Included within, below, or adjacent to the scissor mechanism may be one or more light sources positioned to emit light through the keycap, around the perimeter of the keycap, and/or through the background layer.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 2, 2015
    Inventors: Craig C. Leong, Derrick T. Jue, Hilbert T. Kwan, Keith J. Hendren
  • Publication number: 20150079354
    Abstract: A method of producing an optical component includes a transfer step of sandwiching a molding material layer of a molding material between a thin glass plate and a mold and transferring an indented pattern on the mold to the molding material layer to form a patterned indented layer on the thin glass plate, and a separation step of separating the mold from the patterned indented layer. During the transfer step, a reinforcing plate is removably attached to the thin glass plate.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Hiroshi SAKAMOTO, Kosuke TAKAYAMA, Junichi KAKUTA, Yuriko KAIDA
  • Publication number: 20150079348
    Abstract: An antireflection film comprises: mesoporous nanoparticles having a metal oxide framework and an average particle diameter of 30 to 200 nm; and a mesoporous transparent material having a metal oxide framework and filling voids among the nanoparticles.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 19, 2015
    Inventors: Norihiro MIZOSHITA, Masahiko ISHII, Hiromitsu TANAKA
  • Publication number: 20150064420
    Abstract: A window for a display device includes a display device window mother substrate; and a color layer on the display device window mother substrate. The color layer includes a transparent ink layer on the display device window mother substrate and including a pigment particulate, a solid color layer on the transparent ink layer, and a shield ink layer on the solid color layer.
    Type: Application
    Filed: February 7, 2014
    Publication date: March 5, 2015
    Applicant: Samsung Display Co., Ltd.
    Inventors: Myung An MIN, Kyong Bin JIN
  • Publication number: 20150041052
    Abstract: Described herein are wavelength converting devices comprising a glass plate and a wavelength conversion layer over a glass plate that can be applied to solar cells, solar panels, or photovoltaic devices to enhance solar harvesting efficiency of those devices. The wavelength conversion layer of the wavelength converting device comprises a polymer matrix and one, or multiple, luminescent dyes that convert photons of a particular wavelength to a more desirable wavelength.
    Type: Application
    Filed: January 31, 2013
    Publication date: February 12, 2015
    Inventors: Hongxi Zhang, Michiharu Yamamoto
  • Patent number: 8945668
    Abstract: Provided are a phenoxy resin composition for transparent plastic substrate and a transparent plastic substrate using the phenoxy resin composition, capable of effectively substituting for a conventional glass substrate since having excellent thermal and chemical resistance, high adhesiveness, low water infiltration, and a small coefficient of linear thermal expansion. In one general aspect, there is provided a phenoxy resin composition for transparent plastic substrate, including: phenoxy resin having a chemical structure expressed as follows: wherein the n value is 35 to 400.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: February 3, 2015
    Assignee: Toray Advanced Materials Korea Inc.
    Inventors: Chang-Hoon Sim, Yeun-Soo Kim, Ki-Jeong Moon
  • Publication number: 20150024191
    Abstract: Described herein are coated glass or glass-ceramic articles having improved reflection resistance. Further described are methods of making and using the improved articles. The coated articles generally include a glass or glass-ceramic substrate and a nanoporous Si-containing coating disposed thereon. The nanoporous Si-containing coating is not a free-standing adhesive film, but a coating that is formed on or over the glass or glass-ceramic substrate.
    Type: Application
    Filed: January 11, 2013
    Publication date: January 22, 2015
    Inventors: Melissa Danielle Cremer, Steven Bruce Dawes, Shandon Dee Hart, Lisa Ann Hogue
  • Publication number: 20150024647
    Abstract: A curable formaldehyde-free binding composition for use with fiberglass is provided. Such curable composition comprises an aldehyde or ketone and an amine salt of an inorganic acid. The composition when applied to fiberglass is cured to form a water-insoluble binder which exhibits good adhesion to glass. In a preferred embodiment the composition when applied to fiberglass provides a sufficient blackness required in facer products.
    Type: Application
    Filed: October 10, 2014
    Publication date: January 22, 2015
    Inventors: Bernd Christensen, Kiarash Alavi, Souvik Nandi, Jawed Asrar, Mingfu Zhang
  • Patent number: 8932670
    Abstract: A method of making a glass article with an anti-smudge surface includes providing a glass article with a target surface. The method includes providing a coating solution consisting essentially of a fluorosilane compound and a solvent that is miscible with the fluorosilane compound. The method includes spray-coating the target surface with the coating solution while controlling the spray-coating to form a coating layer having a thickness in a range from 1 to 20 nm on the target surface.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: January 13, 2015
    Assignee: Corning Incorporated
    Inventors: John William Botelho, Jeffrey John Domey, Linda Frances Reynolds-Heffer, Lu Zhang
  • Patent number: 8927056
    Abstract: A dielectric layer 2 is formed on a region including grid-shaped convex portions 1a of a resin substrate 1 having the grid-shaped convex portions 1a with pitches of 80 nm to 120 nm on its surface, and metal wires 3 are formed on the dielectric layer 2. It is thereby possible to obtain a wire grid polarizer having a microstructural concavo-convex grid with pitches of the level of 120 nm or less that has not been implemented.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: January 6, 2015
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Hiroshi Yamaki, Yusuke Sato, Takuji Namatame, Yasuyuki Kawazu
  • Patent number: 8927069
    Abstract: A method and apparatus for modifying low emissivity (low-E) coated glass, so that windows using the processed glass allow uninterrupted use of RF devices within commercial or residential buildings. Glass processed in the manner described herein will not significantly diminish the energy conserving properties of the low-E coated glass. This method and apparatus disrupts the conductivity of the coating in small regions. In an embodiment, the method and apparatus ablates the low-E coating along narrow contiguous paths, such that electrical conductivity can no longer occur across the paths. The paths may take the form of intersecting curves and/or lines, so that the remaining coating consists of electrically isolated areas. The method and apparatus are applicable both to treating glass panels at the factory as well as treating windows in-situ after installation.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: January 6, 2015
    Assignee: Eritek, Inc.
    Inventors: Eugenio Estinto, Robert Winsor
  • Patent number: 8916235
    Abstract: Certain example embodiments relate to Ni-inclusive ternary alloy being provided as a barrier layer for protecting an IR reflecting layer comprising silver or the like. The provision of a barrier layer comprising nickel, chromium, and/or molybdenum and/or oxides thereof may improve corrosion resistance, as well as chemical and mechanical durability. In certain examples, more than one barrier layer may be used on at least one side of the layer comprising silver. In still further examples, a NixCryMoz-based layer may be used as the functional layer, rather than or in addition to as a barrier layer, in a coating.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: December 23, 2014
    Assignee: Guardian Industries Corp.
    Inventors: Muhammad Imran, Bernd Disteldorf, Marcus Frank, Richard Blacker
  • Publication number: 20140362444
    Abstract: Methods and articles are provide for: a substrate having first and second opposing surfaces; an intermediate layer substantially covering the first surface of the substrate, the intermediate layer being between about 1-5 microns in thickness and having a hardness of at least 15 GPa; a first outer layer substantially covering the intermediate layer; and a second outer layer substantially covering the first outer layer, and having a hardness of at least 15 GPa.
    Type: Application
    Filed: February 7, 2014
    Publication date: December 11, 2014
    Applicant: CORNING INCORPORATED
    Inventor: Charles Andrew Paulson
  • Publication number: 20140363683
    Abstract: A coating composition and method of making a scratch resistant UV blocking glass coating is described. The composition can include an aqueous colloidal silica. a bifunctional silanol coupling agent, tetraethylorthosilicate (TEOS), a UV absorber, and a water miscible solvent selected from glycol ethers, alkanols, keto alcohols, and combinations thereof. The molar ratio of the bi-functional silanol to TEOS is selected to provide scratch resistance coupled with water resistance.
    Type: Application
    Filed: August 22, 2014
    Publication date: December 11, 2014
    Inventors: Philip William Sherwood, Vinod Kanniah, Jean Dee Breshears
  • Patent number: 8906206
    Abstract: The invention provides a coater, and methods of using the coater, for depositing thin films onto generally-opposed major surfaces of a sheet-like substrate. The coater has a substrate transport system adapted for supporting the substrate in a vertical-offset configuration wherein the substrate is not in a perfectly vertical position but rather is offset from vertical by an acute angle. The transport system defines a path of substrate travel extending through the coater. The transport system is adapted for conveying the substrate along the path of substrate travel. Preferably, the transport system includes a side support for supporting a rear major surface of the substrate. The preferred side support bounds at least one passage through which coating material passes when such coating material is deposited onto the substrate's rear major surface. Preferably, the coater includes at least one coating apparatus (e.g.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: December 9, 2014
    Assignee: Cardinal CG Company
    Inventor: Klaus Hartig
  • Publication number: 20140356633
    Abstract: Certain example embodiments relate to methods of making anti-corrosion anti-reflection (ACAR) films, and/or associated coated articles. The methods may involve forming the reaction product of a hydrolysis and/or a condensation reaction of at least one hybrid alkoxide selected from the group consisting of Si(OR)4—Al(s-OBu)3, Si(OR)4—B(OBu)3 and Si(OR)4 and Zr(OBu)4, where R is a CH2CH3 group, s-OBu is sec-butoxide and OBu is n-butoxide. The solution optionally may be blended and/or mixed with silicon nanoparticles and/or siloxanes. A Tqe % gain of about 3.2% and/or refractive index of 1.5 or less is/are possible in certain example embodiments.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 4, 2014
    Applicant: Guardian Industries Corp.
    Inventor: Liang LIANG
  • Patent number: 8900674
    Abstract: There is provided a method of coating a substrate with a zinc oxide film. The method includes (a) providing a substrate with at least one substantially flat surface, (b) subjecting the surface at least partially to a plasma-etching process, and (c) depositing on the etched surface, a layer that includes zinc oxide. The method is particularly suitable for manufacturing solar cells.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: December 2, 2014
    Assignee: Tel Solar AG
    Inventors: Daniel Borrello, Evelyne Vallat-Sauvain, Ulrich Kroll, Johannes Meier
  • Patent number: 8883252
    Abstract: Coated article having antireflective property together with self cleaning, moisture resistance and antimicrobial properties can be prepared with a topmost layer of titanium oxide on an antireflective layer, which can be formed by a sol-gel process. The antireflective layer can comprise a porosity forming agent, or an alkyltrialkoxysilane-based binder. The antireflective coating can comprise silica and titania components, with pores to achieve low index of refraction and titania to achieve self-cleaning and antimicrobial properties.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: November 11, 2014
    Assignee: Intermolecular, Inc.
    Inventor: Nikhil D. Kalyankar
  • Patent number: 8877287
    Abstract: The present invention relates to a method for manufacturing an anti-reflective coating film. The method for manufacturing an anti-reflective coating film is used to form an anti-reflective coating film exhibiting more improved interface adhesion and scratch resistance and excellent anti-reflective effect by a simple process.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 4, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Heon Kim, Yeong-Rae Chang
  • Publication number: 20140322440
    Abstract: A method for manufacturing an optical member includes forming a printed layer on one surface of a sheet substrate or flat-plate substrate. The method further includes coating one or more pressure-sensitive adhesives selected from the group consisting of a hot melt pressure-sensitive adhesive and an active energy-ray curable pressure-sensitive adhesive on a surface on a printed layer side of the sheet substrate or flat-plate substrate, and forming a pressure-sensitive adhesive layer of the pressure-sensitive adhesive.
    Type: Application
    Filed: April 28, 2014
    Publication date: October 30, 2014
    Applicant: NITTO DENKO CORPORATION
    Inventors: Takahiro NONAKA, Hiroaki KISHIOKA, Hirofumi KATAMI
  • Patent number: 8859093
    Abstract: Embodiments of the present invention include low emissivity (low-E) coatings and methods for forming the coatings. The low-E coating comprises a self-assembled monolayer (SAM) on a glass substrate, where one surface of the SAM is disposed in contact with and covalently bonded to the glass substrate, and one surface of the monolayer is disposed in contact with and covalently bonded to a metal layer. In some embodiments, the low-E coating comprises an assembly of one or more monomeric subunits of the following structure: Si—(CnHy)-(LM)m where n is from 1 to 20, y is from 2n?2 to 2n, m is 1 to 3, L is a Group VI element, and M is a metal, such as silver. In some embodiments, (CnHy) can be branched, crosslinked, or cyclic. The coating can further comprise an antireflection coating on the metal layer.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: October 14, 2014
    Assignee: Intermolecular, Inc.
    Inventors: Xuena Zhang, Dipankar Pramanik
  • Patent number: 8857372
    Abstract: An isothermal, low pressure-based process of depositing material within a substrate has been developed and results in creating an extremely narrow reaction zone within which a more uniform and efficient deposition will occur. Sets of isothermal plasma operating conditions have been found that create a narrow deposition zone, assuring that the deposited material is clear glass rather than soot particles. The chemical delivery system, in one arrangement, utilizes rods of solid phase source material (which may otherwise be difficult to obtain in gaseous form). The operating conditions are selected such that the hot plasma does not transfer a substantial amount of heat to the substrate tube, where the presence of such heat has been found to result in vaporizing the reactant material (creating soot) and developing hot spots.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: October 14, 2014
    Inventors: James Fleming, George Zydzik
  • Patent number: 8851009
    Abstract: An alignment master glass for aligning a plurality of openings of a vapor deposition mask for tensioning the vapor deposition mask, the alignment master glass includes a transparent substrate, and reflective film patterns on at least one surface of the transparent substrate, the reflective film patterns being only at locations corresponding to the plurality of openings of the vapor deposition mask.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: October 7, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: Sang-Shin Lee
  • Patent number: 8852678
    Abstract: Glass surfaces, for example, windshield surfaces, have a durable hydrophobic coating applied thereto. The glass surface is first treated by any suitable method to enhance the ability of a chitosan polymer coating to durably or substantially permanently adhere thereto. Once the chitosan coating has been applied to the glass surface, the normally hydrophilic chitosan coating is rendered hydrophobic by suitable treatment, for example, by a combination of enzymatic and chemical treatments. Alternatively, the chitosan may be rendered hydrophobic prior to coating it on the glass surface, but that is a less preferred technique. The method of the invention provides a glass article having a hydrophobic surface.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: October 7, 2014
    Assignee: Agratech International, Inc.
    Inventors: Joseph Bristow, Richard M. DeMarco
  • Patent number: 8846140
    Abstract: The invention relates to a method for producing an optical article having antireflection or reflective properties and comprising a substrate having at least one main surface, comprising the step of depositing an sub-layer onto a substrate's main surface, the step of treating the sub-layer by ionic bombardment and the step of depositing onto said sub-layer a multilayered stack comprising at least one high refractive index layer and at least one low refractive index layer. According to a preferred embodiment, the deposition of the sub-layer is conducted in a vacuum chamber in which a gas is supplied during the deposition step.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: September 30, 2014
    Assignee: Essilor International (Compagnie Generale d'Optique)
    Inventors: Philippe Roisin, Michele Thomas
  • Publication number: 20140261615
    Abstract: Functionalized coatings preferentially coated on the tin-side of float glass used in solar and other applications are disclosed. Coating compositions include silane-based precursors that are used to form coatings through a sol-gel process including hydrolyzed alkoxysilane-based sols. The coatings are characterized by anti-reflective, abrasion resistant, and anti-soiling properties and the tunability of those properties with respect to different applications. The coatings formed from the compositions described herein have wide application, including, for example, use as abrasion resistant coatings on the outer glass of solar modules, wherein the coating adheres through siloxane linkages. In some embodiments, when applied to glass and cured at a temperature of less than 300° C., the dried sol gel has abrasion resistance sufficient to pass standard EN-1096-2 with a loss of transmission of no more than 0.5% and enables a post-test light transmission gain of greater than 1% as compared to uncoated glass.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Applicant: Enki Technology, Inc.
    Inventors: Vinod Nair, Brenor L. Brophy
  • Publication number: 20140272390
    Abstract: Embodiments provided herein describe low-e panels and methods for forming low-e panels. A transparent substrate is provided. A reflective layer is formed above the transparent substrate. A barrier layer is formed above the reflective layer. A nitride-containing layer is formed above the barrier layer. The nitride-containing layer has a thickness that is 1 nm or less. A over-coating layer is formed above the nitride-containing layer. The over-coating layer includes a different material than that of the nitride-containing layer.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Guowen Ding, Brent Boyce, Minh Huu Le, Zhi-Wen Wen Sun, Yu Wang
  • Publication number: 20140272387
    Abstract: Embodiments provided herein describe optical coatings, panels having optical coatings thereon, and methods for forming optical coatings and panels. A substrate is provided. A coating formulation is applied to the substrate. The coating formulation includes an aqueous-based suspension of particles. The particles have a sheet-like morphology and a thickness of less than about 100 nanometers (nm). The coating formulation is cured to form an anti-glare coating above the substrate. The anti-glare coating has a thickness of between 1 micrometer (?m) and 100 ?m.
    Type: Application
    Filed: October 2, 2013
    Publication date: September 18, 2014
    Applicant: Intermolecular Inc.
    Inventors: Scott Jewhurst, Nikhil Kalyankar
  • Publication number: 20140268349
    Abstract: Embodiments provided herein describe optical coatings, panels having optical coatings thereon, and methods for forming optical coatings and panels. A transparent substrate is provided. An optical coating is formed on the transparent substrate. The optical coating includes a plurality of plate-shaped silicon dioxide particles.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicants: Guardian Industries Corp., INTERMOLECULAR INC.
    Inventors: Nikhil Kalyankar, Richard Blacker, Scott Jewhurst, James Mulligan
  • Publication number: 20140254037
    Abstract: A colored mirror includes a transparent substrate and a reflective layer, including a coloring layer between the substrate and the reflective layer, the coloring layer including a matrix and a colorant. Furthermore, a process for preparing a mirror including a transparent substrate and a reflective layer, a coloring layer between the substrate and the reflective layer, the coloring layer including a matrix and a colorant, includes the production of the coloring layer on the substrate then the deposition of the reflective layer on the coloring layer.
    Type: Application
    Filed: October 11, 2012
    Publication date: September 11, 2014
    Applicant: SAINT-GOBAIN GLASS FRANCE
    Inventors: Régine Faure, Vincent Rachet
  • Patent number: 8828194
    Abstract: A layer system that can be annealed comprises a transparent substrate, preferably a glass substrate, and a first layer sequence which is applied directly to the substrate or to one or more bottom layers that are deposited onto the substrate. The layer sequence includes a substrate-proximal blocking layer, a selective layer and a substrate-distal blocking layer. Also provided is a method for producing a layer system that can be annealed and has a sufficient quality even under critical climatic conditions and/or undefined conditions of the substrate. During the heat treatment (annealing, bending), the color location of the layer system is maintained substantially stable and the color location can be widely varied at a low emissivity of the layer system. For this purpose, a first dielectric intermediate layer is interposed between the substrate-proximal blocking layer and the selective layer and is configured as a substoichiometric gradient layer.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: September 9, 2014
    Assignee: Von Ardenne Anlagentechnik GmbH
    Inventors: Joerg Fiukowski, Matthias List, Hans-Christian Hecht, Falk Milde
  • Patent number: 8821966
    Abstract: A method for manufacturing an image display device includes the step of forming a cured resin layer by interposing a photo-curable resin composition between a protection member and a display-side panel including an image display unit and a frame member and then photo-curing the photo-curable resin composition, with the photo-curable resin composition being disposed across between the image display unit and the frame member. In the manufacturing method, a high-viscosity resin composition having a viscosity of 3000 mPa·s or more and 12000 mPa·s or less is used as the photo-curable resin composition. Alternatively, after a gap between the image display unit and the frame member is sealed with a sealing film, a photo-curable resin composition is interposed between the display-side panel and the protection member.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: September 2, 2014
    Assignee: Dexerials Corporation
    Inventors: Tomoyuki Toyoda, Yoshihisa Shinya, Yusuke Kamata
  • Patent number: 8795812
    Abstract: A glass substrate having an oleophobic surface. The surface is substantially free of features that form a reentrant geometry and includes a plurality of gas-trapping features extending from the surface to a depth below the surface and a coating comprising at least one of a fluoropolymer and a fluorosilane. The gas-trapping features are substantially isolated from each other, and trap gas below droplets to prevent wetting of the surface.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: August 5, 2014
    Assignee: Corning Incorporated
    Inventor: Prantik Mazumder
  • Patent number: 8784934
    Abstract: A transparent dielectric composition comprising tin, oxygen and one of aluminum or magnesium with preferably higher than 15% by weight of aluminum or magnesium offers improved thermal stability over tin oxide with respect to appearance and optical properties under high temperature processes. For example, upon a heat treatment at temperatures higher than 500 C, changes in color and index of refraction of the present transparent dielectric composition are noticeably less than those of tin oxide films of comparable thickness. The transparent dielectric composition can be used in high transmittance, low emissivity coated panels, providing thermal stability so that there are no significant changes in the coating optical and structural properties, such as visible transmission, IR reflectance, microscopic morphological properties, color appearance, and haze characteristics, of the as-coated and heated treated products.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: July 22, 2014
    Assignees: Intermolecular, Inc., Guardian Industries
    Inventors: Mohd Fadzli Anwar Hassan, Richard Blacker, Guowen Ding, Muhammad Imran, Jingyu Lao, Hien Minh Huu Le, Yiwei Lu, Zhi-Wen Sun
  • Patent number: 8780432
    Abstract: Embodiments of the invention generally provide electrochromic devices and materials and processes for forming such electrochromic devices and materials. In one embodiment, an electrochromic device contains a lower transparent conductor layer disposed on a substrate, wherein an upper surface of the lower transparent conductor layer has a surface roughness of greater than 50 nm and a primary electrochromic layer having planarizing properties is disposed on the lower transparent conductor layer. The upper surface of the primary electrochromic layer has a surface roughness less than the surface roughness of upper surface of the lower transparent conductor layer, such as about 50 nm or less.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: July 15, 2014
    Inventor: Paul Phong Nguyen
  • Patent number: 8771530
    Abstract: A method for producing a polarizing element includes: forming particulate materials of a metal halide on a glass substrate; forming a protective film that covers the particulate materials in a non-plasma environment; stretching the particulate materials by heating and stretching the glass substrate; and forming acicular metal particles by reducing the metal halide constituting the stretched particulate materials.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: July 8, 2014
    Assignee: Seiko Epson Corporation
    Inventor: Yoshitomo Kumai
  • Publication number: 20140182670
    Abstract: Light trapping and antireflection coatings are described, together with methods for preparing the coatings. An exemplary method comprises forming a light trapping coating on a substrate and a conformal antireflection coating on the light trapping coating. The light trapping coating comprises particles embedded in a support matrix having a thickness between about one third and two thirds of the mean particle size. The mean particle size is between about 10 ?m and about 500 ?m. The index of refraction of the particles and support matrix is substantially the same as the index of refraction of the substrate at wavelengths of interest. The index of refraction of the conformal antireflection coating is approximately equal the square root of the index of refraction of the substrate.
    Type: Application
    Filed: December 27, 2012
    Publication date: July 3, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Jeroen Van Duren, Scott Jewhurst, Nikhil Kalyankar
  • Patent number: 8765229
    Abstract: A method for producing a porous thin film with variable transmittance, includes placing a polymer into an oven for an drying process to remove water vapor from the polymer and obtain a dry polymer; mixing the dry polymer, a salt and a solvent in accordance with a mixing ratio so as to obtain a first mixed solution; placing the first mixed solution into an ultrasonic vibrator, dissolving the salt to form a second mixed solution; coating the second mixed solution on a glass plate to form a solution thin film; placing solution thin film into an exhaust cabinet to obtain a composite thin film; and washing the composite thin film to remove the salt from the composite thin film to obtain a porous thin film wherein the polymer is a polyacrylonitrile, the salt is a lithium chloride, the porous thin film changes its transmittance via dry and wet state.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: July 1, 2014
    Assignee: National Tsing Hua University
    Inventors: Wen-Kuang Hsu, Ying-Tzu Chen
  • Publication number: 20140178657
    Abstract: Fluorine-doped antireflection coatings, methods for preparing the coatings and articles comprising the coatings are disclosed. The fluorine-doped antireflection coating comprises a fluorine-doped xerogel coating disposed on a substrate. The index of refraction of the xerogel coating is less than the index of refraction of the substrate, generally between about 1.15 and about 1.45. The fluorine atoms can be distributed uniformly through the thickness of the coating, disposed at the surface of the coating, or the distribution can be graded from the surface through the thickness of the coating. The methods comprise applying a coating precursor solution comprising a sol-gel precursor to a glass substrate, heating the coating to form a xerogel coating, and fluorine-doping the coating. The fluorine-doping can be performed by utilizing a coating precursor solution comprising a first fluorine source, contacting the cured coating with a second fluorine source, or a combination thereof.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: INTERMOLECULAR INC.
    Inventors: Scott Jewhurst, Nikhil Kalyankar
  • Patent number: 8758851
    Abstract: A method for increasing the durability of glass by a coating, according to the present invention comprises the step of coating glass with a coating comprising at least one layer whose thickness is below 5 nanometers, wherein the coating comprises a compound of at least one element.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: June 24, 2014
    Assignee: Beneq Oy
    Inventors: Markku Rajala, Matti Putkonen