After Coating Patents (Class 427/224)
  • Patent number: 6090995
    Abstract: Synthetic surfaces such as surfaces of implantable prosthetic devices are modified to enhance their ability to support the growth, migration and attachment of epithelial cells. A surface modifier composition is covalently bound to the synthetic surface, and an epithelial cell-supporting coating is applied to the modified surface. The surface modifier composition may also include an epithelial cell-supporting material. The invention is particularly suited towards the modification of synthetic epikeratophakia lenses.
    Type: Grant
    Filed: February 28, 1997
    Date of Patent: July 18, 2000
    Assignee: Surmodics, Inc.
    Inventors: Cary Reich, Jeffrey Forsberg, Harold Levy, Jean Toner-Webb
  • Patent number: 6087415
    Abstract: Biomedical devices with stable, hydrophilic and antimicrobial coatings are provided. The coatings are formed using a coupling agent to bond a carboxyl containing hydrophilic coating to the surface by ester or amide linkages.
    Type: Grant
    Filed: June 11, 1998
    Date of Patent: July 11, 2000
    Assignee: Johnson & Johnson Vision Care, Inc.
    Inventors: Douglas G. Vanderlaan, David C. Turner, Joe M. Wood
  • Patent number: 6060117
    Abstract: Method of making a mask assembly by providing a heat resistance mask substrate having an exposed surface with a surface smoothness less than 2000 micro inches, uniformly spraying a thermoset epoxy organic coating onto such exposed surface in one or more layers to provide a coating having (e.g., a thickness equal to or less than about 0.005 inches), a smoothness characterized by an average profilometer reading (Ra) of no greater than 1.5 micrometers, said coating being devoid of pores that exceed about 0003 inch in size, and flame polishing all or a portion of such coating to effect a surface finish of about 1.0 micrometers. A mask assembly which is useful in masking areas from thermal spray particles, comprising a heat resistance substrate presenting an exposed grit blasted surface having a smoothness of less than 2000, and a thin thermoset epoxy coating bonded to said exposed surface and having a surface smoothness characterized by an average profilometer reading (Ra) no greater than 1.5.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: May 9, 2000
    Assignee: Ford Global Technologies, Inc.
    Inventors: Paul Earl Pergande, Jeffrey Alan Kinane, Deborah Rose Pank, David Robert Collins
  • Patent number: 6057031
    Abstract: The invention relates to a composite composed of a plastic substrate and a thin, continuous metal-containing layer, characterised in that the metal-containing layer is ductile, adheres firmly to the plastic substrate, has a thickness of <2 .mu.m and is composed of a compound corresponding to the formulaM.sub.a O.sub.b C.sub.x N.sub.y B.sub.zwherein:M means one or more metals from the group comprising Ti, Ta, Nb, Zr and Hf,a=0.025 to 0.9b=0.025 to 0.7x=0.2 to 0.9y=0 to 0.7z=0 to 0.7a+b+x+y+z=1provided that the value of a, starting from the substrate surface, increases from a value approximating zero towards to the layer surface, and at least 50% of the carbon atoms at the base of the layer are bound to other carbon atoms by C--C bonds.
    Type: Grant
    Filed: August 21, 1998
    Date of Patent: May 2, 2000
    Assignee: GfE Metalle und Materialien GmbH.
    Inventors: Frank Breme, Volker Guether, Karl-Uwe van Osten
  • Patent number: 6042875
    Abstract: The invention is directed to medical devices having a drug-releasing coating and methods for making such coated devices. The coating permits timed or prolonged pharmacological activity on the surface of medical devices through a reservoir concept. Specifically, the coating comprises at least two layers: an outer layer containing at least one drug-ionic surfactant complex overlying a reservoir layer containing a polymer and the drug which is substantially free of an ionic surfactant. Upon exposure to body tissue of a medical device covered with such coating, the ionically bound drug in the outer layer is released into body fluid or tissue. Following release of such bound drug, the ionic surfactant binding sites in the outer layer are left vacant.
    Type: Grant
    Filed: March 2, 1999
    Date of Patent: March 28, 2000
    Assignee: Schneider (USA) Inc.
    Inventors: Ni Ding, Jennifer E. Raeder-Devens, Tuyethoa Thi Trinh
  • Patent number: 6033719
    Abstract: A method for making a medical device having at least one biomolecule immobilized on a substrate surface is provided. The method may include combining a biomolecule comprising a 1,2 dicarbonyl moiety with a material comprising a guanidino moiety to form an immobilized biomolecule on a medical device biomaterial surface through covalent bonds. Another method of the present invention may include combining a biomolecule comprising a guanidino moiety with a material comprising a 1,2 dicarbonyl moiety to form an immobilized biomolecule on a medical device biomaterial surface through covalent bonds. Additionally, one method of the present invention may be employed to crosslink biomolecules, located in solution or on a medical device biomaterial surface, thereby forming a crosslinked biomaterial or a crosslinked medical device coating.
    Type: Grant
    Filed: January 22, 1998
    Date of Patent: March 7, 2000
    Assignee: Medtronic, Inc.
    Inventor: James R. Keogh
  • Patent number: 6022553
    Abstract: A method for making antimicrobial, blood-compatible surfaces is provided, articles having surfaces made by this method, and the use of these articles in fields where controlling the spread of microbes and blood-compatibility are important. Such fields include the medical field, where it is critical to eliminate infection causing microbes and reduce the number of dangerous blood clots in patients.
    Type: Grant
    Filed: April 21, 1998
    Date of Patent: February 8, 2000
    Assignee: Huels Aktiengesellschaft
    Inventors: Christine Anders, Guenter Lorenz, Hartwig Hoecker
  • Patent number: 6013333
    Abstract: A method is described for strengthening or restoring strength to a brittle oxide substrate which includes the steps of coating the brittle oxide substrate with an aqueous solution containing a silane-based composition, and curing the coating to form a transparent layer on the brittle oxide substrate. Also disclosed are novel compositions used to coat brittle oxide substrates, and silane-coated brittle oxide containers.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: January 11, 2000
    Assignee: Elf Atochem North America, Inc.
    Inventors: Stephen W. Carson, Ryan R. Dirkx, Victor D. Papanu, Neil D. Conrad
  • Patent number: 6013855
    Abstract: Methods for grafting unmodified PEO or any other water-soluble polymers to the surfaces of metals and glasses to form biocompatible surfaces having low protein affinity is provided. One technique includes the steps of: (a) providing a support member having a plurality of hydroxyl or oxide groups attached to a surface of said support member; (b) exposing said surface to a silane coupling agent to cause the silane coupling agent to form a silane layer that is covalently bound to the surface wherein the silane layer comprises a plurality of vinyl groups; and (c) exposing the silane layer to a hydrophilic polymer and causing the silane layer to react with the hydrophilic polymer to covalently bond to the silane layer. Exposure of the silane layer to .gamma.-radiation to induce grafting with low radiation to induce grafting of the hydrophilic polymer to the silane layer.
    Type: Grant
    Filed: December 26, 1996
    Date of Patent: January 11, 2000
    Assignee: United States Surgical
    Inventors: Timothy McPherson, Kinam Park, Seongbong Jo
  • Patent number: 6011082
    Abstract: A process for forming a surface modification on a polymer substrate and polymer substrates having such surface modifications. The process comprises the steps of absorbing a swelling monomer into the polymer substrate for a period of time in order to swell the polymer substrate; removing the swollen polymer from the swelling monomer; transferring the swollen polymer to a reaction mixture containing at least one functional monomer; polymerizing the functional monomer in the reaction mixture containing the swollen polymer substrate for a period of time; and removing the polymer from the reaction mixture. Because the surface modification produced by the process is a surface interpenetrating polymer network, the process is not sensitive to the reactive groups located on the surface of the polymer substrate. Further, the surface interpenetrating network bonds to the polymer substrate through caternary connections or other forms of chain entanglement and thus is quite stable.
    Type: Grant
    Filed: June 2, 1997
    Date of Patent: January 4, 2000
    Assignee: Pharmacia & Upjohn AB
    Inventors: Yading Wang, Robert van Boxtel, Stephen Q. Zhou
  • Patent number: 6001895
    Abstract: A composite surgical material comprising a collagen matrix reinforced by a layer of a synthetic bioabsorbable material such as polylactide/polyglycolide or oxidized regenerated cellulose, and wherein oil droplets are dispersed in the collagen matrix. The oil droplets comprise 1% to 75% of the weight of the composite and result in improved leak-proofing of the composite. The composite, in the form of a sheet or a tube, is especially useful as a temporary, fully bioabsorbable prosthesis, for membranes or blood vessels where a highly leak-proof prosthesis is required. The invention also provides a method of making a composite surgical material comprising the steps of: providing a layer of a synthetic bioabsorbable material; providing a dispersion of collagen in an oil-in-water emulsion; coating at least one face of the layer of synthetic bioabsorbable material with the said dispersion; and drying the composite material thus obtained.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: December 14, 1999
    Assignee: Johnson & Johnson Medical, Inc.
    Inventors: Wilson Harvey, Nicholas D. Light, Carla A. Haynes
  • Patent number: 5984905
    Abstract: The present invention provides a process of forming an antimicrobial coating on a surface of a medical implant, the coating comprising an antimicrobially effective amount of antimicrobial metal atoms incorporated into a coating of amorphous carbonaceous material.
    Type: Grant
    Filed: March 18, 1997
    Date of Patent: November 16, 1999
    Assignee: Southwest Research Institute
    Inventor: Geoffrey Dearnaley
  • Patent number: 5980973
    Abstract: A method of providing biocompatible surface texturing on a metal component of an implantable device and the device so produced. The coating is provided by applying particles of metal falling substantially entirely in the range of 1 to 5 microns to a surface of said component to provide a layer of generally uniform thickness and sintering said particles to one another and to said component to provide a generally continuous external surface having surface texturing in the form of projections formed from said sintered particles. The particles are preferably applied to a depth of 1 to 25 microns. In a preferred embodiment particles of titanium are applied to a surface of a titanium component.
    Type: Grant
    Filed: March 13, 1998
    Date of Patent: November 9, 1999
    Assignee: Medtronic, Inc.
    Inventors: Chike O. Onyekaba, George C. Johnstone, David D. Verness
  • Patent number: 5980972
    Abstract: The invention is directed to a method of applying drug-release coatings whereby a polymer can be dissolved in a first solvent (solvent A) to form a polymer system and a drug can be dissolved or suspended in a second solvent (solvent B) to form a drug system. The coating or layer of coating so formed comprises a substantially uniform combination of the drug and polymer. Solvent B can be the same as or different than solvent A. The coating can be applied on a stent body by separately spraying or dipping the polymer system and the drug system onto the devices. The coating can be accomplished by either applying the polymer and drug systems sequentially or simultaneously. In certain embodiments, a drug can be suspended in solvent B. In some cases, three or more systems can be utilized. For instance, a third system containing pure solvent A or B can smooth the coating surface, if the solvent of the third spraying system is compatible with the polymer matrix.
    Type: Grant
    Filed: September 22, 1997
    Date of Patent: November 9, 1999
    Assignee: Schneider (USA) Inc
    Inventor: Ni Ding
  • Patent number: 5976780
    Abstract: A macroencapsulation device for somatic cells using ultrapurified Na alginate and polysulfone hollow fibers of 30 kDa molecular weight cutoff. Ultrapurified Na alginate material is used which has a high `G` content, low endotoxin content, low divalent metal toxins and low protein impurities. Islet cells prior to being encapsulated, are irrigated with Hank's modified solution (without Ca and Mg) containing gentamycin, vancomycin and amphotericin B and then passed through a leukoabsorb filter to reduce the donor antigen load of passenger leukocytes and to reduce the bioburden of microorganisms including viruses. Encapsulation is done in RPMI 1640 tissue culture fluid containing necessary nutritional supplements and ATP source of energy. The open ends of the fiber are covered with a porous membrane. To further improve biocompatibility, the outer wall of the polysulfone is lightly gelled with alginate gel.
    Type: Grant
    Filed: June 2, 1998
    Date of Patent: November 2, 1999
    Inventor: Kumarpal A. Shah
  • Patent number: 5976169
    Abstract: A stent comprising a cylindrical member formed of metal and having a wall defining a bore extending therethrough along a longitudinal axis and having an inner surface and an outer surface. The wall has a pattern formed therein with openings extending therethrough into the bore. A coating containing silver is adherent to the outer surface of said wall for treatment of undesired conditions in the vessel.
    Type: Grant
    Filed: November 30, 1998
    Date of Patent: November 2, 1999
    Assignee: CardioVasc, Inc.
    Inventor: Mir A. Imran
  • Patent number: 5968091
    Abstract: Stents are coated with a polymer such that the polymeric coating binds the crossover points of the wires, or, in the case of a zig-zag stent, binds adjacent zig-zags of wires without occluding the interstices of the stent lattice. Suitable polymers include polyurethane, polycarbonate urethane, polyurethane urea, silicone rubber, polyisobutylene copolymer (with styrene, etc.), polyolefin, polyester, glycolated polyester, polyamide, amorphous polyamide, combinations of the above and the like. Biodegradable polymers such as polyisobuterate, polyvalerate, polylactic acid, polyglycolic acid and combinations of these are also suitable. The polymer can be reacted in place without a solvent, such as two component polyurethanes, or silicone rubbers, or the reacted polymer can be dissolved in an appropriate solvent, for example, dimethylacetamide for the polyurethanes, toluene for the polyolefins, or heptane for the silicone rubbers.
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: October 19, 1999
    Assignee: Corvita Corp.
    Inventors: Leonard Pinchuk, Noureddine Frid
  • Patent number: 5968824
    Abstract: Agents which modulate pathways of apoptotic induction or repression in which products of opioid peptide precursors genes participate, useful as inducers of apoptosis in cells and in tumor cells in particular, are disclosed. Methods of treatment employing such agents and pharmaceutical compositions containing them are also described.
    Type: Grant
    Filed: April 28, 1997
    Date of Patent: October 19, 1999
    Inventors: Barbara Ann Spruce, Alan Prescott, Angelika Bottger, Deborah Ann Dewar
  • Patent number: 5964807
    Abstract: Methods of reforming degenerated intervertebral discs are provided in accordance with methods of the invention. Hybrid materials useful in methods of the present invention are also provided.
    Type: Grant
    Filed: August 8, 1996
    Date of Patent: October 12, 1999
    Assignee: Trustees of the University of Pennsylvania
    Inventors: Jean Chin Chin Gan, Paul Ducheyne, Edward Vresilovic, Irving Shapiro
  • Patent number: 5965207
    Abstract: A method of applying a smooth thin waterproof coating on engineered particleboards including oriented strand boards, thereby permitting the use of such boards for applications wherein the boards are exposed to moisture, including, for example, foundation forms, roof sheathing, basement walls, etc. The method of this invention includes applying a thin liquid cementitious coating on a surface of an engineered particleboard having a moisture content preferably less than three percent, wherein the cementitious coating fills the interstices between the particles and coats the surface. The cementitious coating is then dried and the surface is abraded to receive a thin liquid curable polyurethane coating over the cementitious coating. Finally, the exposed surface of the polyurethane coating is heated to remove surface imperfections and cure the polyurethane coating.
    Type: Grant
    Filed: May 6, 1998
    Date of Patent: October 12, 1999
    Assignee: Illinois Tool Works, Inc.
    Inventors: Scott A. Kropfeld, Russell L. Cole
  • Patent number: 5962136
    Abstract: The present invention concerns a biomaterial for the selective adhesion of cell and/or tissue, which comprises a polymeric support having an heterogeneous surface conditioned with a surfactant and an extracellular matrix protein or a portion of said protein. The present invention concerns also the biosensor, the diagnostic device, the bioreactor, the tissue and the organ comprising the biomaterial according to the invention.
    Type: Grant
    Filed: October 3, 1997
    Date of Patent: October 5, 1999
    Assignee: Universite Catholique de Louvain
    Inventors: Jean-Luc Dewez, Jean-Benoit Lhoest, Eric Detrait, Paul Rouxhet, Patrick Bertrand, Philippe Van Den Bosch De Aguilar
  • Patent number: 5958504
    Abstract: A process for the production of a hydroxyapatite coated article includes contacting a coating comprising hydroxyapatite with a recrystallization medium, pressurizing the recrystallization medium, heating the coated article under conditions of reduced oxygen activity at a temperature in the range of 100 to 350.degree. C. A process for the production of highly crystalline hydroxyapatite coated articles includes contacting a coating comprising hydroxyapatite with recrystallization medium containing hydroxyapatite particles, pressurizing the recrystallization medium, and heating the immersed coated article under conditions effective to crystallize hydroxyapatite.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: September 28, 1999
    Assignee: Etex Corporation
    Inventors: Dusuk Duke Lee, William T. Conner
  • Patent number: 5955588
    Abstract: The present invention provides an anti-thrombogenic coating composition for blood-contacting surfaces. The coating comprises a covalent complex of from 1 to 30 hydrophobic silyl moieties of Formula I: ##STR1## wherein R.sub.1 is a C.sub.1-8 alkyl or C.sub.6-32 aryl group, each R.sub.2 is independently selected from the group consisting of C.sub.1-8 alkyl and C.sub.6-32 aryl, R.sub.3 is N or O, and n is a number from 1 to 10, directly bound to a heparin molecule via covalent bonding.
    Type: Grant
    Filed: September 22, 1998
    Date of Patent: September 21, 1999
    Assignee: Innerdyne, Inc.
    Inventors: Ray Tsang, Shigemasa Osaki
  • Patent number: 5947893
    Abstract: Medical devices, most particularly prosthesis, are defined having at least one porous tissue-mating surface. The tissue-mating surface of the device includes therein a pharmacologically active substance within a biodegradable carrier, such as a polymer or a biodegradable ceramic, such as calcium phosphate. A biodegradable composition of the drug and carrier is impregnated within the pores of the tissue-mating surfaces of the device. The device thereby provides for the long-term release of pharmacologically active substances upon implant. The prosthesis of the present invention provides for enhanced rigid fixation, as pores at the surface of said device provide for bony ingrowth as biodegradable material impregnated therein degrades. Pharmacologically active substances within the biodegradable composition also enhances the rate of bony in-growth where said substances are particularly osteoinductive. The structure of the present device effectively delivers pharmacologically active substances to tissue- (e.g.
    Type: Grant
    Filed: May 12, 1994
    Date of Patent: September 7, 1999
    Assignee: Board of Regents, The University of Texas System
    Inventors: C. Mauli Agrawal, Robert C. Schenck
  • Patent number: 5945153
    Abstract: The present invention provides a process of forming an antimicrobial coating on a surface of a medical implant, the coating comprising an antimicrobially effective amount of antimicrobial metal atoms incorporated into a coating of amorphous carbonaceous material.
    Type: Grant
    Filed: July 29, 1997
    Date of Patent: August 31, 1999
    Assignee: Southwest Research Institute
    Inventor: Geoffrey Dearnaley
  • Patent number: 5945457
    Abstract: A hemocompatible composition comprising a polymer containing at least one pharmacologic material chemically bonded to a polymer backbone. Such compositions may be obtained by reacting a pharmacologic material with a compound containing a polymerizable group (e.g., an acyl halide) and thereafter either copolymerizing the acylated material with one or more copolymerizable monomers or first irradiating a backbone polymer and thereafter grafting the acylated pharmacologic material onto the irradiated polymer. The resulting products are hemocompatible and may be used in the manufacture of medical devices which come in contact with blood or other bodily fluids. The advantage of chemically bonded pharmacologic materials is that they are not leached out and retain their pharmaceutical effectiveness for a long period of time. The compositions may contain one or more additional pharmacologic materials which are physically admixed with polymers containing bonded pharmacologic materials.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: August 31, 1999
    Assignee: A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Science
    Inventors: Nicolai A. Plate, Lev I. Valuev, Lubov D. Uzhinova, Vladimir A. Sinani
  • Patent number: 5944753
    Abstract: A minus power anterior chamber ocular implant for placement in the anterior chamber of a phakic eye having an anatomic lens in situ comprises a negative artificial refracting lens having at least one concave surface, a surface coating which comprises a compatible sulfated polysaccharide medicament coating, such as heparin, and having a structure which positions the artificial lens in the anterior chamber of the eye to prevent contact between the implant and the anatomic lens. The implant compensates for refractive errors or creates a specific refraction to assist in visual function and has increased biocompatibility in the anterior chamber of the eye, thereby preventing or mitigating detrimental effects typically associated with the implantation of an uncoated refractive anterior chamber implant in the eye.
    Type: Grant
    Filed: March 12, 1997
    Date of Patent: August 31, 1999
    Inventors: Miles A. Galin, Joseph C. Salamone, Stanley C. Israel
  • Patent number: 5942558
    Abstract: A storage solution for a hydrogel contact lens comprising a material having polar groups at one end and non-polar groups at the other end. The storage solution desirably further contains an oil. The material comprising polar and non-polar groups modifies the surface properties of the lens and facilitating the formation of a lipid layer over the lens.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: August 24, 1999
    Assignee: Ocular Research of Boston, Inc.
    Inventor: Donald R. Korb
  • Patent number: 5942276
    Abstract: A method of fabricating a radiopaque dissolvable covering for a member on an implantable lead, including the steps of mixing a radiopaque material with a solvent to form a paste, applying the paste to the member and allowing the paste to harden. The lead preferably is provided with a drug incorporated therein which is subject to degradation at high temperature, located adjacent to the member, and the applying step preferably takes place at about room temperature. The member to which the paste is applied may be an active fixation device such as a barb or a helix or may be a deployable member such as a tine or an electrode bearing member.
    Type: Grant
    Filed: January 16, 1998
    Date of Patent: August 24, 1999
    Assignee: Medtronic, Inc.
    Inventors: Bruce E. Chivers, Mary M. Morris, Richard D. Sandstrom
  • Patent number: 5939208
    Abstract: In the present invention method, the surface of articles made of acrylic polymers and methacrylic polymers are converted into thin biomimetic layers by using the process involving at least the following two steps:(a) The polymer surface is contacted, in the presence of water and for a predetermined reaction time necessary to form a continuous surface layer thinner than about 500 microns, with a solution containing one or more tetraalkylammonium hydroxides of the general formula:R.sub.1 R.sub.2 R.sub.3 R.sub.4 N.sup.+ OH.sup.-where R.sub.1, R.sub.2, R.sub.3, R.sub.4 are the alkyl substituents, in which the sum of the number of carbon atoms is equal to or larger than 8 but smaller than 45; and,(b) The article is removed from the aqueous reaction solution and excess of tetraalkylammonium hydroxide is removed from the polymer surface by washing the polymer with a liquid miscible with the tetraalkylammonium hydroxide.
    Type: Grant
    Filed: November 7, 1997
    Date of Patent: August 17, 1999
    Assignee: Biomimetics, Inc.
    Inventor: Patrick Stoy
  • Patent number: 5910518
    Abstract: A hydrophilic oxygen permeable contact lens having a front surface which is not to be in contact with the cornea of a human eye when the contact lens is worn on the human eye, wherein at least the front surface of the contact lens is coated with a hydrophilicity rendering material which renders the front surface hydrophilic and which is selected from the group consisting of: (A) hydrophilic silicone oil which is represented by the formula given in the specification and whose viscosity at a temperature of 20.degree. C. is not higher than 5,000 centipoise; (B) polysaccharide or its derivative; and (C) denatured collagen whose average molecular weight is in a range of 400.about.100,000. Also disclosed is a method of producing the hydrophilic oxygen permeable contact lens.
    Type: Grant
    Filed: August 12, 1997
    Date of Patent: June 8, 1999
    Assignee: Menicon Co., Ltd.
    Inventors: Kazuhiko Nakada, Naomi Saito, Misako Nishibayashi, Atsuyuki Nakamura, Yasuhito Hishida
  • Patent number: 5900246
    Abstract: In accordance with the present invention, there are provided prosthetic articles having polyurethane coatings with biologically active compounds incorporated within the interstices of the polymer. Methods for the preparation of such articles are also provided. Thus, a polyurethane coating is applied to a prosthetic article, the coating then swelled (without significantly dissolving the polymer) so that substantial quantities of biologically active compounds can be incorporated within the interstices of the polymer. Upon long term exposure of a prosthetic article of the invention to physiological conditions, the biologically active compound is slowly released by the treated polymer. The biologically active compound is, therefore, released only at the site where it is desired, i.e., where the prosthetic article is positioned.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: May 4, 1999
    Assignee: Cedars-Sinai Medical Center
    Inventor: Thomas L. Lambert
  • Patent number: 5891506
    Abstract: A method for making a medical device having at least one glycoprotein and/or glycopeptide immobilized on a substrate surface is provided. The method may include oxidizing 1,2 dihydroxy moieties with a periodate to form an aldehyde-functional material; combining the aldehyde-functional material with an amino-functional material to bond the two materials together through an imine moiety; and reacting the imine moiety with a reducing agent to form a secondary amine. Another method of the present invention may be employed to crosslink glycoproteins and/or glycopeptides immobilized on medical device surfaces. Additionally, one method of the present invention may be employed to crosslink glycoproteins and/or glycopeptides, thereby forming a crosslinked biomaterial or a crosslinked medical device coating.
    Type: Grant
    Filed: December 4, 1997
    Date of Patent: April 6, 1999
    Assignee: Medtronic, Inc.
    Inventor: James R. Keogh
  • Patent number: 5891196
    Abstract: Methods for binding heparin to biological or synthetic materials which are to be implanted within a mammalian body. In instances where connective tissue proteins or other components of the material having adequate carboxyl groups present thereon, the method comprises a) contacting the material with a carboxyl-activating agent, b) contacting the material with a polyamine compound to form amide-bound polyarnine side chains at the sites of the previously activated carboxyl groups, and c) contacting the material with heparin such that heparin will become bound to the amino groups on the polyamine side chains.
    Type: Grant
    Filed: April 16, 1997
    Date of Patent: April 6, 1999
    Assignee: Baxter International Inc.
    Inventors: Catherine Ting Lee, Jun Yang
  • Patent number: 5885647
    Abstract: A process for coating of an intraocular lens to impart tissue compatibility thereto, comprising the steps: a) priming said lens using a solution of a polyamine; b) coating the lens treated in step a) above with a solution of a periodate-oxidized polysaccharide selected from heparin, heparain sulphate, and chondroitin sulphate to stabilize said polyamine by covalent and/or ionical cross-linking; c) coating the lens treated in step b) above with a solution of a polyamine; and d) coating the lens treated according to step c) above with a solution of a periodate-oxidized polysaccharide selected from heparin, heparain sulphate, and chondroitin sulphate in the presence of a cyanoborohydride to convert formed labile Schiff's bases to stable secondary amines.
    Type: Grant
    Filed: May 20, 1997
    Date of Patent: March 23, 1999
    Assignee: Medicarb AB
    Inventors: Olle Larm, Ibrahim Gouda
  • Patent number: 5874123
    Abstract: The present invention is directed to a polymeric prosthesis precoated with a bone cement compatible polymer. The bone cement compatible polymer coating, which can be polymethyl methacrylate, is bonded to the outer surface of the prosthesis. For instance, in one embodiment, the bone cement compatible polymer coating is believed to be copolymerized with the polymeric prosthesis. Once bonded to a polymeric prosthesis in accordance with the present invention, the precoat strengthens the interface between a bone cement and a prosthesis when the prosthesis is later implanted. The precoat also decreases the likelihood that the prosthesis will loosen and break away from the cement over time. The polymeric implant product of the present invention is particularly well suited for use as an acetabular cup or a tibia plateau in replacing hip joints and knee joints respectively.
    Type: Grant
    Filed: January 24, 1997
    Date of Patent: February 23, 1999
    Inventor: Joon B. Park
  • Patent number: 5866113
    Abstract: A medical device having a surface graft matrix comprising carboxyl-functional groups located on the device, the surface graft matrix comprising an outer portion; and one or more biomolecules covalently coupled to the surface graft matrix, wherein a majority of the biomolecules are located in the outer portion of the surface graft matrix. The surface graft matrix can also be loaded with a pharmaceutical agent.
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: February 2, 1999
    Assignee: Medtronic, Inc.
    Inventors: Marc Hendriks, Michel Verhoeven, Linda L. Cahalan, Patrick T. Cahalan, Benedicte Fouache
  • Patent number: 5855618
    Abstract: Disclosed are bio-active polymer coatings. More particularly, improved bio-active polymer coating are disclosed which include bio-active molecules attached to polyurethane backbones via amine-terminated spacers. Also disclosed are novel reaction schemes for producing same.
    Type: Grant
    Filed: September 13, 1996
    Date of Patent: January 5, 1999
    Assignee: Meadox Medicals, Inc.
    Inventors: Birendra K. Patnaik, Richard J. Zdrahala
  • Patent number: 5840142
    Abstract: There is disclosed a method for the permanent application of indicia to the surface of the polyolefin object by applying pigmented material to the surface in an indica pattern, preferably from a transfer sheet. Preferably the pigmented material is a mixture of finely divided pigment, hydrocarbon wax and finely divided polyolefin. The polyolefin surface bearing the indicia is coated with a coating mixture comprising a mixture of polyolefin and a binder such as a rosin or wax. Thereafter, the coated, indicia-bearing polyolefin surface is surface-heated to a temperature sufficient to fuse the coating and incorporate the coating and indicia permanently into the polyolefin object. The heating can be performed by passing a heat source across the surface.
    Type: Grant
    Filed: November 22, 1996
    Date of Patent: November 24, 1998
    Inventors: Michael J. Stevenson, Robert A. Reeves, Matthew P. Stevenson
  • Patent number: 5834051
    Abstract: To minimize the incidence and consequences of device related infection that occur after prosthetics implants of neuro-muscular stimulating devices, an infection resistant intra-muscular lead has been developed and is disclosed herein. Infection incidence has been decreased by using biomaterials able to release antibacterial drugs (gentamicin) at a controlled rate for the first 3-6 weeks after implant.
    Type: Grant
    Filed: February 19, 1997
    Date of Patent: November 10, 1998
    Assignee: Medtronic, Inc.
    Inventors: Jean A. Woloszko, Marc Hendriks, Patrick T. Cahalan, Michel L. P. M. Verhoeven, Linda L. Cahalan, Antoine N. J. Camps
  • Patent number: 5830539
    Abstract: Methods for coating substrates are described. The methods comprise coating at least a portion of a substrate with particular coating materials. The coating materials can be crosslinked and coated onto a substrate. Alternatively, the coating materials may be covalently bonded to the substrates. The coating materials might themselves functionalize the substrate, or provide a biocompatible coating on the substrate. The coating materials might also include electrophilic or nucleophilic groups that allow for the subsequent reaction of the coating materials with additional reagents. The present invention also provides coated workpieces, particularly medical workpieces having a surface for contacting tissue or blood. These workpieces comprise a first layer and a second layer. The first layer comprises a molecular tether covalently bonded to the surface.
    Type: Grant
    Filed: November 17, 1995
    Date of Patent: November 3, 1998
    Assignee: The State of Oregon Acting by and through the State Board of Higher Education on Behalf of the University of Oregon
    Inventors: Mingdi Yan, John F. W. Keana, Goran Karapetrov, Christopher J-P Sevrain, Martin N. Wybourne
  • Patent number: 5824056
    Abstract: An implantable medical device formed from a drawn refractory metal and having an improved biocompatible surface is described. The method by which the device is made includes coating a refractory metal article with platinum by a physical vapor deposition process and subjecting the coating article to drawing in a diamond die. The drawn article can be incorporated into an implantable medical device without removing the deposited metal.
    Type: Grant
    Filed: April 3, 1997
    Date of Patent: October 20, 1998
    Assignee: Medtronic, Inc.
    Inventor: Duane L. Rosenberg
  • Patent number: 5820917
    Abstract: A method for making a blood-contacting medical device with improved biocompatibility by applying to the blood-contacting surface an aqueous solution of heparin and then overcoating the heparin with a porous polymer. The inclusion of a porous polymer in intimate contact with a heparin on the device controls the administration of heparin following implantation or other blood contact. The adhesion of the coating and the rate at which the heparin is delivered can be controlled by the selection of an appropriate bioabsorbable or biostable polymer.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 13, 1998
    Assignee: Medtronic, Inc.
    Inventor: Ronald J. Tuch
  • Patent number: 5811151
    Abstract: A medical device having a surface graft matrix comprising carboxyl-functional groups located on the device, the surface graft matrix comprising an outer portion; and one or more biomolecules covalently coupled to the surface graft matrix, wherein a majority of the biomolecules are located in the outer portion of the surface graft matrix. The surface graft matrix can also be loaded with a pharmaceutical agent.
    Type: Grant
    Filed: May 31, 1996
    Date of Patent: September 22, 1998
    Assignee: Medtronic, Inc.
    Inventors: Marc Hendriks, Michel Verhoeven, Linda L. Cahalan, Patrick T. Cahalan, Benedicte Fouache
  • Patent number: 5804263
    Abstract: A material consisting of a hydrophobic material having a metallic, ceramic or glass surface which has been modified by exposing the surface to a glow discharge plasma to activate the surface, followed by exposing the activated surface to one or more ethylenically unsaturated monomers and irradiating the surface with gamma or electron beam radiation to induce polymerization thereon of the monomer(s) so as to form a hydrophilic polymeric coating on the surface of an article.
    Type: Grant
    Filed: December 23, 1994
    Date of Patent: September 8, 1998
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Eugene P. Goldberg, Ali Yahiaoui, James Burns
  • Patent number: 5804318
    Abstract: New and improved lubrifying coatings for reducing the coefficients of friction of surfaces on medical devices include hydrophilic copolymers derived monoethylenically-unsaturated monomers including some monomers having pendant primary amine functionality and some monomers having pendant tertiary amine functionality. The lubricious hydrogel coatings are covalently bondable to epoxy functionalized surfaces on the medical equipment to provide firmly adherent hydrogel coatings that are slippery when wet. Epoxy functionalized surfaces are provided by epoxy functional or epoxy group containing silane coupling agents. The pendant tertiary amine moieties are readily convertible at alkaline pH to quaternary ammonium cations to which anionic anti-thrombogenic agents may be bonded. Three dimensional copolymer matrices may also be provided as coatings on the surfaces by crosslinking the copolymers before or after attachment to the surface being treated.
    Type: Grant
    Filed: October 26, 1995
    Date of Patent: September 8, 1998
    Assignee: Corvita Corporation
    Inventors: Leonard Pinchuk, Yasushi P. Kato
  • Patent number: 5800545
    Abstract: An artificial hair having a physiologically active surface which is formed by a such manner that protein (collagen) molecules are bonded chemically to the graft-polymerized chains introduced onto the surface of the artificial hair. When the artificial hair is implanted into a human body skin, the collagen layer 11 fixed to the surface of the artificial hair having a root part 12 is integrally assimilated and bonded to collagens in the epidermis 4, the corium layer 5, the subcutaneous tissue 6 and the galea 7, whereby the artificial hair can be firmly fixed. Thus, this artificial hair exhibits a low infection rate, a high success rate and cannot be accompanied by down-growth phenomenon.
    Type: Grant
    Filed: February 5, 1997
    Date of Patent: September 1, 1998
    Inventors: Shiro Yamada, Yoshito Ikada
  • Patent number: 5789461
    Abstract: An ophthalmic lens suited for extended-wear for periods of at least one day on the eye without a clinically significant amount of corneal swelling and without substantial wearer discomfort. The lens has a balance of oxygen permeability and ion or water permeability, with the ion or water permeability being sufficient to provide good on-eye movement, such that a good tear exchange occurs between the lens and the eye. A preferred lens is a copolymerization product of a oxyperm macromer and an ionoperm monomer. The invention encompasses extended wear contact lenses, which include a core having oxygen transmission and ion transmission pathways extending from the inner surface to the outer surface.
    Type: Grant
    Filed: July 18, 1996
    Date of Patent: August 4, 1998
    Assignee: Ciba Vision Corporation
    Inventors: Paul Clement Nicolson, Richard Carlton Baron, Peter Chabrecek, John Court, Angelika Domschke, Hans Jorg Griesser, Arthur Ho, Jens Hopken, Bronwyn Glenice Laycock, Qin Liu, Dieter Lohmann, Gordon Francis Meijs, Eric Papaspiliotopoulos, Judy S. Riffle, Klaus Schindhelm, Deborah Sweeney, Wilson Leonard Terry, Jr., Jurgen Vogt, Lynn Cook Winterton
  • Patent number: 5788979
    Abstract: A method is disclosed for coating a biomaterial to be placed in contact with a patient's blood flow to inhibit blood coagulation from adhering to the biomaterial that would otherwise result from such contact. A biodegradable material of liquid state compatible with the blood and tissue of the human body is prepared, and an anti-coagulant drug is incorporated into the liquid state of the biodegradable material to form a liquid coating material. The liquid coating material is adhesively applied to a surface of the biomaterial in a substantially continuous overlying layer having a formulation, pattern and thickness selected according to the period of time over which the coating material is to perform its anti-coagulant action. Thereafter the coating material is dried to a layer thickness less than about 100 microns for continuous disintegration thereof as a function of time when the layer is in contact with flowing blood.
    Type: Grant
    Filed: February 10, 1997
    Date of Patent: August 4, 1998
    Assignee: Inflow Dynamics Inc.
    Inventors: Eckhard Alt, Axel Stemberger
  • Patent number: 5782908
    Abstract: A medical article having a metal or glass surface with the surface having an adherent coating of improved biocompatibility. The coating is made by first applying to the surface an silane compound having a pendant vinyl functionality such that the silane adheres to the surface and then, in a separate step, forming a graft polymer on the surface with applied vinylsilane such that the pendant vinyl functionality of the vinylsilane is incorporated into the graft polymer by covalent bonding with the polymer. Biomolecules may then be covalently attached to the base layer.
    Type: Grant
    Filed: November 14, 1996
    Date of Patent: July 21, 1998
    Assignee: Medtronic, Inc.
    Inventors: Linda L. Cahalan, Patrick T. Cahalan, Michel Verhoeven, Marc Hendriks, Benedicte Fouache