Fluid Treating The Coating (e.g., Vapor Treating, Etc.) Patents (Class 427/273)
  • Patent number: 10177001
    Abstract: Methods and materials for making a semiconductor device are described. The method includes forming a surface preparation layer over the semiconductor substrate. The surface preparation material layer includes an aziridine structure. A coating layer may then be deposited on the surface preparation material layer.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: January 8, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chen-Yu Liu, Ching-Yu Chang
  • Publication number: 20140369851
    Abstract: A method of fabricating a surface for reducing ice adhesion surface which includes providing a surface of a cured material and impacting the surface of the cured material with a pressurized jet of a fluid material to plastically deform the cured material to enable the surface to reduce ice adhesion strength on the surface.
    Type: Application
    Filed: September 12, 2012
    Publication date: December 18, 2014
    Applicant: VESTAS WIND SYSTEMS A/S
    Inventors: Lance Wei Seong Lim, Henning Schröder, Erwin Merijn Wouterson, Shirley Zhang
  • Publication number: 20140322453
    Abstract: Disclosed is a method for producing ionomer-coated, catalyst-supporting carbon nanotubes, the method comprising: a step of preparing catalyst-supporting carbon nanotubes on at least one surface of a substrate; a step of preparing a first ionomer solution; an ionomer coating step of bringing the catalyst-supporting carbon nanotubes into contact with the first ionomer solution and coating the catalyst-supporting carbon nanotubes with the ionomer; and a drying step of drying the ionomer-coated, catalyst-supporting carbon nanotubes, wherein the method comprises an ionomer removal step in which, when the ionomer that is unevenly attached in a thickness direction of a layer comprising the ionomer-coated, catalyst-supporting carbon nanotubes, the ionomer that is relatively largely found in and attached to the tip end of the carbon nanotubes rather than other parts thereof, is removed after the ionomer coating step and before the drying step.
    Type: Application
    Filed: October 31, 2012
    Publication date: October 30, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Ryoichi Namba
  • Patent number: 8789693
    Abstract: A metal implant, in particular a dental implant, with a hydrophilic surface for at least partial insertion into a bone, and a method for the production of said implant are described. A particularly advantageous hydrophilic surface for improved osteointegration properties is made available if it is briefly treated, at least in some areas, in a weakly alkaline solution. These excellent osteointegration properties can be achieved in a method in which, optionally after a preceding mechanical surface modification by material removal and/or chemical surface modification, at least the areas exposed of this surface exposed to bone and/or soft tissue are chemically modified in an alkaline solution.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: July 29, 2014
    Assignee: Thommen Medical AG
    Inventors: Falko Schlottig, Daniel Snétivy
  • Patent number: 8703294
    Abstract: The present invention provides a functionally graded bioactive glass/ceramic composite structure or bioactive glass/ceramic/bioactive glass sandwich structure for use in such applications as damage resistant, ceramic dental implants, immediate tooth replacement, endodontic posts, orthopedic prostheses, orthopedic stems, bone substitutes, bone screws, plates, and anchors, nonunion defects repair, alveolar ridge augmentation, missing small bone parts (e.g. fingers, toes, etc), maxilla facial reconstruction, spinal fusion, and scaffolds for bone regeneration, comprising a residual bioactive glass or glass-ceramic layer at all accessible surfaces, followed by an underlying graded glass-ceramic layer, and then an dense interior ceramic. Further, the invention provides methods for making the same structure.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: April 22, 2014
    Assignee: New York University
    Inventors: Yu Zhang, Racquel Legeros, Jae-Won Kim
  • Patent number: 8697187
    Abstract: Resist coating treatments for application of a resist solution to removal of a resist film on a wafer edge portion. A laser irradiation unit applies a laser light in a resist coating unit. At the time of resist coating treatment, the resist solution is discharged onto a central portion of the rotated wafer from a resist solution supply nozzle to form a resist film on the wafer. Thereafter, the laser irradiation unit moves to an outer peripheral portion of the wafer and applies the laser light onto the resist film on the outer peripheral portion to dry the resist film on the outer peripheral portion. The application of laser light is continued, and the solvent supply nozzle moves to a position above the edge portion and supplies solvent to the resist film on the edge portion. The solvent dissolves and removes the resist film on the edge portion.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: April 15, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Yoshiteru Fukuda, Tomohiro Iseki, Takayuki Ishii
  • Patent number: 8642118
    Abstract: The present invention can easily provide a method of manufacturing a pattern electrode with excellent electroconductivity and excellent transparency and a pattern electrode manufactured according to the method. The method of manufacturing a pattern electrode is characterized in that it comprises the steps of forming on a substrate an electroconductive layer containing metal nanowires, and carrying out pattern printing on the electroconductive layer employing a metal nanowire removing solution, followed by washing with water.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: February 4, 2014
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Masaki Goto, Akihiko Takeda, Kazuaki Nakamura
  • Publication number: 20140009758
    Abstract: An apparatus for use in sensing applications includes a substrate and a plurality of clusters arranged in an aperiodic configuration on the substrate, wherein each of the plurality of clusters is formed of a plurality of Raman-active material nano-particles, and wherein each of the Raman-active material nano-particles is positioned in a substantially ordered configuration with respect to each other in each of the respective plurality of clusters.
    Type: Application
    Filed: March 24, 2011
    Publication date: January 9, 2014
    Inventors: Zhiyong Li, Ivan Naumov, Farzad Parvaresh
  • Patent number: 8580026
    Abstract: A precursor sol of aluminum oxide contains a polycondensate formed by the hydrolysis of an aluminum alkoxide or an aluminum salt, a solvent, and an organic aluminum compound of general formula (1): wherein R1 and R2 each represent an alkyl group having 1 to 6 carbon atoms, a perfluoroalkyl group, or an allyl group; R3 represents an alkyl group having 1 to 6 carbon atoms, a perfluoroalkyl group, an allyl group, or an aryl group; and n represents an integer of 1 to 3. An optical member is produced by a process including a step of immersing an aluminum oxide film in a hot water with a temperature of 60 ° C. to 100 °C. to form a textured structure made of aluminum oxide crystals, the aluminum oxide film being formed by feeding the precursor sol of aluminum oxide onto a base. A method for producing an optical member includes a step of immersing an aluminum oxide film in a hot water with a temperature of 60 ° C. to 100 ° C.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: November 12, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kenji Makino, Tomonari Nakayama, Keiko Abe, Norishige Kakegawa
  • Patent number: 8530033
    Abstract: The present invention relates to an external wall panel which is excellent in ornamental design and weather resistance and a coating method for the external wall panel. An external wall panel of the invention comprises a base panel having a three-dimensional ornamental design surface, a lower coating layer formed on the surface of the base panel, a mid-coating layer formed on the lower coating layer, a first clear layer containing beads formed on the mid-coating layer, and a second clear layer made of a transparent layer or semi-transparent layer formed on the first clear layer wherein the second clear layer has a thick film layer portion in the vicinity of a corner edge of a convex portion of the three-dimensional ornamental design surface.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: September 10, 2013
    Assignee: Nichiha Corporation
    Inventor: Syouzou Ohno
  • Publication number: 20130084393
    Abstract: A processing liquid is supplied onto a substrate rotated by a spin chuck in a coating processing unit so that a film of the processing liquid is formed, and a rinse liquid is supplied to a peripheral edge of the substrate so that a processing liquid on the peripheral edge of the substrate is removed. An edge cut width between a position of an outer peripheral portion of the substrate rotated by the spin chuck in an edge exposure unit and a position of an outer peripheral portion of a film on the substrate is detected. Based on the detected edge cut width, a positional deviation of the center of the substrate held in the spin chuck from a rotation center of the spin chuck in the coating processing unit is determined while a supply state of the rinse liquid by an edge rinse nozzle is determined.
    Type: Application
    Filed: September 21, 2012
    Publication date: April 4, 2013
    Inventors: Masahito KASHIYAMA, Shigehiro GOTO, Tomohiro MATSUO, Tomohiro GOTO
  • Patent number: 8394453
    Abstract: Mixed matrix membranes that are capable of separation and purification of gas mixtures are disclosed. These membranes comprise polymers that include dispersed therein nanomolecular sieve particles. In a preferred embodiment, the nanomolecular sieve particles contain attached functional groups to prevent their agglomeration.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: March 12, 2013
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Stephen T. Wilson, Beth McCulloch
  • Patent number: 8357428
    Abstract: After a second liquid is applied to a support and dried, a first liquid is applied thereon. On a film of the first liquid, a third liquid (water) is supplied in droplets using an inkjet-type liquid supply unit. An area supplied with the droplets is referred to as porous area. Next, an organic solvent is evaporated from the film and the droplets are evaporated from the porous area. Thus, a porous film is obtained. The porous film has the porous areas in which a plurality of pores are arranged. Since the droplets are directly formed by an inkjet printing method, a condensation process and a droplet growing process are unnecessary. Thus, the porous film is produced efficiently. Shapes of the porous areas can be changed easily. The porous areas can be formed on the porous film in various patterns.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: January 22, 2013
    Assignee: FUJIFILM Corporation
    Inventors: Koju Ito, Hidekazu Yamazaki
  • Patent number: 8337940
    Abstract: A method for manufacturing a display device of the present invention comprises the steps of forming insulating barriers which surround electrode and project upward from the surface of the electrode, and bringing the whole substrate into contact with water after applying the solution including an acceptor in wet process. According to the present invention, an organic conductive layer can be uniformly formed over a substrate in wet process even if the substrate does not have a smooth surface and has distribution in wettability of the surface.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: December 25, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Atsushi Tokuda
  • Patent number: 8322033
    Abstract: A method for forming a conductive post include: a) forming a liquid repellent portion having a thickness of 100 nm or less by disposing a liquid repellent material in a conductive post forming region on a conductive layer; b) forming an insulation layer having an opening in a region overlapping with the conductive post forming region by disposing a liquid including an insulation layer forming material on the conductive layer having the liquid repellent portion formed thereon and polymerizing the insulation layer forming material; c) disposing metal particulates in the opening; and d) heating the metal particulates at a fusing temperature of the metal particulates or higher so as to fusion bond the metal particulates to each other in order to form the conductive post, and to fusion bond the metal particulates and the conductive layer in order to couple the conductive post with the conductive layer.
    Type: Grant
    Filed: September 9, 2008
    Date of Patent: December 4, 2012
    Assignee: Seiko Epson Corporation
    Inventors: Toshimitsu Hirai, Tsuyoshi Shintate, Jun Yamada
  • Publication number: 20120228262
    Abstract: A pattern forming method includes forming a coating film containing a hydrophilic first homopolymer having a first bonding group and a hydrophobic second homopolymer having a second bonding group capable of bonding with the first bonding group, forming a bond between the first and second bonding group to produce a block copolymer of the first and second homopolymners, and heating the coating film to microphase-separating the copolymer into a hydrophilic domain and a hydrophobic domain. The hydrophilic and hydrophobic domains are arranged alternately. The bond is broken, then selectively dissolving-removing either domain by a solvent to provide a polymer pattern of a remainder domain.
    Type: Application
    Filed: March 21, 2012
    Publication date: September 13, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiroki TANAKA, Ryosuke YAMAMOTO, Naoko KIHARA
  • Patent number: 8257777
    Abstract: Methods and devices for coating a medical device, such as a stent, including the steps of coating the medical device with a photoresist polymeric coating, irradiating a portion of the medical device, optionally applying a post-exposure bake step, and removing all or a portion of the coating from the irradiated portion of the medical device, if a positive photoresist coating material is used, or from a portion of the medical device not exposed to the radiation, if a negative photoresist coating material is used. The photoresist polymeric coating may optionally include a drug.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: September 4, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Peter Edelman
  • Publication number: 20120141734
    Abstract: A method for manufacturing matte-surface substrate including the following steps: coating a layer of material layer on a substrate; forming a plurality of liquid dewdrops on a surface of the coated material layer; applying an action caused by difference of surface tension between the liquid dewdrops and the coated material layer or by difference of concentration between the coated material layer and the liquid dewdrops to cause shape variation of the surface of the coated material layer so as to form a plurality of irregular raised/recessed structures; and finally curing the coated material layer and removing the liquid dewdrops. As such, a matte-surface substrate that includes successively-arranged irregular raised/recessed structures formed on the surface of the coated material layer is provided.
    Type: Application
    Filed: December 2, 2011
    Publication date: June 7, 2012
    Inventor: Chun-Yuan Lee
  • Patent number: 8133538
    Abstract: A method of producing a mold having an uneven structure and a mold for an optical element are provided. The method includes forming on a nickel substrate a mixed film using nickel and a material which phase separates from nickel simultaneously, the mixed film including a plurality of cylinders including nickel as a component thereof and a matrix region including the material which phase separates from nickel as a component thereof and surrounding the plurality of cylinders; and removing the matrix portion from the mixed film by etching to give a mold including nickel or a nickel alloy. The uneven structure is disposed in plurality on the substrate, and a pitch of the uneven structure is within a range of 30 nm or more and 500 nm or less and a depth of the uneven structure is within a range of 100 nm or more.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: March 13, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryoko Horie, Yasuhiro Matsuo, Nobuhiro Yasui, Toru Den
  • Patent number: 8076394
    Abstract: Compositions and methods for printing on specialty media are disclosed. The methods comprise the steps of providing a fixing fluid, providing a dye- or pigment-based ink-jet ink containing an effective amount of a polyvinyl(alcohol-acetate) species, jetting the fixing fluid onto the specialty media forming a coated substrate, and jetting the ink-jet ink onto the coated substrate. Additionally, a gelled printed image on a substrate is disclosed comprising a fixing fluid containing a fixing agent and an aqueous ink-jet ink containing a polyvinyl(alcohol-acetate) species. In both the method and with respect to the image, the polyvinyl(alcohol-acetate) species used can be a known species, or one of a number of new graft copolymers containing a polyvinyl(alcohol-acetate) polymer as one of the constituents of the copolymer.
    Type: Grant
    Filed: May 15, 2009
    Date of Patent: December 13, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Alexey S Kabalnov
  • Publication number: 20110244126
    Abstract: Methods for removing hydrogen from molecules are disclosed. In one embodiment, hydrogen-containing molecules are deposited on a solid substrate and are bombarded with hydrogen projectile particles. The particles may have energies of 5-100 eV, or more preferably 10-50 eV. The hydrogen projectile particles remove hydrogen atoms from the deposited molecules while they are on the substrate, without removing other atoms from the molecules. Dangling bonds are created by the loss of hydrogen and can be used to cross-link the molecules. The resulting product can be a nanometer-thick dense film.
    Type: Application
    Filed: June 10, 2011
    Publication date: October 6, 2011
    Applicant: THE CHINESE UNIVERSITY
    Inventors: R. W. M. KWOK, W. M. Lau
  • Patent number: 8012529
    Abstract: According to the invention, an insulating or semi-insulating barrier layer which has a thickness where a tunnel current can flow through is provided between a hole injection electrode and an organic compound layer with hole transport characteristics (a hole injection layer or a hole transport layer). Specifically, a thin insulating or semi-insulating barrier layer which contains silicon or silicon oxide; silicon or silicon oxide and a light transmitting conductive oxide material; or silicon or silicon oxide, a light transmitting conductive oxide material, and carbon may be provided between a light transmitting conductive oxide film formed of a light transmitting conductive oxide material, such as ITO and a hole injection layer containing an organic compound.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: September 6, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichiro Sakata, Masakazu Murakami, Koji Moriya, Yoshiaki Oikawa, Taketomi Asami, Hisashi Ohtani
  • Patent number: 8002948
    Abstract: A process for forming a patterned thin film structure on a substrate is disclosed. A pattern is printed with a material, such as a masking coating or an ink, on the substrate, the pattern being such that, in one embodiment, the desired thin film structures will be formed in the areas where the printed material is not present, i.e., a negative image of thin film structure to be formed is printed. In another embodiment, the pattern is printed with a material that is difficult to strip from the substrate, and the desired thin film structures will be formed in the areas where the printed material is present, i.e., a positive image of the thin film structure is printed. The thin film material is deposited on the patterned substrate, and the undesired area is stripped, leaving behind the patterned thin film structures.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: August 23, 2011
    Assignees: SiPix Imaging, Inc., Etansi Inc.
    Inventors: Jeanne E. Haubrich, Yi-Shung Chaug, Zarng-Arh George Wu, Rong-Chang Liang, Xiaojia Wang
  • Patent number: 7897207
    Abstract: Nano-molecular sieve-polymer mixed matrix membranes (MMMs) for CO2 removal from natural gas have been prepared by incorporating dispersible template-free nano-molecular sieves into polymer matrices such as Matrimid 5218 polyimide matrix or Ultem 1000 polyetherimide matrix. The nano-molecular sieves used in this invention include template-free nano-AlPO-18, nano-AlPO-5, nano-Silicalite, nano-SAPO-34, and PEG-functionalized nano-Silicalite. These template-free nano-molecular sieves were synthesized by an organic ligand grafting method.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: March 1, 2011
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Stephen T. Wilson
  • Patent number: 7887710
    Abstract: A method of patterning a transparent conductive film adaptive for selectively etching a transparent conductive film without any mask processes, a thin film transistor for a display device using the same and a fabricating method thereof are disclosed. In the method of patterning the transparent conductive film, an inorganic material substrate is prepared. An organic material pattern is formed at a desired area of the inorganic material substrate. A thin film having a different crystallization rate depending upon said inorganic material and said organic material is formed. The thin film is selectively etched in accordance with said crystallization rate.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: February 15, 2011
    Assignee: LG Display Co., Ltd.
    Inventors: Byung Chul Ahn, Byoung Ho Lim, Byeong Dae Choi
  • Patent number: 7846496
    Abstract: Mixed matrix membranes that are capable of separation and purification of gas mixtures are disclosed. These membranes comprise polymers that include dispersed therein nanomolecular sieve particles. In a preferred embodiment, the nanomolecular sieve particles contain attached functional groups to prevent their agglomeration.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: December 7, 2010
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Stephen T. Wilson, Beth McCulloch
  • Patent number: 7805822
    Abstract: A process which uses an air jet containing non-abrasive particulate media at a low pressure which selectively removes thermal barrier coatings from components without damaging the metallic substrate. This process selectively removes thermal barrier coatings from the cooling holes of components.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: October 5, 2010
    Assignee: Turbocombustor Technology, Inc.
    Inventor: Gary Lynn Hanley
  • Publication number: 20100034962
    Abstract: In a thinner composition and a method of forming a photosensitive film, the thinner composition includes about 50 to about 90% by weight of propylene glycol monomethyl ether acetate, about 1 to about 20% by weight of propylene glycol monomethyl ether, about 1 to about 10% by weight of ?-butyrolactone, and about 1 to about 20% by weight of n-butyl acetate. The thinner composition may have a proper volatility and an improved ability to dissolve various types of photosensitive materials, and thus the thinner composition may be usefully employed in an edge bead rinse process, a rework process or a pre-wetting process.
    Type: Application
    Filed: August 11, 2009
    Publication date: February 11, 2010
    Inventors: Ahn-Ho LEE, Baik-Soon CHOI, Seung-Hyun AHN, Sang-Tae KIM, Yong-II KIM, Shi-Jin SUNG, Kyong-Ho LEE
  • Patent number: 7635500
    Abstract: A particle arrangement apparatus of the present invention includes a tank for holding a dispersion of particles, a rotating means for rotating the substrate inside the tank to dip the substrate into the dispersion and to remove the substrate from the dispersion, and a coating means for applying a liquid different from the dispersion to the surface of the substrate when the substrate is not in contact with the dispersion.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: December 22, 2009
    Assignee: PanasonicCorporation
    Inventor: Tohru Nakagawa
  • Publication number: 20090304929
    Abstract: Provided is an optical member capable of keeping a high performance antireflection effect over a long period of time with respect to an arbitrary substrate. The optical member has plural layers on a substrate, and includes at least one metal oxide layer having a void, and at least one layer containing an organic resin as a main component formed between the substrate and the metal oxide layer. The metal oxide layer is a plate crystal layer formed of a plate crystal containing aluminum oxide as a main component and a surface of the plate crystal layer has an uneven profile. The organic resin has an aromatic ring and/or a hetero ring in at least a part thereof.
    Type: Application
    Filed: August 20, 2009
    Publication date: December 10, 2009
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Tomonari Nakayama, Masayuki Yamada
  • Publication number: 20090305014
    Abstract: Provided is an optical member capable of keeping a high performance antireflection effect over a long period of time with respect to an arbitrary substrate. The optical member has plural layers on a substrate, and includes at least one metal oxide layer having a void, and at least one layer containing an organic resin as a main component formed between the substrate and the metal oxide layer. The metal oxide layer is a plate crystal layer formed of a plate crystal containing aluminum oxide as a main component and a surface of the plate crystal layer has an uneven profile. The organic resin has an aromatic ring and/or a hetero ring in at least a part thereof.
    Type: Application
    Filed: August 20, 2009
    Publication date: December 10, 2009
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Tomonari Nakayama, Masayuki Yamada
  • Publication number: 20090297829
    Abstract: A process of incorporating metal in the form of nanoparticles into the surface layer of a polymeric article and the resultant articles are disclosed. The process includes bringing at least a part of the surface of said article in contact with a solvent mixture that contains (a) water, (b) a carrier conforming to R1—[—O—(CH2)n]mOR2 where R1 and R2 independently one from the other denote a radical selected from the group consisting of linear and branched C1-8 alkyl, benzyl, benzoyl, phenyl and H, n is 2 or 3, and m is 1-35, (c) a metal precursor, and optionally (d) a leveling agent, for a time sufficient to enable infusion of at least some of said metal precursor into said article to obtain an article having a treated surface layer; and treating the surface layer with a reducing agent to produce metal in the form of nanoparticles. The inventive articles prepared by the inventive process exhibit advantageous electrical and/or optical properties.
    Type: Application
    Filed: October 8, 2008
    Publication date: December 3, 2009
    Inventors: ROBERT A. PYLES, RONALD C. HEDDEN, DANIEL LENTZ
  • Publication number: 20090098294
    Abstract: The invention provides a method and apparatus for coating a metal product wherein a molten coating is applied to a surface of said metal product and wherein part of said molten coating is wiped off said metal product by an air flow and a nitrogen gas flow.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 16, 2009
    Inventor: Akin MALAS
  • Publication number: 20080286514
    Abstract: The present provides a bondably coated metallic member comprising a metallic member having a low surface energy polymeric coating, said low surface energy polymeric coating having been surface activated on at least a portion thereof, and having on said surface-activated portion a bondable high surface energy polymeric coating. The present invention also provides a bondably-coated metallic pipe comprising metallic pipe having a low surface energy mainline polymeric coating thereon extending over the pipe except at a bare zone adjacent each end of the pipe that is free from said main-line coating; a portion of said mainline coating adjacent each bare zone having been surface activated and having on said surface activated portion a bondable high surface energy polymeric coating.
    Type: Application
    Filed: April 20, 2006
    Publication date: November 20, 2008
    Applicant: SHAWCOR LTD.
    Inventors: Catherine Lam, David K. Potter, Robert E. Steele
  • Publication number: 20080268226
    Abstract: A spatially organized polymer nanostructured thin film and a ligand adsorbate attached to the polymer nanostructured thin film and, optionally, an additional material or materials attached to the ligand adsorbate. A method for forming a structure by: providing a spatially organized polymer nanostructured thin film and a ligand adsorbate, and adsorbing the ligand adsorbate onto the thin film and, optionally, binding additional material or materials to the ligand adsorbate.
    Type: Application
    Filed: April 24, 2008
    Publication date: October 30, 2008
    Applicant: Naval Research Laboratory
    Inventors: Melik C. Demirel, Alok K Singh, Walter J. Dressick
  • Publication number: 20080113197
    Abstract: Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.
    Type: Application
    Filed: November 14, 2007
    Publication date: May 15, 2008
    Applicant: RENSSELAER POLYTECHNIC INSTITUTE
    Inventors: Howard Littman, Joel L. Plawsky, John D. Paccione
  • Publication number: 20080081114
    Abstract: Uniform fluid delivery to a substrate is provider using a diffuser. The diffuser is designed with a series of fluid (gas and/or liquid) passages of equal effective length/flow resistance, such that as the fluid passes through the diffuser, the gas exits all areas at the same time and with the same mass flux. These passages may not be physically the same, however they have the same effective length and flow resistance. The diffuser can be implemented using single or multiple stacked layers, and from several to many passages. The net effect is a uniform gas curtain to the wafer. Since the passages through the diffuser are effectively the same, the uniform gas curtain to the wafer is not sensitive to the quantity of gas, the gas flow rate or the gas pressure. Additionally, a faceplate can optionally be used to smooth out any jet effects of the diffuser exit holes.
    Type: Application
    Filed: October 3, 2006
    Publication date: April 3, 2008
    Inventors: William Johanson, John Mazzocco, David Cohen, Thomas M. Pratt, Gary Lind, Peter Krotov
  • Patent number: 7261921
    Abstract: A method of creating an image with an antique appearance includes the step of providing an image formed with an image-forming component on a fibrous material. The image is then antiqued by dissolving the image-forming component with a first chemical solution. The image-forming component is set with a second chemical solution that stops the antiquing of the image with the first chemical solution. The image-forming component can be food coloring, or ink. The first chemical solution can be made of a glue component, an alcohol component, an oil component, a casein component, and yeast. The second chemical solution can include an acrylic polymer selected from a group consisting of polyurethane, clear wax, floor wax, bees wax, and a polymer elusion.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: August 28, 2007
    Assignee: Terry Hillhouse Designs, Inc.
    Inventor: Theresalee Hillhouse-Aubry
  • Patent number: 7125462
    Abstract: A water soluble mask is formed on a substrate. Thereafter, a coating (e.g., low-E coating) is formed on the substrate in at least one select area over the mask and in at least one area where the mask is not provided. After the coating has been formed, water is used to remove the mask and a portion of the coating formed thereon in order to form a partially coated substrate. The technique may be used in applications such as in the making of vehicle windshields, or the like.
    Type: Grant
    Filed: June 18, 2002
    Date of Patent: October 24, 2006
    Assignee: Centre Luxembourgeois de Recherches pour le Verre et al Ceramique S.A. (C.R.V.C.)
    Inventor: Bernd Disteldorf
  • Patent number: 7122122
    Abstract: A cellulose/silica composite useful as a filter material is highly selective towards a solute that has been molecularly imprinted upon an inorganic gel coating formed on the cellulose. The filter material provides dual filtering functionality, as both a selective molecular sieve and as a particulate filter. A unique method for making the filter material is also set forth that imparts these attributes and performance capabilities.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: October 17, 2006
    Assignee: Kraft Foods Holdings, Inc.
    Inventors: Manuel Marquez-Sanchez, Gustavo Larsen, Ahmad Akashe, David Vu, Rajinder S. Gill
  • Patent number: 7090890
    Abstract: The methods of this invention involve modification of the properties of an organic film after it has been deposited by either adding new components into it from its top or bottom surface, or by causing components to leave the film from its top or bottom surface. In the examples of these methods, the emitting color of light-emitting diodes are modified based on doped polymers by locally introducing dopants causing different color emission into the film by local application of a solution containing the desired dopant to the film surface (by ink jet printing, screen printing, local droplet application, etc.). This overcomes difficulties encountered with the direct patterning of three separately formed organic layers (each which uniformly coats an entire surface when formed) into regions for separate R, G, and B devices due to the sensitivities of the organic materials to chemicals typically used with conventional patterning technologies.
    Type: Grant
    Filed: April 12, 1999
    Date of Patent: August 15, 2006
    Assignee: The Trustees of Princeton University
    Inventors: James C. Sturm, Thomas R. Hebner, Florian Pschenitzka
  • Patent number: 7014888
    Abstract: A method and structure that protects interior electrical components of a pressure sensor (4) from corrosive particles using a sacrificial gel dome (30) to form a vent (34) in a protective gel (32) that covers electrical components that can be corroded such as wires (16), bond pads (18), and electrical leads (14). Sacrificial gel dome (30) is dispensed over a diaphragm (28) of pressure sensor (4) to form vent (34) enabling diaphragm (28) to sense pressure variations without the influence of protective gel (32). Sacrificial gel dome (30) is removed through a water rinsing process (42) to expose vent (34).
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: March 21, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventors: William G. McDonald, Stephen Ryan Hooper
  • Patent number: 6872512
    Abstract: A method of forming a resist pattern effectively controls the manner/style and the amount of modification of a resist pattern in its reflowing process, realizing a desired resist pattern with a desired accuracy even if the deformation amount of the resist pattern is increased in the reflowing process. A second layer is formed on a first layer and then, a first resist pattern is formed on the second layer. The second layer is selectively etched using the first resist pattern as a mask. Thereafter, wettability of at least part of an exposed area of the second or first layer from the first resist pattern is adjusted, thereby forming a wettability-adjusted part. The first resist pattern is modified in such a way as to extend to the wettability-adjusted area by reflowing the first resist pattern using an organic solvent, thereby forming a second resist pattern for selectively etching the first layer or the second layer.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: March 29, 2005
    Assignee: NEC LCD Technologies, Ltd.
    Inventor: Masami Yamashita
  • Patent number: 6833162
    Abstract: A process for generating colored nanolithography patterns of parallel lines or cross pattern lines on a glass or plastic substrate, said process consisting the steps of pressing a polycarbonate or aluminium mold obtained from a compact disk on a glass or plastic surface inked with a permanent marker ink for one or more times to create lithographic patterns of parallel colored lines or cross pattern lines. Also, the present invention provides a method for generating colored nanolithography patterns of parallel lines or cross pattern lines on a glass or plastic substrate having dried ink, said process consisting keeping the plastic or glass substrate having the dried ink in a chamber containg ethanol or toluene for about 10 seconds followed by pressing the polycarbonate or aluminium mold obtained from a compact disk on the glass or plastic surface to generate the pattern.
    Type: Grant
    Filed: November 26, 2002
    Date of Patent: December 21, 2004
    Assignee: Council of Scientific and Industrial Research
    Inventors: Arun Chattopadhyay, Anumita Paul, Devasish Chowdhury
  • Patent number: 6805903
    Abstract: A method for forming an optical thin film used for optical elements of laser systems including high-energy lasers and an optical element of optical apparatuses is provided. The optical thin film can be easily formed on a desired substrate with reproducibility by vapor-depositing a porous fluoride layer for preventing reflection in the deep ultraviolet region, and can be easily removed in a short time to reuse the substrate if the thin film damaged. A water-insoluble material (2) for preventing reflection is vapor-deposited onto an optical element substrate (1). A water-soluble material (3) having a higher particle energy is vapor-deposited onto the surface of the water-insoluble material (2). The water-soluble material (3) permeates deep into the water-insoluble material (2) to form a mixed film on the surface of the substrate (1). Then, the water-soluble material (3) is dissolved and removed to form a porous thin film (5) comprising the water-insoluble material (2).
    Type: Grant
    Filed: August 1, 2003
    Date of Patent: October 19, 2004
    Assignee: Japan Science and Technology Corporation
    Inventor: Kunio Yoshida
  • Patent number: 6770323
    Abstract: A method for forming a chemically patterned surface includes subjecting a surface of a substrate to a fluid including a component such that the component reacts with the surface to form a first distribution of the component on the surface. Thereafter, the surface is deformed along at least one axis such that the first distribution of the component is converted to a second distribution different from the first distribution. The second distribution is a gradient of the component.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: August 3, 2004
    Assignee: North Carolina State University
    Inventors: Jan Genzer, Kirill Efimenko
  • Patent number: 6713128
    Abstract: An alkylsiloxane-containing epoxy resin composition can suitably be used as water-repellent agent or a water-repellent coating to be advantageously applied to areas that are apt to be brought into contact with solutions and substances containing one or more than one components that can damage the film forming property and the adhesion of an ordinary water-repellent agent. The resin composition comprises at least an alkylsiloxane-containing epoxy resin having two or more than two alkylsiloxane groups and two or more than two cyclic aliphatic epoxy groups in a molecule and a cationic polymerization catalyst.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: March 30, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventors: Akihiko Shimomura, Hiromichi Noguchi, Isao Imamura, Tamaki Sato
  • Publication number: 20040043148
    Abstract: A method for fabricating a carbon nanotube device, characterized in that selective chemical vapor-phase deposition is performed on the lateral sides of the portion where the carbon nanotube device is to be formed defined by using the density of catalyst grains as well as etching technique so as to position the carbon nanotube device according to the arrangement of the catalyst grains. Therefore, the carbon nanotube device can be formed on a large-area chip can be achieved so as to further fabricate arrays of carbon nanotube memories and transistors.
    Type: Application
    Filed: September 4, 2002
    Publication date: March 4, 2004
    Applicant: Industrial Technology Research Institute
    Inventors: Jeng-Hua Wei, Hung-Hsiang Wang, Ming-Jer Kao
  • Patent number: 6620457
    Abstract: A method of applying a thermal barrier coating system to a metal piece having cooling holes angled in a first direction and cooling holes angled in a second direction. The method includes spraying a bond coat on a first surface of the piece at angles with respect to the first and second directions and to a thickness selected in combination with the angles to prevent the bond coat from entirely filling any of the holes. A thermal barrier coating is sprayed on the bond coat at angles with respect to the first and second directions and to a thickness selected in combination with the angles to prevent the thermal barrier coating from entirely filling any of the holes. The method also includes spraying a high pressure fluid jet from a nozzle assembly through each hole generally parallel to the respective cooling hole.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: September 16, 2003
    Assignee: General Electric Company
    Inventors: Gilbert Farmer, Thomas John Tomlinson, Raymond William Heidorn, Jeffrey Arnold Fehrenbach, William Lee Imhoff, Myron Edward Rutherford
  • Patent number: 6586045
    Abstract: A method for creating a pattern by applying varying concentrations of pigment in water to a synthetic fabric and allowing the pigment to bleed and preferably to reverse bleed. A pleated window shade having an Aurora Borealis like pattern is also provided. The preferred method comprises the steps of stretching a pleated synthetic fabric window shade vertically, applying pigment in water to the surface of the fabric and allowing the pigment to bleed, then inverting the fabric so that the pigment in solvent bleeds in the opposite direction. Optionally, the method further includes at least one of the steps of applying the solvent, such as for example water, to the pigmented surface before inverting or after inverting thereby inducing additional bleeding, blending, and dilution of the pigment in the wetted area.
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: July 1, 2003
    Inventor: Hilary Platt Cole