Solid-walled Microcapsule Formed From Gelatin Or Derivative Thereof Patents (Class 427/213.35)
  • Patent number: 10323182
    Abstract: A method for preparing nanocrystal-metal oxide composites with long-term stability is disclosed herein. The nanocrystals are mixed with a first metal oxide precursor, a solvent and water to form a sol-gel composite. The sol-gel composite is pulverized to form a sol-gel composite powder. The sol-gel composite is then reacted with a second metal oxide precursor. The nanocrystal-metal oxide composites have a high luminescence efficiency and uniform emission wavelengths. The nanocrystal-metal oxide composite is used to manufacture a light-emitting device.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: June 18, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Shin Ae Jun, Eun Joo Jang
  • Patent number: 9404065
    Abstract: A renewable material for releasing a self-healing agent includes a renewable polymeric substrate with capsules and a reactant dispersed in the renewable polymeric substrate. The capsules may be formed from a first renewable shell polymer and may enclose the renewable self-healing agent. The reactant may be suitable for reacting with the renewable self-healing agent to form a polymer.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: August 2, 2016
    Assignee: International Business Machines Corporation
    Inventors: Dylan J. Boday, Jason T. Wertz
  • Patent number: 8906449
    Abstract: A method for making a cathode composite material of a lithium ion battery is disclosed. In the method, a composite precursor is formed. The composite precursor includes a cathode active material precursor and a coating layer precursor coated on a surface of the cathode active material precursor. The composite precursor is reacted with a lithium source chemical compound, to lithiate both the cathode active material precursor and the coating layer precursor in the composite precursor.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: December 9, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Ya-Dong Li, Jun Lu, Wei-Yang Wang, Qing Peng
  • Patent number: 8603577
    Abstract: A process for preparing water-absorbing polymer particles by coating water-absorbing polymer particles with a particulate solid in a mixer, wherein the particulate solid is dispersed by means of a gas stream and the supply of the dispersed particulate solid in the mixer ends below the product bed surface.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: December 10, 2013
    Assignee: BASF SE
    Inventors: Holger Barthel, Martin Wendker, Reiner Witt
  • Patent number: 8481114
    Abstract: The water dispersibility of water-soluble polymer particles can be improved by a method which comprises the following step: i) foaming a fluid composition comprising a compound A) having a weight average molecular weight of less than 10,000 or a water-insoluble polymer B) having a weight average molecular weight of at least 10,000; ii) contacting the produced foam with water-soluble polymer particles having a weight average molecular weight of at least 10,000; and iii) drying the particles, whereby the foam collapses during the contacting and/or drying step and the water-soluble polymer particles are encrusted with the compound having a weight average molecular weight of less than 10,000 or the water-insoluble polymer having a weight average molecular weight of at least 10,000.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: July 9, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Colin M. Keary, Paul J. Sheskey, Karen M. Balwinski
  • Patent number: 8383198
    Abstract: The water dispersibility of water-soluble polymer particles can be improved by a method which comprises the following step: i) foaming a fluid composition comprising a compound A) having a weight average molecular weight of less than 10,000 or a water-insoluble polymer B) having a weight average molecular weight of at least 10,000; ii) contacting the produced foam with water-soluble polymer particles having a weight average molecular weight of at least 10,000; and iii) drying the particles, whereby the foam collapses during the contacting and/or drying step and the water-soluble polymer particles are encrusted with the compound having a weight average molecular weight of less than 10,000 or the water-insoluble polymer having a weight average molecular weight of at least 10,000.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: February 26, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Colin M. Keary, Paul J. Sheskey, Karen M. Balwinski
  • Patent number: 8246868
    Abstract: A W/O emulsion is produced from an aqueous solution containing a substance to be entrapped in a vesicle in a dissolved or suspended state and an oil phase containing an emulsifier; subsequently, the W/O emulsion is cooled to a temperature at which the aqueous solution of the W/O emulsion becomes a frozen particle and the oil phase maintains a liquid state, and the oil phase is removed; thereafter, an oil phase containing a vesicle constituent lipid is added to the frozen particle, and the obtained mixture is then stirred, so as to substitute the emulsifier on the surface of the frozen particle with the vesicle constituent lipid; and thereafter, an external Water phase is added to the frozen particle coated with a lipid membrane, so as to hydrate the lipid membrane by the external water phase. This process achieves a high entrapment yield of a desired substance while controlling desired physical properties such as particle diameter.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: August 21, 2012
    Assignee: University of Tsukuba
    Inventors: Sosaku Ichikawa, Takashi Kuroiwa
  • Patent number: 8137746
    Abstract: This invention is directed to a process for making solid, typically particulate, water-swellable material comprising coated water-swellable, preferably hydrogel-forming polymers, which are coated with a coating agent, which is such that it does not rupture when the polymers swell in a liquid, e.g., water or saline water. Hereto, the coating agent is extensible in wet state and comprises thereto a wet-extensible material that has a tensile stress at break in the wet state of at least 1 MPa. Typically, the coating agent comprises thereto an elastomeric polymeric material. The invention also relates to solid (particulate) water-swellable material obtainable by the process of the invention.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: March 20, 2012
    Assignee: The Procter & Gamble Company
    Inventors: Mattias Schmidt, Axel Meyer, Renae Dianna Fossum, Bruno Johannes Ehrnsperger, Stephen Allen Goldman, Michael Divo, Edward Joseph Urankar
  • Patent number: 8088403
    Abstract: The present invention relates to a method for preparing microcapsules by coacervation, and to the use of transglutaminase for cross-linking in complex coacervation. The present invention relates further to coacervation processes in general in which a material to be encapsulated is added to a solution comprising at least one colloid below the gelling temperature of the colloid. According to a method of the present invention, an emulsion or suspension of hydrophobic material is prepared after cooling a solution that includes hydrocolloids below the critical gelling temperature of a coacervate phase.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: January 3, 2012
    Assignee: Firmenich SA
    Inventors: Grégory Dardelle, Valéry Normand
  • Patent number: 7790225
    Abstract: Coatings and methods are provided. An embodiment of the coating includes microcapsules that contain at least one of a corrosion inhibitor, a film-forming compound, and an indicator. The microcapsules are dispersed in a coating vehicle. A shell of each microcapsule breaks down in the presence of an alkaline condition, resulting from corrosion.
    Type: Grant
    Filed: September 19, 2005
    Date of Patent: September 7, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Luz M. Calle, Wenyan Li
  • Patent number: 7658998
    Abstract: The present invention relates to a method for preparing an injectable composition of microparticles for the sustained release of a biologically active agent. The microparticles include a biocompatible polymer and a biologically active agent. The invention provides an improved process for the preparation of microparticles, wherein the physical characteristics of the microparticles, for example, the morphology, density and size, are independent of the process used to prepare the initially formed polymer/drug matrix. The method includes the steps of (a) providing a polymer/biologically active agent matrix; (b) compressing the polymer/biologically active agent matrix, thereby forming a compressed matrix; and (c) fragmenting the compressed matrix, thereby forming an injectable microparticle composition. The polymer/drug matrix can be provided by any suitable method.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: February 9, 2010
    Assignee: Alkermes Controlled Therapeutics, Inc.
    Inventors: Josiah Brown, Warren E. Jaworowicz, Gregory C. Troiano
  • Patent number: 7629049
    Abstract: A polymer system and device with a hemocompatible film or coated polymers is provided, the polymer system comprises an organic phase and an aqueous phase, the organic phase comprises polymerizable monomers and at least one initiator and the aqueous phase comprises at least one dispersing agent, at least one free radical inhibitor and at least one buffering agent, the organic phase is immiscible in the aqueous phase, and the dispersing agent forms a hemocompatible surface on the polymer, and the device comprises a housing for containing the polymer system.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: December 8, 2009
    Assignee: Medasorb, Inc.
    Inventors: Robert L. Albright, Vincent J. Capponi, Thomas D. Golobish
  • Patent number: 7473467
    Abstract: The invention relates to a complex coacervation process based on the use of type B gelatin as polycationic colloid, for the preparation of “Halal” certified flavor-containing microcapsules.
    Type: Grant
    Filed: September 3, 2002
    Date of Patent: January 6, 2009
    Assignee: Firmenich SA
    Inventors: Anandaraman Subramaniam, Anne Reilly
  • Patent number: 7431986
    Abstract: A stabilized emulsion is employed to produce shelf stable, controlled release, discrete, solid particles or pellets which contain an encapsulated and/or embedded component, such as a readily oxidizable component, such as omega-3 fatty acids. An oil encapsulant component which contains an active, sensitive encapsulant, dissolved and/or dispersed in an oil is admixed with an aqueous component and a film-forming component to form an emulsion. An antioxidant for prevention of oxidation of the active, sensitive encapsulant, and a film-softening component or plasticizer for the film-forming component may be included in the emulsion. The emulsion is stabilized by subjecting it to homogenization. The pellets are produced by first reducing the water content of the stabilized emulsion so that the film-forming component forms a film around the oil droplets and encapsulates the encapsulant. In embodiments of the invention, the water content of the homogenized emulsion may be reduced by spray-drying to produce a powder.
    Type: Grant
    Filed: July 24, 2002
    Date of Patent: October 7, 2008
    Assignee: General Mills, Inc.
    Inventors: Bernhard H. Van Lengerich, Lily Leung, Steven C. Robie, Young Kang, Jamileh Lakkis, Thomas M. Jarl
  • Patent number: 7201962
    Abstract: A polymer with a hemocompatible film or coating is manufactured by a one-step method comprising polymerizing monomer droplets comprising at least one crosslinking agent to form a polymer and simultaneously coating the resulting polymer using at least one dispersing agent to thereby form a hemocompatible coated polymer.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: April 10, 2007
    Assignee: Medasorb Corporation
    Inventor: Robert L. Albright
  • Patent number: 7112620
    Abstract: A polymer system with a hemocompatible film or coating is provided, the system comprises an organic phase and an aqueous phase, the organic phase comprises polymerizable monomers and at least one initiator and the aqueous phase comprises at least one dispersing agent, at least one free radical inhibitor and at least one buffering agent, the organic phase is immiscible in the aqueous phase, and the dispersing agent forms a hemocompatible surface on the polymer.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: September 26, 2006
    Inventor: Robert L. Albright
  • Patent number: 6884829
    Abstract: A polymer with a hemocompatible film or coating is manufactured by a one-step method comprising polymerizing monomer droplets comprising at least one crosslinking agent to form a polymer and simultaneously coating the resulting polymer using at least one dispersing agent to thereby form a hemocompatible coated polymer.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: April 26, 2005
    Inventor: Robert L. Albright
  • Patent number: 6663913
    Abstract: The invention generally provides a method of coating a material, the method including the following steps: (a) forming a generally elongate coating structure (15), the coating structure having an internal cavity (17) extending at least substantially along its length, and wherein the internal cavity of the coating structure is capable of receiving a core material (21); (b) inserting a core material (21) into the internal cavity (17) of the coating structure (15); (c) compressing the coating structure at a first location (44) along its length so as generally to form a seal at that location; and (d) compressing the coating structure at a second location along its length (45).
    Type: Grant
    Filed: July 2, 1999
    Date of Patent: December 16, 2003
    Assignee: Scientec Research Pty. Ltd.
    Inventors: Michael Francis O'Donoghue, James Allan Morris
  • Publication number: 20030152860
    Abstract: A process for forming microcapsules having substantially impermeable microcapsule walls comprising the steps of: forming an emulsion of an internal phase in a continuous aqueous phase, the internal phase including a photosensitive composition and a polyvalent isocyanate, the continuous aqueous phase including a sulfonated polystyrene, at least one of the internal phase or the continuous aqueous phase further including a hydrophilic polymer; and enwrapping particles of the internal phase in an amine-formaldehyde condensation product produced by in situ condensation of an amine and formaldehyde is disclosed.
    Type: Application
    Filed: March 17, 2000
    Publication date: August 14, 2003
    Inventors: Ibrahim Katampe, Joseph C. Camillus
  • Patent number: 6592916
    Abstract: An edible microcapsule comprising a core and a capsule wall, wherein the core is an edible hydrophobic substance, the capsule wall is formed by salting-out of a combination of a protein and an edible salt, and transglutaminase is used as a crosslinking agent for hardening (solidifying) the capsule wall, and a food containing the edible microcapsule.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: July 15, 2003
    Assignees: Ajinomoto Co., Inc., Japan Capsular Products, Inc.
    Inventors: Takahiko Soeda, Masayuki Nakanishi, Tsuguo Inoue
  • Patent number: 6592844
    Abstract: A process is described for preparing microspheres, films and coatings from protein or modified protein in which the protein product is stabilized by carrying out the preparation in the presence of an aqueous solution of at least one &agr;-hydroxy acid. The microspheres, films and coatings so produced have improved stability in aqueous solution.
    Type: Grant
    Filed: December 27, 1999
    Date of Patent: July 15, 2003
    Assignees: Chiron Corporation, University of Nottingham
    Inventors: Allan G. A. Coombes, Wu Lin, Derek T. O'Hagen, Stanley S. Davis
  • Patent number: 6503559
    Abstract: The present invention relates to colorant compositions containing neonanoplasts. The colorant compositions exhibit improved color brightness and brilliance due to the incorporation of one or more colorants in the neonanoplasts. The colorant compositions may be printed onto virtually any substrate. The colorant compositions of the present invention have particular utility in the area of printed textiles.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: January 7, 2003
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Ronald Sinclair Nohr, John Gavin MacDonald
  • Patent number: 6485983
    Abstract: System, method, and test strip for solid phase, electrochemical, quantitative analysis of analytes contained in biological fluid samples. Preliminary to analysis, a test sample solution can be applied to a sample collection pad associated with the solid phase test environment of the test strip. The test sample solution and a test kit reagent are thereby initially contacted, under assay conditions, within this solid phase test environment, and caused to migrate along a fluid pathway therein. Irrespective of the assay format (competitive assay, sandwich assay, etc.), a test kit reagent (e.g. labeled substance) and the analyte of interest (e.g.
    Type: Grant
    Filed: May 5, 1999
    Date of Patent: November 26, 2002
    Assignee: Intec Science, Inc.
    Inventors: Fang Lu, Frank N. W. Lu, Kai Hua Wang
  • Patent number: 6475542
    Abstract: An edible microcapsule comprising a core and a capsule wall, wherein the core is an edible hydrophobic substance, the capsule wall is formed by salting-out of a combination of a protein and an edible salt, and transglutaminase is used as a crosslinking agent for hardening (solidifying) the capsule wall, and a food containing the edible microcapsule.
    Type: Grant
    Filed: January 8, 1997
    Date of Patent: November 5, 2002
    Assignees: Ajinomoto Co., Inc., Japan Capsular Products, Inc.
    Inventors: Takahiko Soeda, Masayuki Nakanishi, Tsuguo Inoue
  • Patent number: 6461545
    Abstract: Methods for preparing microspheres containing imidazole derivatives are provided. Also provided is the use of imidazole derivatives containing microspheres for treating fungal infections. Oral dosage forms for oral administration are also provided.
    Type: Grant
    Filed: January 6, 2000
    Date of Patent: October 8, 2002
    Assignee: Emisphere Technologies, Inc.
    Inventor: Martin L. Kantor
  • Patent number: 6444261
    Abstract: A particle resistant to storage of at least one first and at least one second component, wherein said second component of at least one crosslinkable polymer as a shell at least partially envelops and/or encloses said first component as a core and said first component has at least one ascertainable property, obtainable by reacting said first component with the crosslinkable polymer and subsequently reacting the formed product with a crosslinking agent such that the first component with resistance to storage remains within the second component.
    Type: Grant
    Filed: July 20, 1998
    Date of Patent: September 3, 2002
    Assignee: Abion Beteiligungs-und Verwaltungsgesellschaft mbH
    Inventors: Dmitri Plaksine, Elena Gromakovskaia, Christoph Erhardt
  • Publication number: 20020071908
    Abstract: A particle resistant to storage of at least one first and at least one second component, wherein
    Type: Application
    Filed: July 20, 1998
    Publication date: June 13, 2002
    Inventors: DMITRI PLAKSINE, ELENA GROMAKOVSKAIA, CHRISTOPH ERHARDT
  • Patent number: 6391452
    Abstract: The present invention relates to pharmaceutical compositions for delivery of drugs intended to reside in the nose, compositions for nasal administration of drugs, e.g., antiviral agents, and particularly antiviral agents comprising the human major rhinovirus receptor, also known as intercellular adhesion molecule-1 (ICAM-1); to methods of making said nasal drug compositions, and to an improved process for the removal of residual solvent from pharmaceutical matrices.
    Type: Grant
    Filed: July 17, 1998
    Date of Patent: May 21, 2002
    Assignee: Bayer Corporation
    Inventors: Kris P. Antonsen, Rajiv Nayar, Wei Wang, Margaret Caudle, Michael A. Shearer, Neville M. Concessio
  • Patent number: 6258870
    Abstract: This invention provides novel methods for the formation of biocompatible membranes around biological materials using photopolymerization of water soluble molecules. The membranes can be used as a covering to encapsulate biological materials or biomedical devices, as a “glue” to cause more than one biological substance to adhere together, or as carriers for biologically active species. Several methods for forming these membranes are provided. Each of these methods utilizes a polymerization system containing water-soluble macromers, species which are at once polymers and macromolecules capable of further polymerization. The macromers are polymerized using a photoinitiator (such as a dye), optionally a cocatalyst, optionally an accelerator, and radiation in the form of visible or long wavelength UV light. The reaction occurs either by suspension polymerization or by interfacial polymerization.
    Type: Grant
    Filed: January 13, 1997
    Date of Patent: July 10, 2001
    Assignee: Board of Regents, The University of Texas Systems
    Inventors: Jeffrey A. Hubbell, Chandrashekhar P. Pathak, Amarpreet S. Sawhney, Neil P. Desai, Syed F. A. Hossainy
  • Patent number: 6234464
    Abstract: A microencapsulated unsaturated fatty acid or fatty acid compound or mixture of fatty acids and/or fatty acid compounds, and particularly an omega-3-fatty acid or omega-6-fatty acid or an ethyl ester or a glyceride thereof or a mixture of such fatty acids and/or fatty acid compounds. Fatty acid compounds are understood to include derivatives. Particles of the compounds are provided with capsule walls composed of two layers. The inner layer is composed of gelatin A, gelatine B. casein or an alginate, or of a derivative or salt of one of these polymers. The outer layer is composed of gelatin B, gum arabic, pectin or chitosan or a derivative or salt of one of these polymers.
    Type: Grant
    Filed: July 7, 1999
    Date of Patent: May 22, 2001
    Assignee: K.D. Pharma Bexbech GmbH
    Inventors: Rudolf Krumbholz, Alf Lamprecht, Claus-Michael Lehr, Ulrich Schäfer, Norbert Schirra, Manfred Treitz
  • Patent number: 6224794
    Abstract: A process for forming microspheres that includes passing a first composition containing polymer and solvent through an orifice and directly into a second composition containing water and a microsphere-stabilizing agent, under at least one of conditions (a) and (b), wherein (a) the first composition flows through a first conduit along a first path and exits the first conduit at the orifice, the second composition flows through a second conduit along a second path in an upstream to downstream direction, the first conduit is connected to the second conduit and terminates at the orifice, the first and second paths being orientated at an angle &thgr; relative to each other, wherein 0°<&thgr;<180°; (b) the first composition being at a first temperature and including a solvent having a boiling point, the second composition being at a second temperature, the boiling point of the solvent being less than the second temperature; and forming a composition including water and microspheres, the microspheres b
    Type: Grant
    Filed: May 5, 1999
    Date of Patent: May 1, 2001
    Assignee: Angiotech Pharmaceuticals, Inc.
    Inventors: Brian G. Amsden, Richard T. Liggins
  • Patent number: 6171647
    Abstract: The invention relates to gel-coated microcapsules which have improved mechanical stress- and flame-resistance. A method for making the gel coated microcapsules is also provided. Phase change materials can be included in the microcapsules to provide thermal control in a wide variety of environments.
    Type: Grant
    Filed: January 14, 2000
    Date of Patent: January 9, 2001
    Assignee: Frisby Technologies, Inc.
    Inventor: Mark E. Holman