Deforming The Base Or Coating Or Removing A Portion Of The Coating Patents (Class 427/264)
  • Publication number: 20140110040
    Abstract: A method of making a micro-louver structure includes coating a curable layer on a surface and imprinting a pattern of micro-channels in the curable layer. The micro-channels have a greater depth than width and are spaced apart by a separation distance greater than the width. The curable layer is at least partially cured to form a cured layer. A light-absorbing material is coated over the cured layer and in the micro-channels and at least a portion of the light-absorbing material removed from the surface of the cured layer leaving at least a portion of the light-absorbing material in the micro-channels. The light-absorbing material is cured to form a light-absorbing structure in each micro-channel.
    Type: Application
    Filed: October 23, 2013
    Publication date: April 24, 2014
    Inventor: Ronald Steven Cok
  • Patent number: 8685498
    Abstract: A coated film with no observable streak is formed. The landing positions of a first discharge liquid discharged through a first printing head and the landing positions of a second discharge liquid discharged through a second printing head are disposed in a mixed manner in an area on a substrate where the first printing head and the second printing head overlap. Which discharge liquids are to be landed is determined according to random numbers. Since a coated film which is formed with the first and second discharge liquids in a mixed manner is disposed between a coated film formed with the first discharge liquids and a coated film formed with the second discharge liquids, a boundary is obscured and no streak appears.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: April 1, 2014
    Assignee: Ulvac, Inc.
    Inventors: Takahiro Miyata, Masao Murata, Mitsuru Yahagi, Junpei Yuyama, Kyuzo Nakamura, Atsushi Kira, Kou Fuwa, Ai Tanaka, Tooru Okuno, Susumu Sakio
  • Patent number: 8647700
    Abstract: Scaffold-supported metal or pseudometallic film covers suitable for use as medical devices are disclosed together with methods of fabricating the devices. Methods for making the medical devices consist of either providing or forming a scaffold, then depositing a metallic or pseudometallic film cover onto the scaffold in such a manner as to form an integral, substantially monolithic junction between the deposited cover material and the scaffold.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: February 11, 2014
    Assignee: Advanced Bio Prosthetic Surfaces, Ltd.
    Inventors: Daniel D. Sims, Jeffrey N. Steinmetz, Conor P. Mullens, Andrew Parker Wood, Christopher E. Banas
  • Patent number: 8642134
    Abstract: Disclosed is a coated-product with marking. The coated-product is obtained by the steps of forming a coating layer having brightness higher than the brightness of a bare surface of a molding on the surface of the molding made of resin colored with dye, and removing a predetermined portion of the coating layer by laser marking and exposing the bare surface of the coated-product to form a marking portion.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: February 4, 2014
    Assignee: Sony Corporation
    Inventor: Masanori Nagai
  • Patent number: 8643898
    Abstract: A plurality of grid points for forming a quadrangle, and an internal point included within the quadrangle, are quasi-formed on a medium prior to deformation, and position information is acquired that relates to the positions of the quasi-formed grid points and internal point moved in conjunction with the deformation of the medium. A triangle deformation ratio is acquired from the areas of triangles formed by the grid points and internal point before and after deformation, and a discharge amount of ink formed on the medium is computed in accordance with the deformation ratio after deformation, with respect to the triangles before deformation.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: February 4, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Minoru Koyama, Toru Fujita
  • Patent number: 8643891
    Abstract: An image processing device includes a multi-layer data acquiring part configured to acquire multi-layer data having a required-formation-amount-related value representing a value relating to a formation amount required to form an image, and an expanding part configured to expand, based on a correspondence relationship for expansion, the acquired multi-layer data into multiple sets of single-layer data. The correspondence relationship for expansion has a correspondence relationship between the required-formation-amount-related value in each of the sets of single-layer data and the required-formation-amount-related value in the multi-layer data. The required-formation-amount-related value in the multi-layer data is image data that exceeds a maximum-formation-amount-related value representing a value relating to a maximum formation amount of a color value of the single-layer data with which an image can be printed in a single printing process.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: February 4, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Toru Fujita, Minoru Koyama
  • Patent number: 8643899
    Abstract: A printed layer formation processing device performs a part of a process for forming a printed layer on a part of the print medium by a first colorant in a molded object formation process. The printed layer formation processing device includes: a formation amount correspondence relationship storage part that stores a formation amount correspondence relationship, which is a correspondence relationship between a degree of deformation of the print medium and a formation amount of the first colorant, which are correlated so that the thickness of the printed layer is substantially the same in respective regions of the molded object, a deformation degree acquisition part that acquires the degree of deformation in the respective regions of the print medium; and a formation amount determining part that determines the formation amount of the first colorant in the respective regions based on the degree of the deformation and the formation amount correspondence relationship.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: February 4, 2014
    Assignee: Seiko Epson Corporation
    Inventors: Minoru Koyama, Toru Fujita
  • Patent number: 8632850
    Abstract: The present invention relates to tooling and methods for disposing, coating, building up, repairing, or otherwise modifying the surface of a metal substrate using frictional heating and compressive loading of a consumable metal material against the substrate. Embodiments of the invention include friction-based fabrication tooling comprising a non-consumable member with a throat and a consumable member disposed in the throat, wherein the throat is operably configured such that during rotation of the non-consumable member at a selected speed, the throat exerts normal forces on and rotates the consumable member at the selected speed; and comprising means for dispensing the consumable member through the throat and onto a substrate using frictional heating and compressive loading. Embodiments of the invention also include fabrication methods using the tools described herein.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: January 21, 2014
    Assignee: Schultz-Creehan Holdings, Inc.
    Inventors: Jeffrey Patrick Schultz, Kevin Creehan
  • Patent number: 8623458
    Abstract: A layered structure comprising a self-assembled material is formed by a method that includes forming a photochemically, thermally and/or chemically treated patterned photoresist layer disposed on a first surface of a substrate. The treated patterned photoresist layer comprises a non-crosslinked treated photoresist. An orientation control material is cast on the treated patterned photoresist layer, forming a layer containing orientation control material bound to a second surface of the substrate. The treated photoresist and, optionally, any non-bound orientation control material are removed by a development process, resulting in a pre-pattern for self-assembly. A material capable of self-assembly is cast on the pre-pattern. The casted material is allowed to self-assemble with optional heating and/or annealing to produce the layered structure.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: January 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Joy Cheng, Matthew E. Colburn, Stefan Harrer, William D. Hinsberg, Steven J. Holmes, Ho-Cheol Kim, Daniel Paul Sanders
  • Patent number: 8599465
    Abstract: A method for making an electrowetting device includes: (a) forming a surrounding wall on an upper surface of a substrate to surround a microchamber, the surrounding wall having an inner surface surrounding the microchamber and a top surface above the inner surface, the upper surface of the substrate being non-hydrophobic; (b) coating the surrounding wall and the upper surface of the substrate with a hydrophobic coating material; (c) removing a portion of the hydrophobic coating material formed on the top surface of the surrounding wall, thereby exposing the top surface of the surrounding wall; and (d) disposing a liquid into the microchamber.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: December 3, 2013
    Assignee: Incha Hsieh
    Inventor: Incha Hsieh
  • Patent number: 8592005
    Abstract: A method for forming a film by atomic layer deposition wherein vertical growth of a film is controlled, includes: (i) adsorbing a metal-containing precursor for film formation on a concave or convex surface pattern of a substrate; (ii) oxidizing the adsorbed precursor to form a metal oxide sub-layer; (iii) adsorbing a metal-free inhibitor on the metal oxide sub-layer more on a top/bottom portion than on side walls of the concave or convex surface pattern; and (iv) repeating steps (i) to (iii) to form a film constituted by multiple metal oxide sub-layers while controlling vertical growth of the film by step (iii). The adsorption of the inhibitor is antagonistic to next adsorption of the precursor on the metal oxide sub-layer.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: November 26, 2013
    Assignee: ASM Japan K.K.
    Inventor: Shintaro Ueda
  • Patent number: 8563086
    Abstract: Nano structure patterning formation includes coating a part of a structural guide with a hydrophobic polymer, positioning the structural guide on a substrate, coating at least a part of the substrate with a film made of a block copolymer, and annealing the film made of the block copolymer to align the block copolymer.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: October 22, 2013
    Assignee: Korea Institute Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Patent number: 8557341
    Abstract: Aspects of the present invention describe soft imprint lithography methods capable of preparing structural features on surfaces. Disclosed methods include surmounting a deformable substrate, having an original form, with a composition, wherein the deformable substrate is capable of achieving at least one predetermined deformed state; predictably deforming said deformable substrate from its original form to the at least one predetermined deformed state; and transferring at least a portion of the composition surmounting the deformed substrate to a receiving substrate.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: October 15, 2013
    Assignee: The Trustees Of The University Of Pennsylvania
    Inventors: Shu Yang, Ying Zhang, Randall Kamien, James Makoto Kikkawa, Elisabetta Matsumoto, Dinesh Chandra
  • Patent number: 8551566
    Abstract: Methods of directing assembly of materials using a surface-modified substrate are disclosed. A modified surface is created on a substrate by applying a first surface agent to the substrate. Energy is applied to the modified surface to form an imaged surface having an imaged portion and a non-imaged portion. The imaged portion is characterized by a surface energy that is different from the surface energy of the non-imaged portion. For example, the applied energy can remove at least a portion of an attached surface agent from the imaged portion to modify the surface energy. In some preferred embodiments the energy also modifies the surface agent without causing oxidation. To avoid oxidation, for example, the surface modification and/or energy appliement can take place in a low oxygen environment (e.g., having an oxygen content lower than that present in about 0.01 Torr of air).
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: October 8, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Theodore H. Fedynyshyn, Richard Kingsborough
  • Publication number: 20130248095
    Abstract: A decoration film, a method of fabricating a decoration film, and a method of fabricating a decoration device are provided. The decoration film includes a substrate and a relief pattern layer disposed on the substrate. The relief pattern layer has a relief surface away from the substrate and includes a decoration relief portion and a marker relief portion located around the decoration relief portion, wherein the relief pattern layer is remained on the substrate after the decoration process.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 26, 2013
    Applicant: ETANSI INC.
    Inventors: Jen-En Hou, Jin-Jung Yeh, Shih-Min Huang
  • Publication number: 20130240137
    Abstract: The invention relates to a method for applying a decoration to the upper face of a composite wood board, in particular a MDF or HDF board, wherein said method is characterised in that at least one second decoration produced by digital printing is applied to a first decoration produced by intaglio printing.
    Type: Application
    Filed: November 9, 2011
    Publication date: September 19, 2013
    Applicant: Flooring Technologies Ltd.
    Inventor: Norbert Kalwa
  • Publication number: 20130243958
    Abstract: An undercoat agent which is used for phase separating a layer including a block copolymer having a plurality of blocks bonded formed on a substrate, wherein the undercoat agent contains a resin component, the resin component includes a structural unit having an aromatic ring and a structural unit having no aromatic ring, and the resin component includes a group which can interact with the substrate and does not include a 3 to 7-membered, ether-containing cyclic group; and a method of forming a pattern of a layer containing a block copolymer, including: a step (1) in which the undercoat agent is applied to a substrate to form a layer containing the undercoat agent; a step (2) in which a layer containing a block copolymer having a plurality of blocks bonded is formed on a surface of the layer containing the undercoat agent, followed by a phase separation of the layer containing the block copolymer; and a step (3) in which a phase containing at least one block of the plurality of blocks constituting the block co
    Type: Application
    Filed: March 8, 2013
    Publication date: September 19, 2013
    Applicant: TOKYO OHKA KOGYO CO., LTD.
    Inventors: Takahiro Senzaki, Ken Miyagi, Tsuyoshi Kurosawa, Daiju Shiono, Tasuku Matsumiya, Kenichiro Miyashita, Katsumi Ohmori
  • Patent number: 8518490
    Abstract: In a coating zone, a cylindrical tube is soaked in and taken out from a solution, such that a coating film is formed on a curved surface of the tube. In a wet gas zone, while a first gas feeding nozzle having a gas outlet moves in a state where the gas outlet faces an outer peripheral surface of the tube, wet gas is blown toward the coating film through the gas outlet. Water drops are generated on the coating film and grown up. In a dry gas zone, as in the case of the first gas feeding nozzle, while a second gas feeding nozzle having a gas outlet moves, dry gas is blown toward the coating film through the gas outlet. Solvent and water drops are evaporated from the coating film. Pores form from the water drops as a template for the porous material on the coating film.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: August 27, 2013
    Assignee: Fujifilm Corporation
    Inventors: Koju Ito, Tsukasa Ishihara, Hidekazu Yamazaki
  • Publication number: 20130200559
    Abstract: A suction apparatus 1 holds a wafer W by performing vacuum-suctioning on the wafer W. The suction apparatus 1 comprises a suction substrate 2. The suction substrate 2, which is rigid, comprises a plurality of pin-like protrusions 2a formed so that the tip-end faces (upper surfaces) thereof are the same height. An elastic coating layer is coated by way of an undercoat layer 4 on the tip-end faces of the protrusions 2a. When the wafer W is suctioned, even if a foreign matter is interposed between the wafer W and the suction surface, because the foreign matter embeds itself into the coating layer 3, the planarization of the wafer W is improved. In addition, because the coating layer 3 can be made comparatively thinner, undulations in the wafer W can be reduced and, to that end, the planarization of the wafer W in the suctioned state can be improved.
    Type: Application
    Filed: January 25, 2013
    Publication date: August 8, 2013
    Inventor: Naoki ASADA
  • Publication number: 20130152761
    Abstract: A coated string for a stringed device which includes a coating applied to the surface of the string. The coating includes a base layer bonded to the surface of the string and an at least partially transparent low-friction top coat applied to the base layer. The base layer includes heat activated pigments that change color when heated above a color shifting temperature. In one embodiment, the color of the pigment in one area contrasts with the color of the pigment in an adjacent area without otherwise affecting the low-friction surface of the coating. The areas of different color created in locations along the length of the low-friction coated string.
    Type: Application
    Filed: January 16, 2013
    Publication date: June 20, 2013
    Applicant: INNOVATECH, LLC
    Inventor: Bruce Nesbitt
  • Publication number: 20130149500
    Abstract: Nanostructured materials, devices having nanostructured materials, and methods for preparing nanostructured materials are disclosed herein. In some embodiments, the method includes infiltrating a soft template with a chemical precursor and subsequently heat treating the infiltrated template to produce a nanostructured material. The soft template can be a patterned soft template, where the pattern is created in a soft template precursor and defined by the user to place structural features at specified locations. In some embodiments, nanostructured materials can be ferroic nanostructures, including ferroelectric and ferromagnetic nanomaterials, having a user defined pattern and favorable structural characteristics, including defined aspect ratios, wall thicknesses, and other dimensions.
    Type: Application
    Filed: December 6, 2012
    Publication date: June 13, 2013
    Inventors: Nazanin Bassiri-Gharb, Ashley L. Bernal
  • Patent number: 8414976
    Abstract: Provided is a method for disposing a component on a substrate (100), the method comprising steps of: a step (a) of preparing the substrate (100), a first liquid, and a component-dispersing liquid; a step (b) of applying the first liquid to the substrate (100) along the +X direction continuously to dispose the first liquid on hydrophilic lines (112) and hydrophilic body regions (111) along the +X direction alternately; a step (c) of bringing the component-dispersing liquid in contact with the first liquid disposed on the hydrophilic region (111); and a step (d) of removing the first liquid and the second liquid from the substrate (100) to dispose the component on the hydrophilic region (111).
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: April 9, 2013
    Assignee: Panasonic Corporation
    Inventor: Hidekazu Arase
  • Patent number: 8394458
    Abstract: In order to increase the probability that the component is disposed on the hydrophilic region, used is a substrate comprises a water-repellant region, a hydrophilic region, and a hydrophilic line, wherein the water-repellant region surrounds the hydrophilic region and the hydrophilic line, the hydrophilic region and the hydrophilic line are disposed along the +X direction in this order, the value of D1/D2 is not less than 0.1 and not more than 1.2, the value of D3 is not less than 5 micrometers, the value of D4 is less than the minimum length of the component.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: March 12, 2013
    Assignee: Panasonic Corporation
    Inventor: Hidekazu Arase
  • Patent number: 8367159
    Abstract: The application relates to methods for producing islands of functionality within nanoscale apertures. Islands of functionality can be produced by growing an aperture constriction layer from the walls, functionalizing the exposed base of the aperture, then removing the aperture constriction layer. The aperture constriction layer can be produced, for example, by anodically growing an oxide layer onto a cladding through which the aperture extends. The islands of functionality can be used to bind a single molecule of interest, such as an enzyme within the nanoscale aperture.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 5, 2013
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Jeremy Gray, Ronald L. Cicero, Annette Grot, Natasha Popovich, Stephen Dudek
  • Patent number: 8367158
    Abstract: The method forms a liquid-repellent film on a surface of a nozzle plate having nozzle apertures through which droplets of liquid are ejected. The method includes: a termination process step of carrying out a hydrogen termination process or a halogen termination process on a surface of a nozzle plate, at least a portion of the surface of the nozzle plate being made of a material containing silicon; and a liquid-repellent film formation step of forming a liquid-repellent film on the surface of the nozzle plate after the termination process step by bringing a liquid-repellent film raw material into contact with the surface of the nozzle plate while applying energy to the surface. Each molecule constituting the liquid-repellent film raw material has an unsaturated carbon bond at an end and has a liquid-repellent functional group. The liquid-repellent film is bonded to the surface of the nozzle plate through silicon-carbon bonds.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: February 5, 2013
    Assignee: FUJIFILM Corporation
    Inventor: Hiroki Uchiyama
  • Patent number: 8357428
    Abstract: After a second liquid is applied to a support and dried, a first liquid is applied thereon. On a film of the first liquid, a third liquid (water) is supplied in droplets using an inkjet-type liquid supply unit. An area supplied with the droplets is referred to as porous area. Next, an organic solvent is evaporated from the film and the droplets are evaporated from the porous area. Thus, a porous film is obtained. The porous film has the porous areas in which a plurality of pores are arranged. Since the droplets are directly formed by an inkjet printing method, a condensation process and a droplet growing process are unnecessary. Thus, the porous film is produced efficiently. Shapes of the porous areas can be changed easily. The porous areas can be formed on the porous film in various patterns.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: January 22, 2013
    Assignee: FUJIFILM Corporation
    Inventors: Koju Ito, Hidekazu Yamazaki
  • Publication number: 20130011632
    Abstract: Provided is a method for producing a microfine structure comprising the steps of: forming a resin film by applying a liquid polymerizable resin composition containing a high molecular weight component, a low molecular weight component and a reactive dilution component to an adhesion promoting layer formed on a substrate; imprinting a mold with an extremely fine convex concave pattern onto the resin film; and transferring the convex concave pattern to the resin film. Herein, components of the adhesion promoting layer, the high molecular weight component, the low molecular weight component and the reactive dilution component respectively have cross-linking reactive functional groups which react with each other.
    Type: Application
    Filed: December 22, 2010
    Publication date: January 10, 2013
    Inventors: Masahiko Ogino, Susumu Komoriya, Akihiro Miyauchi, Ryuta Washiya, Kyoichi Mori, Noritake Shizawa
  • Publication number: 20120321797
    Abstract: An imprint method includes an inspection step of inspecting a substrate to obtain information of a foreign substance on the substrate; and a film forming step of forming a film covering the foreign substance, using the information of a foreign substance on the substrate, wherein the film forming step is performed before the contact step.
    Type: Application
    Filed: May 23, 2012
    Publication date: December 20, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Hiroshi KUROSAWA
  • Patent number: 8277761
    Abstract: A fluidic device (100) comprising a substrate (101) and a transport medium (103) provided on the substrate (101) to define a transport path for transporting a fluidic sample (104) driven by an electric force.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: October 2, 2012
    Assignee: Agilent Technologies, Inc.
    Inventors: Stefan Falk-Jordan, Patrick Kaltenbach
  • Publication number: 20120223050
    Abstract: A method for producing a security element having microdepressions for security papers, with the microdepressions being colored with a certain color, involves the steps of (a) coating an upper side of a carrier with an embossable layer; (b1) forming microdepressions in the embossable layer to configure an embossed layer; (c) applying the certain color on the upper side, so that the color remains in the microdepressions; (b2) applying a structured protective layer on the coated upper side, wherein the structured protective layer does not cover the microdepressions that are to be colored with the certain color, after step (b1) and before step (c); and removing the structured protective layer and thereby a color toning after step (c).
    Type: Application
    Filed: November 4, 2010
    Publication date: September 6, 2012
    Inventor: Mario Keller
  • Patent number: 8257793
    Abstract: A patterned roller, and a method of making the patterned roller, is provided. A patterned roller may be made by first forming a first mold having a negative pattern by etching pits in a flat mold surface with an etching process. Then, a second mold is formed having a positive pattern, by pouring a first curable material into the first mold, curing the first curable material, and removing the first curable material from the first mold. Then the patterned roller having the negative pattern is formed by coating a roller with a layer of a second curable material, pre-curing the second curable material to provide a viscous but not hardened surface, and rolling the roller over the second mold to create the negative pattern in the second curable material. The second curable material is then cured. Any of the curable materials may be coated after curing, preferably with metal, to reduce sticking in subsequent steps. The patterned roller may be used to create a pattern of microlenses in a third curable material.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: September 4, 2012
    Assignee: The Regents of the University of Michigan
    Inventor: Stephen R. Forrest
  • Patent number: 8252379
    Abstract: A false inlay decoration is characterized in that a linear notch is formed in a surface of a base by laser processing; a first decoration face and a second decoration face are sectioned and formed by the linear notch; and a coating layer is formed on the inner surface of the linear notch.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: August 28, 2012
    Assignee: Nagashimakougei Co., Ltd.
    Inventor: Yoichi Nagashima
  • Publication number: 20120207930
    Abstract: In order to increase the probability that the component is disposed on the hydrophilic region, used is a substrate comprises a water-repellant region, a hydrophilic region, and a hydrophilic line, wherein the water-repellant region surrounds the hydrophilic region and the hydrophilic line, the hydrophilic region and the hydrophilic line are disposed along the +X direction in this order, the value of D1/D2 is not less than 0.1 and not more than 1.2, the value of D3 is not less than 5 micrometers, the value of D4 is less than the minimum length of the component.
    Type: Application
    Filed: April 23, 2012
    Publication date: August 16, 2012
    Applicant: PANASONIC CORPORATION
    Inventor: Hidekazu ARASE
  • Patent number: 8236899
    Abstract: Zwitterionic block copolymers having oppositely charged or chargeable terminal groups, and methods of making and using the same, are disclosed. The zwitterionic block copolymers can undergo microphase separation.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: August 7, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Dan Millward, Eugene P. Marsh
  • Publication number: 20120183691
    Abstract: A method of enhancing the appearance of a golf ball by visually distinguishing golf ball cover land area from golf ball cover dimples, comprising: providing a golf ball comprising a core, a cover and optionally an intermediate layer disposed between the core and the cover, wherein said cover comprises an outer surface defining a plurality of dimples and a land area between the dimples; applying a first color to the entire golf ball outer surface; masking either the land area or the dimples; applying a second color to the outer surface over the first color; followed by removing the masking to complete a colored golf ball wherein the masked area has the color appearance of the first color and the unmasked area has the color appearance of at least one of the second color and a third color produced by applying the second color over the first color.
    Type: Application
    Filed: March 26, 2012
    Publication date: July 19, 2012
    Inventors: Manjari Kuntimaddi, Edmund A. Hebert, Nicholas M. Nardacci
  • Patent number: 8221827
    Abstract: A patterning method according to an embodiment of the present invention comprises: acquiring information about a surface state of an underlying film formed on a substrate; determining, based on the surface state, whether irregularity/foreign matter is present in each shot region in which a pattern is to be formed; and solidifying a resist agent while a first template, when it is determined that no irregularity/foreign matter is present in the shot region, or a second template that is different from the first template, when it is determined that irregularity/foreign matter is present in the shot region, is brought close to the underlying film on the shot region at a certain distance with the resist agent therebetween.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: July 17, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroshi Tokue, Ikuo Yoneda, Shinji Mikami, Takumi Ota
  • Publication number: 20120171380
    Abstract: The present invention is directed to a coating composition comprising (i) a corrosion inhibitor and the (ii) reaction product of a calcium compound with an acid compound. The coating composition is deposited onto a substrate prior to the application of a pre-treatment coating composition (conversion coating) onto the substrate. The present invention is also directed to a substrate that comprises a coating system that comprises such a coating composition.
    Type: Application
    Filed: March 16, 2012
    Publication date: July 5, 2012
    Applicant: PPG INDUSTRIES OHIO, INC.
    Inventors: Jeffrey L. Stalker, Shan Cheng, Alan J. Kaylo
  • Patent number: 8206786
    Abstract: A method of producing a decorative carpet tile may include providing a carpet tile in accordance with the prior art techniques and then treating at least two carpet tiles in one of various manners to provide separations internal to side edges of the carpet tile. Specifically, two tiles can be treated simultaneously, in register and/or without moving the second tile after treating the first tile.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: June 26, 2012
    Assignee: Milliken & Company
    Inventor: Robert S. Weiner
  • Patent number: 8192795
    Abstract: Lithographic and nanolithographic methods that involve patterning a first compound on a substrate surface, exposing non-patterned areas of the substrate surface to a second compound and removing the first compound while leaving the second compound intact. The resulting hole patterns can be used as templates for either chemical etching of the patterned area of the substrate or metal deposition on the patterned area of the substrate.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: June 5, 2012
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Khalid Salaita
  • Patent number: 8187668
    Abstract: A stage on which a substrate having target discharge areas is placed moves relative to a discharge head unit. When at least one of a plurality of first discharge nozzles of the discharge head unit reaches one of the target discharge areas, the first nozzle discharges a first droplet of fluid material to the target discharge area. When one of a plurality of second nozzles of the discharge head unit reaches the target discharge area to which the first droplet has been discharged, the second nozzle discharges a second droplet of the fluid material to the target discharge area. A first nozzle row of the first nozzles and a second nozzle row of the second nozzles are separated by a predetermined distance in a direction of the relative movement of the stage and the discharge head unit.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: May 29, 2012
    Assignee: Seiko Epson Corporation
    Inventors: Hiroshi Kiguchi, Kazumi Aruga, Mitsuru Kuribayashi
  • Publication number: 20120121928
    Abstract: Metalized plastic substrates, and methods thereof are provided herein. The method includes providing a plastic substrate having a plurality of accelerators dispersed in the plastic substrate. The accelerators have a formula selected from the group consisting of: CuFe2O4-?, Ca0.25Cu0.75TiO3-?, and TiO2-?, wherein ?, ?, ? denotes oxygen vacancies in corresponding accelerators and 0.05???0.8, 0.05???0.5, and 0.05???1.0. The method further includes removing at least a portion of a surface of the plastic substrate to expose at least a first accelerator. The method further includes plating the exposed surface of the plastic substrate to form at least a first metal layer on the at least first accelerator, and then plating the first metal layer to form at least a second metal layer.
    Type: Application
    Filed: January 20, 2012
    Publication date: May 17, 2012
    Inventors: Qing Gong, Liang Zhou, Weifeng Miao, Xiong Zhang
  • Patent number: 8178164
    Abstract: The present invention provides a method for forming an organic molecular film structure that can maintain desired functions characteristic to the organic material and that can be realized as a thin film, and the organic molecular film structure. An organic molecular film structure forming method for forming an organic molecular film on a base material comprises the steps of: i) forming a monomolecular film (12) that contains first organic molecules (12a) by chemically bonding a surface of the base material (10) and the first organic molecules (12a); and ii) causing second organic molecules (15) to be present inside the monomolecular film (12) by bringing the second organic molecules (15) into contact with the monomolecular film (12). Accordingly, it is possible to form an organic molecular film that can maintain desired functions characteristic to the organic material and that can be realized as a thin film.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: May 15, 2012
    Assignee: Panasonic Corporation
    Inventor: Norihisa Mino
  • Patent number: 8153181
    Abstract: This disclosure relates to medical devices and related methods. In some embodiments, the methods include applying a material to the balloon and then removing the material from one or more regions of the balloon.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: April 10, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Thomas J. Holman, James Lee Shippy, III, Afsar Ali
  • Patent number: 8153182
    Abstract: A head mount for use in a digital manufacturing system, where the head mount comprises a first component supported by at least one gantry of the digital manufacturing system, and a second component configured to retain a deposition head of the digital manufacturing system, and to move relative to the first component in response to a load applied to the deposition head from a platform assembly of the digital manufacturing system.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: April 10, 2012
    Assignee: Stratasys, Inc.
    Inventors: James W. Comb, Troy M. Coolidge, Robert E. Styer
  • Patent number: 8147911
    Abstract: A production process of a perforated porous resin base, comprising Step 1 of impregnating the porous structure of a porous resin base with a liquid or solution; Step 2 of forming a solid substance from the liquid or solution impregnated; Step 3 of forming a plurality of perforations extending through from the first surface of the porous resin base having the solid substance within the porous structure to the second surface in the porous resin base; and Step 4 of melting or dissolving the solid substance to remove it from the interior of the porous structure, and a production process of a porous resin base with the inner wall surfaces of the perforations made conductive, comprising the step of selectively applying a catalyst only to the inner wall surfaces of the perforations to apply a conductive metal to the inner wall surfaces.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: April 3, 2012
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yasuhiro Okuda, Fumihiro Hayashi, Tsuyoshi Haga, Taro Fujita, Mayo Uenoyama, Yasuhito Masuda, Yuichi Idomoto
  • Patent number: 8142850
    Abstract: A method of patterning a substrate comprising a plurality of fields, including, inter alia, positioning a first volume of fluid on a first subset of the plurality of fields of the substrate, with the first volume of fluid being subjected to a first evaporation time; positioning a second volume of fluid on a second subset of the plurality of fields of the substrate, differing from the first subset, with the second volume of fluid being subjected to a second evaporation time, differing from the first evaporation time; and patterning the first and second subsets of the plurality of fields, with the first subset of the plurality of fields being patterned prior to the second subset of the plurality of fields being patterned, with a volume associated with the second subset of the plurality of fields being greater than a volume associated with the first subset of the plurality of fields to compensate for the second evaporation time being greater than the first evaporation time.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: March 27, 2012
    Assignee: Molecular Imprints, Inc.
    Inventors: Sidlgata V. Sreenivasan, Philip D. Schumaker
  • Patent number: 8119184
    Abstract: A stent of variable surface area as determined by stent struts. The stent can have a variable surface area per unit length which accommodates a therapeutic agent. A patterned distribution of therapeutic agent can be provided throughout the stent. The stent can have an increased level of therapeutic agent near an end of the stent. A decreased level of therapeutic agent can be provided near an end of one embodiment of a stent. Indentations can be provided at the surface of the stent with therapeutic agent disposed therein. The stent can be cut with struts of variable thickness to provide the variable stent surface area.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: February 21, 2012
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Syed Hossainy, Fuh-Wei Tang, Brian P. Cahill
  • Patent number: 8110243
    Abstract: A coating for a stent and methods for coating a stent are provided. The coating may be used for the sustained delivery of an active ingredient or a combination of active ingredients.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: February 7, 2012
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventor: Syed Faiyaz Ahmed Hossainy
  • Patent number: 8088439
    Abstract: A method of making a porous membrane is disclosed. One such method optionally includes: forming a plurality of pillars in an array form over a substrate; and forming a layer with a mixture of a porous material precursor and a surfactant over the substrate. The method optionally includes removing the pillars to leave cavities in the layer; filling the cavities in the layer with a cavity filler; and removing the surfactant from the layer. The porous membrane can be used as, for example, a sieve for separating molecules from a chemical reaction.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 3, 2012
    Assignee: Korea University Research and Business Foundation
    Inventor: Kwangyeol Lee
  • Patent number: RE43855
    Abstract: This invention relates to the printing of a substrate having a pre-printed “print pattern” with a “design layer” of ink where there is differential adhesion within and without the print pattern. The print pattern is receptive to an ink, and the design layer ink forms a durable image material with good bond to the print pattern, but the ink does not form a durable image material on the portions of the substrate outside the print pattern. The design layer ink is a UV-curable ink, and the print pattern may have a higher surface energy than the portions of the substrate outside the print pattern.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: December 11, 2012
    Assignee: Contra Vision Ltd.
    Inventors: G. Roland Hill, Chris David Parry