Swelling Agent Or Solvent Applied To Treat Coating Patents (Class 427/336)
  • Patent number: 10678169
    Abstract: Provided is an intermediate transfer belt for an electrophotographic image forming apparatus including conductor-coated particles in which ferroelectric particles are coated with a conductor.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: June 9, 2020
    Assignee: KONICA MINOLTA, INC.
    Inventors: Eiichi Yoshida, Sadaaki Sakamoto, Ito Koga, Shiori Tsugawa, Daisuke Ikeda
  • Patent number: 10265662
    Abstract: Disclosed herein are methods of increasing the hydrophilicity of a membrane. Membranes comprising polyaniline or co-polymer thereof and one or more gel inhibiting agents are treated with one or more hydrophilicity restoration agents, thereby increasing the hydrophilicity of a membrane. Also disclosed are membranes produced by the disclosed methods. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: April 23, 2019
    Assignee: The Regents of the University of California
    Inventors: Eric M. V. Hoek, Richard B. Kaner, Gregory R. Guillen, Thomas P. Farrell
  • Patent number: 9518181
    Abstract: A thermoplastic composition that contains a rigid renewable polyester and has a voided structure and low density is provided. To achieve such a structure, the renewable polyester is blended with a polymeric toughening additive to form a precursor material in which the toughening additive can be dispersed as discrete physical domains within a continuous matrix of the renewable polyester. The precursor material is thereafter stretched or drawn at a temperature below the glass transition temperature of the polyester (i.e., “cold drawn”). This creates a network of voids located adjacent to the discrete domains, which as a result of their proximal location, can form a bridge between the boundaries of the voids and act as internal structural “hinges” that help stabilize the network and increase its ability to dissipate energy. The present inventors have also discovered that the voids can be distributed in a substantially homogeneous fashion throughout the composition.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: December 13, 2016
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Neil T. Scholl, Ryan J. McEneany, Thomas A. Eby, Vasily A. Topolkaraev
  • Patent number: 9249651
    Abstract: Improved methods are provided for the application of downhole oil or gas well treating agents, such as liquid corrosion inhibition agents. The methods involve first lowering a liquid retainer device into a well casing, preferably at or above the location of the well production zone, followed by introduction of a liquid treating agent. The presence of the liquid retainer device prevents substantial passage of the agent into the production zone, and forms a column of the liquid agent above the device. The retainer device is then withdrawn from the well so as to create a substantially uniform film of the agent along the inner surfaces of the well casing. In this manner, proper coating of the casing is achieved while preventing production losses owing to passage of the treating agent into the production zone. The liquid retainer is preferably one or more swab cups or oil field retainers.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: February 2, 2016
    Assignee: Jacam Chemical Company 2013, LLC
    Inventors: James C. Baker, Harlan G. McCormack, Gene F. Brock, Gene H. Zaid
  • Patent number: 8940356
    Abstract: A system and method for coating an expandable member of a medical device comprising a support structure to support the expandable member and a dispenser positioned with at least one outlet proximate a surface of an expandable member. A drive assembly establishes relative movement between the at least one outlet and the surface of the expandable member to apply fluid on the surface of the expandable member along a coating path. A guide maintains a substantially fixed distance between the at least one outlet and the surface of the expandable member during relative movement therebetween by displacing the expandable member relative to the at least one outlet.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: January 27, 2015
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Victoria M. Gong, Stephen D. Pacetti, Anthony S. Andreacchi, Michael Leonard, Binh T. Nguyen, John Stankus, Dan Cox
  • Patent number: 8906459
    Abstract: A method of forming an organic layer includes supplying a liquefied organic material, drying the liquefied organic material, supplying a solvent to an intermediate organic layer to swell the intermediate organic layer, and drying the swelled organic layer. The organic layer is formed to have a uniform thickness when the organic layer is formed by a solution-based printing method.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: December 9, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: SungWoong Kim
  • Publication number: 20140332462
    Abstract: Hierarchical porous membranes suitable for use in oil/water separation processes are provided. The membranes described herein are particularly well suited for separating trace amounts of water (e.g., no greater than 3 wt % water content, no greater than 1 wt % water content, or 50-1000 ppm water) from oil in droplets less than 1 um in size. The membranes have a wide range of applications, including deep seep oil exploration, oil purification, and oil spill cleanup.
    Type: Application
    Filed: June 12, 2014
    Publication date: November 13, 2014
    Inventors: Brian Richmond Solomon, Kripa K. Varanasi, Md. Nasim Hyder
  • Patent number: 8852689
    Abstract: Particles are embedded in a substrate by applying to at least a portion of the substrate a fluid and a population of particles, such that the substrate is softened to at least a degree that particles are at least partially embedded in the softened portion of the substrate. The softened portion of the substrate is hardened so as to securely embed the particles in the substrate.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: October 7, 2014
    Assignee: Innova Dynamics, Inc.
    Inventors: Arjun Daniel Srinivas, Calvin Peng, Alexander Chow Mittal, Priyanka Agarwal
  • Patent number: 8840967
    Abstract: The present invention relates to a method for manufacturing a printed circuit board including a flame retardant insulation layer. The printed circuit board of the present invention exhibits excellent thermal stability and excellent mechanical strength, is suitable for imprinting lithography process, provides improved reliability by reducing coefficient of thermal expansion, and has excellent adhesion between circuit patterns and an insulation layer.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: September 23, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jae-Choon Cho, Myeong-Ho Hong, Hwa-Young Lee, Hee-Sun Chun, Choon-Keun Lee
  • Patent number: 8815433
    Abstract: Disclosed is a method for manufacturing a separator. The method includes (S1) preparing a porous planar substrate having a plurality of pores, (S2) preparing a slurry containing inorganic particles dispersed therein and a polymer solution including a first binder polymer and a second binder polymer in a solvent, and coating the slurry on at least one surface of the porous substrate, (S3) spraying a non-solvent incapable of dissolving the second binder polymer on the slurry, and (S4) simultaneously removing the solvent and the non-solvent by drying. According to the method, a separator with good bindability to electrodes can be manufactured in an easy manner. In addition, problems associated with the separation of inorganic particles in the course of manufacturing an electrochemical device can be avoided.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: August 26, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Joo-Sung Lee, Jang-Hyuk Hong, Jong-Hun Kim, Bo-Kyung Ryu
  • Patent number: 8808789
    Abstract: Methods and compositions for preparing highly conductive electronic features are disclosed. When organoamine-stabilized silver nanoparticles are exposed to an alkaline composition, the resulting electronic feature is highly conductive. Such methods are particularly advantageous when applied to aged silver nanoparticle compositions.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: August 19, 2014
    Assignee: Xerox Corporation
    Inventors: Ping Liu, Yiliang Wu, Nan-Xing Hu, Anthony Wigglesworth
  • Patent number: 8765229
    Abstract: A method for producing a porous thin film with variable transmittance, includes placing a polymer into an oven for an drying process to remove water vapor from the polymer and obtain a dry polymer; mixing the dry polymer, a salt and a solvent in accordance with a mixing ratio so as to obtain a first mixed solution; placing the first mixed solution into an ultrasonic vibrator, dissolving the salt to form a second mixed solution; coating the second mixed solution on a glass plate to form a solution thin film; placing solution thin film into an exhaust cabinet to obtain a composite thin film; and washing the composite thin film to remove the salt from the composite thin film to obtain a porous thin film wherein the polymer is a polyacrylonitrile, the salt is a lithium chloride, the porous thin film changes its transmittance via dry and wet state.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: July 1, 2014
    Assignee: National Tsing Hua University
    Inventors: Wen-Kuang Hsu, Ying-Tzu Chen
  • Patent number: 8728564
    Abstract: A powder mix layer for a building panel and a method for producing a building panel with a decorative surface produced from a powder mix layer with a controlled loss on cure.
    Type: Grant
    Filed: April 11, 2012
    Date of Patent: May 20, 2014
    Assignee: Valinge Innovation AB
    Inventors: Göran Ziegler, Hans Persson, Rickard Rittinge
  • Patent number: 8715783
    Abstract: The present invention relates to a porous ABPBI (phosphoric acid doped poly(2,5-benzimidazole)) membrane and process of preparing the same. A stable porous ABPBI (Phosphoric Acid Doped Poly(2,5-benzimidazole)) membrane stable to acids, bases, solvents and autoclaving is disclosed. The membrane finds use for separation of solutes in solution in acids, bases and solvents.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: May 6, 2014
    Assignee: Council of Scientific and Industrial Research (CISR)
    Inventors: Ulhas Kharul, Harshada Lohokare
  • Patent number: 8691254
    Abstract: An antimicrobial coating slurry includes about 15.5 wt % of a wetting agent, about 6.0 wt % of an insolubilizer, about 1.1 wt % of a biocide agent, and about 7.8 wt % of an inorganic material that includes lithium oxide and the balance water. The slurry is applied to a heat exchanger surface, cured, and washed to form a hydrophilic coating that includes lithium silicate. The hydrophilic coating provides improved moisture wicking and a reduced dissolution rate of biocide, which is held within a lithium silicate matrix.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: April 8, 2014
    Assignee: Hamilton Sundstrand Space Systems International, Inc.
    Inventors: Barbara M. Peyton, John W. Steele
  • Publication number: 20140076384
    Abstract: A layered compound-metal particle composite 3 is obtained by the addition, to an organically modified layered compound 1 formed by the intercalation of organic ions between layers of a layered compound, of both an aqueous colloidal metal solution 2 in which metal particles are dispersed as a metal colloid in water, and a nonaqueous solvent which is a poor solvent for the metal colloid and has an excellent ability to swell the organically modified layered compound 1.
    Type: Application
    Filed: February 14, 2012
    Publication date: March 20, 2014
    Applicant: KYUSHU UNIVERSITY
    Inventors: Sunao Yamada, Masashi Ogawa, Takashi Kurihara, Kengo Ito
  • Patent number: 8597716
    Abstract: Methods for increasing the fracture resistance of a polymer stent's drug-polymer coating and scaffolding including applying a coating and crimping using techniques that increase the resistance to fracture in the coating layer and scaffolding and scaffolding.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: December 3, 2013
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Dan Castro, Yunbing Wang
  • Patent number: 8574674
    Abstract: A substrate is first rotated at a first rotation speed, and a resist solution is applied. Rotation of the substrate is decelerated to a second rotation speed lower than the first rotation speed so that the substrate is rotated at the low speed to smooth the resist solution on the substrate. Rotation of the substrate is then accelerated to a third rotation speed higher than the second rotation speed, and a solvent for the coating solution and/or a dry gas are/is supplied to the resist solution on the substrate. The solvent gas is supplied to a portion of the resist solution on the substrate thicker than a set thickness, and the dry gas is supplied to a portion of the coating solution on the substrate thinner than the set thickness. This thins the thicker portion of the resist solution and thickens the thinner portion to uniform the resist solution.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: November 5, 2013
    Assignee: Tokyo Electron Limited
    Inventor: Takashi Tanaka
  • Publication number: 20130276930
    Abstract: A flexible pipe body and method of producing a flexible pipe body are disclosed. The method includes providing a tubular layer; and directing a chemical reagent towards a surface portion of the tubular layer, wherein the tubular layer comprises an extruded polymer, and wherein the chemical reagent is suitable for changing one or more physical or mechanical property of a proportion of the extruded tubular layer thickness.
    Type: Application
    Filed: April 12, 2013
    Publication date: October 24, 2013
    Applicant: Wellstream International Limited
    Inventors: Iwan Rhys Harries, Neville Dodds
  • Patent number: 8557343
    Abstract: A method of activating an organic coating, a coated substrate having an activated coating and an activation treatment for an organic coating. In particular, the activation method improves the adhesion of the organic coating to further coating layers and/or to other entities.
    Type: Grant
    Filed: March 17, 2005
    Date of Patent: October 15, 2013
    Assignees: The Boeing Company, Commonwealth Scientific and Industrial Research Organisation
    Inventors: Stuart Arthur Bateman, Francisco Cardonna, Ranya Simons, Dong Yang Wu, Douglas H. Berry, James F. Kirchner, Seana B. Kobak, Jill E. Seebergh
  • Patent number: 8557128
    Abstract: Methods for fabricating sub-lithographic, nanoscale microchannels utilizing an aqueous emulsion of an amphiphilic agent and a water-soluble, hydrogel-forming polymer, and films and devices formed from these methods are provided.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: October 15, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Dan B. Millward
  • Patent number: 8541053
    Abstract: Densifying a multi-layer substrate includes providing a substrate with a first dielectric layer on a surface of the substrate. The first dielectric layer includes a multiplicity of pores. Water is introduced into the pores of the first dielectric layer to form a water-containing dielectric layer. A second dielectric layer is provided on the surface of the water-containing first dielectric layer. The first and second dielectric layers are annealed at temperature of 600° C. or less. In an example, the multi-layer substrate is a nanoimprint lithography template. The second dielectric layer may have a density and therefore an etch rate similar to that of thermal oxide, yet may still be porous enough to allow more rapid diffusion of helium than a thermal oxide layer.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: September 24, 2013
    Assignee: Molecular Imprints, Inc.
    Inventors: Marlon Menezes, Frank Y. Xu, Fen Wan
  • Patent number: 8535796
    Abstract: A polymerizable composite composition comprising a) a hydrolysate and/or condensate of at least one hydrolysable alkylsilane having at least one alkyl group, at least one hydrolysable arylsilane having at least one aryl group or at least one hydrolysable alkylarylsilane having at least one alkylaryl group, and at least one hydrolysable silane containing an epoxy group, b) at least one organic compound having at least 2 epoxy groups, and c) a cationic initiator, is suitable to provide, upon curing, substrates with a patterned coating or patterned molded articles. The patterned coatings and molded articles obtained show high relaxation ability, high chemical resistance and mechanical stability. Micropatterns can be obtained with high stability of shape.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: September 17, 2013
    Assignees: Leibniz-Institut fuer Neue Materialien Gemeinnuetzige GmbH, Canon Kabushiki Kaisha
    Inventors: Carsten Becker-Willinger, Pamela Kalmes, Helmut Schmidt, Etsuko Hino, Mitsutoshi Noguchi, Yoshikazu Saito, Norio Ohkuma
  • Publication number: 20130126349
    Abstract: Selectively permeable membranes for biosensors are provided. In one embodiment, the membrane includes a polymer mixture that includes a polyurethane component, a siloxane component, and a hydrogel component, the components in the mixture in amounts of about 60 to about 80 wt % polyurethane, about 10 to about 20 wt % siloxane, and about 10 to about 20 wt % hydrogel. The membrane has a surface restructured to be hydrophilic, with the restructured surface being crosslinked ed via reactive end groups on at least one of the polyurethane, the siloxane, and the hydrogel components. In another embodiment, the membrane includes a solvent cast film which includes a mixture of a first polyether-based thermoplastic polyurethane copolymer, a polyether-based polyurethane copolymer, and, optionally, a second polyether-based thermoplastic polyurethane copolymer.
    Type: Application
    Filed: August 5, 2011
    Publication date: May 23, 2013
    Applicant: MicroCHIPS, Inc.
    Inventor: Yanan Zhang
  • Patent number: 8425981
    Abstract: A simple coating method is used to form nanoporous hydrophobic films that can be used as optical coatings. The method uses evaporation-induced self-assembly of materials. The coating method starts with a homogeneous solution comprising a hydrophobic polymer and a surfactant polymer in a selective solvent. The solution is coated onto a substrate. The surfactant polymer forms micelles with the hydrophobic polymer residing in the particle core when the coating is dried. The surfactant polymer can be dissolved and selectively removed from the separated phases by washing with a polar solvent to form the nanoporous hydrophobic film.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: April 23, 2013
    Assignee: Sandia Corporation
    Inventors: Hongyou Fan, Zaicheng Sun
  • Patent number: 8415024
    Abstract: An organic liquid is applied to both sides of a self-supporting film of a polyimide precursor solution, and then the self-supporting film is heated to effect imidization, thereby providing a polyimide film with reduced surface roughness.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: April 9, 2013
    Assignee: Ube Industries, Ltd.
    Inventors: Hideki Iwai, Kazuyuki Hamada, Yasuhiro Nagoshi
  • Publication number: 20130084396
    Abstract: The present invention generally relates to a process for making a metal oxide composition. The present invention also relates to a process for making a coated metal oxide substrate.
    Type: Application
    Filed: November 26, 2012
    Publication date: April 4, 2013
    Inventor: Delbert C. Scranton, JR.
  • Patent number: 8343585
    Abstract: Mechanisms for coating surfaces of materials, the resulting coated materials, and solutions for use in material-coating processes are described. Triblock molecule components may be selected for desired properties. When applied in solution to a material, the molecules self-assemble into similarly oriented micro- or nanostructures coating the surface of the material. Various molecule properties can be tailored to produce a range of desirable surface coating properties. The surface coating may optionally be self cleaning if selected to be appropriately hydrophobic, allowing water and particulates to roll off of the surface with minimal friction.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: January 1, 2013
    Assignee: Empire Technology Development LLC
    Inventor: Janelle Gunther
  • Patent number: 8335460
    Abstract: A tubular body 101 includes a layer containing a resin and conductive particles 112, the layer having a first region 111C that is free of conductive particles and lies at the outermost surface, and a second region 111B that has higher conductivity than other regions and lies closer to the innermost surface than the first region. A coating film of a coating liquid containing the conductive particles and resin material is dried, and then an eluting solvent for eluting the resin material from the film is applied thereto. As a result of this, the conductive particles are localized in the coating film at the side coated with the eluting solvent. Thereafter, upon drying the eluting solvent, the resin material dissolved in the eluting solvent deposits on the region where the conductive particles are localized, whereby a particle-free resin region free of the conductive particles is formed.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: December 18, 2012
    Assignee: Fuji Xerox Co., Ltd
    Inventors: Nobuyuki Ichizawa, Masato Ono, Tomoko Suzuki
  • Patent number: 8287946
    Abstract: Conventional techniques for forming ultraviolet- or infrared-screening coating films have the problem of requiring several recoating steps in order to attain a desired coating weight and therefore failing in forming high-strength coating films and the problem of causing uneven coating, mottling, spotting, blushing, partial breakage, or cracking in some working atmospheres. In order to solve the problems, a coating fluid comprising at least an ultraviolet-screening agent and/or an infrared-screening agent, a binder and a polyhydric alcohol base solvent and having a polyhydric alcohol content of 50 to 95 wt % is applied to a substrate with a coater whose ejection nozzle has a tip diameter of 0.5 to 3.0 mm and which is equipped with a blower for forming an air curtain at an ejection pressure of the nozzle of 0.01 to 0.098 MPa and then dried to form a film containing an ultraviolet-screening agent and/or an infrared-screening agent on the surface of the substrate.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: October 16, 2012
    Assignee: Fumin Corporation
    Inventor: Katsuo Yagisawa
  • Publication number: 20120252923
    Abstract: This disclosure relates to compositions containing a) a silicone resin, b) a first silicone fluid having a viscosity from about 1 to about 15,000 centistokes at 25° C.; c) a second silicone fluid having a viscosity from about 1 to about 30,000 centistokes at 25° C.; d) an acrylic polymer; e) a hydrocarbon solvent; and f) water. The compositions of this disclosure provide long lasting hydrophobic coatings with high water contact angles for automotive surfaces, in which the hydrophobic automotive surfaces possess self-cleaning functions, e.g., water and dirt repellency. This disclosure also relates to methods for treating automotive surfaces and to automotive surfaces coated with the compositions.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Inventor: Ashot K. Serobian
  • Patent number: 8277868
    Abstract: A drug delivery device for delivering therapeutic agents and a method of making such a device is disclosed. The device includes an inflatable balloon. A microporous coating covers a portion of the outer surface of the wall of the balloon. The thickness of the coating and the size of the micropores can permit desirable delivery of a substance from the micropores of the coating and into the tissue of a patient's lumen.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: October 2, 2012
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: Lyudmila Kokish, Stephen D. Pacetti, John Stankus
  • Patent number: 8268056
    Abstract: Disclosed is a method for manufacturing a separator. The method includes (S1) preparing a porous planar substrate having a plurality of pores, (S2) preparing a slurry containing inorganic particles dispersed therein and a polymer solution including a first binder polymer and a second binder polymer in a solvent, and sequentially coating the slurry on the porous substrate through a first discharge hole and a non-solvent incapable of dissolving the second binder polymer on the slurry through a second discharge hole adjacent to the first discharge hole, and (S3) simultaneously removing the solvent and the non-solvent by drying. According to the method, a separator with good bindability to electrodes can be manufactured in an easy manner. In addition, problems associated with the separation of inorganic particles in the course of manufacturing an electrochemical device can be avoided.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: September 18, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Joo-Sung Lee, Jang-Hyuk Hong, Jong-Hun Kim, Bo-Kyung Ryu
  • Publication number: 20120125579
    Abstract: An antimicrobial coating slurry includes about 15.5 wt % of a wetting agent, about 6.0 wt % of an insolubilizer, about 1.1 wt % of a biocide agent, and about 7.8 wt % of an inorganic material that includes lithium oxide and the balance water. The slurry is applied to a heat exchanger surface, cured, and washed to form a hydrophilic coating that includes lithium silicate. The hydrophilic coating provides improved moisture wicking and a reduced dissolution rate of biocide, which is held within a lithium silicate matrix.
    Type: Application
    Filed: January 31, 2012
    Publication date: May 24, 2012
    Inventors: Barbara M. Peyton, John W. Steele
  • Patent number: 8182866
    Abstract: The invention relates to a method of producing a substrate which is coated with a mesoporous layer and to the use thereof in ophthalmic optics. The inventive method comprises the following steps comprising: preparing a precursor sol containing (i) a precursor agent that is selected from compounds having formula M(X)4 (I), in which X is a hydrolysable group and M represents silicon or a tetravalent metal and mixtures thereof, (ii) at least one organic solvent, (iii) at least one pore-forming agent and (iv) water; depositing a film of the precursor sol on a main surface of the substrate; optionally consolidating the mesoporous structure of the deposited film; eliminating the pore-forming agent; and recovering the substrate coated with the mesoporous layer. The method is characterized in that: (i) the pore-forming agent is eliminated at a temperature of less than or equal to 150° C.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: May 22, 2012
    Assignee: Essilor International Compagnie Generale d'Optique
    Inventors: Muriel Matheron, John Biteau, Jean-Paul Cano, Jean-Pierre Boilot, Thierry Gacoin
  • Patent number: 8123960
    Abstract: Methods for fabricating sublithographic, nanoscale microchannels utilizing an aqueous emulsion of an amphiphilic agent and a water-soluble, hydrogel-forming polymer, and films and devices formed from these methods are provided.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: February 28, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Dan B. Millward
  • Patent number: 8119200
    Abstract: A method to prepare a flexible and breathable protective glove having excellent grip in both aqueous and oil environments includes coating an electrolyte treated glove liner substrate with a non-foamed dispersion of a polymeric material. The resulting semi-gelled polymeric coating which partially penetrates the depth of the glove liner substrate, is treated with a foamed solution of a surfactant, tenside or aerosol solution and the foam treated coating is overcoated with an electrolyte solution. In a resulting chemical or physical reaction, fine pores and cavities are formed in and on the polymer coating.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: February 21, 2012
    Assignee: Midas Safety Inc.
    Inventors: Mikhail Kassam, Akil Jaffer, Jamshed Amjad, Basheer Ali
  • Patent number: 8110251
    Abstract: In preferred embodiments, the present invention relates to methods for polymerizing a monomer solution within a cavity covered by a porous membrane to generate a smooth polymer surface. More specifically, the method can be used to provide a medical device or sensor with a smooth polymer surface.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: February 7, 2012
    Assignee: Glumetrics, Inc.
    Inventors: David R. Markle, Huashi Zhang, Matthew A. Romey, Ritchie A. Wessling
  • Patent number: 8097175
    Abstract: Methods of forming metal oxide structures and methods of forming metal oxide patterns on a substrate using a block copolymer system formulated for self-assembly. The metal oxide structures and patterns may be used, for example, as a mask for sublithographic patterning during various stages of semiconductor device fabrication. A block copolymer at least within a trench in the substrate and including at least one soluble block and at least one insoluble block may be annealed to form a self-assembled pattern including a plurality of repeating units of the at least one soluble block laterally aligned with the trench and positioned within a matrix of the at least one insoluble block. The self-assembled pattern may be exposed to a metal oxide precursor that impregnates the at least one soluble block. The metal oxide precursor may be oxidized to form a metal oxide. The self-assembled pattern may be removed to form a pattern of metal oxide lines on the substrate surface.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: January 17, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Dan B. Millward, Timothy A. Quick, J. Neil Greeley
  • Publication number: 20110275260
    Abstract: The present invention relates to a polysaccharide composition for protection of surfaces comprising an aqueous solution of at least two components, the first component (A) being a high molecular weight polysaccharide or a mixture of high molecular weight polysaccharides having an average molecular weight Mw of at least 100 000, and being capable of forming a gel, and the second component (B) being a low molecular weight polysaccharide or a mixture of low molecular weight polysaccharides having an average molecular weight Mw of 400-75 000, and being capable of inhibiting gel formation in said composition. The present invention further relates to a method for preparing such a composition, the use of the composition for protecting a surface, a method for protecting a substrate surface using the composition, and to a substrate surface coated with the composition.
    Type: Application
    Filed: December 2, 2009
    Publication date: November 10, 2011
    Applicant: Lyckeby Coatings AB
    Inventor: Sigfrid Svensson
  • Patent number: 8053030
    Abstract: This invention relates to methods of applying to a substrate a hydrophilic coating that becomes lubricious when activated with water or water vapor, and to substrates having such a hydrophilic coating.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: November 8, 2011
    Assignee: Hollister Incorporated
    Inventor: Thomas H. Gilman
  • Patent number: 8017187
    Abstract: A flake mixture for spraying onto a surface to be coated, the flake mixture comprising a volatile liquid medium and a flake pigment dispersed within said liquid medium, the weight percentage of flake being between 0.002% and 0.15%. A method is also provided the method comprising the steps of: providing an object having a surface to be coated; preparing the surface to be coated by applying a gloss basecoat layer; curing said basecoat layer; providing a flake mixture, flake mixture comprising a volatile liquid medium and a flake pigment dispersed within said liquid medium, the weight percentage of flake being between 0.0002% and 0.15% spraying onto said surface the flake mixture; curing the flake mixture; applying over said flake layer a lacquer layer; and curing said lacquer layer.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: September 13, 2011
    Assignee: Aerochrome Limited
    Inventor: Adam Robertson-Young
  • Patent number: 7998523
    Abstract: The invention relates to open-pore biocompatible surface layers for implants, which layers are arranged over virgin surfaces of the implants, wherein pores of the open-pore surface layers are connected to form coherent pore networks and the surface layers have a specific internal surface area of ?0.06 ?m/?m2, preferably ?0.035 ?m/?m2 and especially ?0.025 ?m/?m2, measured by image analysis as a 2D-boundary line per unit of surface area in a metallographic microsection at 100× magnification. The invention further relates to methods of producing such surface layers, to implants coated therewith and to possible uses of the surface layers.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: August 16, 2011
    Assignee: Smith and Nephew Orthopaedics AG
    Inventors: Reto Lerf, Hans Schmotzer, Stephan Siegmann
  • Patent number: 7989018
    Abstract: A method for modifying a polymeric coating on an implantable medical device, such as a stent, is disclosed. The method includes application of a fluid to a wet or dry polymeric coating with and without drugs.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: August 2, 2011
    Assignee: Advanced Cardiovascular Systems, Inc.
    Inventors: Andrew F. McNiven, Thomas D. Esbeck, Ni Ding, Stephen Pacetti, Syed F. A. Hossainy
  • Publication number: 20110174183
    Abstract: A pyrophoric material comprises a pyrophoric metal coated onto a wire mesh substrate. Iron and nickel are the preferred metals and a steel wire mesh is suitable. A process for making the pyrophoric material involves spraying an alloy of iron and/or nickel with aluminium onto a mesh using a high velocity oxy-fuel (HVOF) process following by leaching out at least a proportion of the aluminium by treatment with an alkaline solution. The product has application as a supported catalyst or as either an ignition medium or as a flare material in military countermeasures in which applications it is capable of burning at a high temperature.
    Type: Application
    Filed: April 14, 2009
    Publication date: July 21, 2011
    Inventors: James Dominic Callaway, James Neil Towning, Raymond Cook, Paul Smith, David Graham McCartney, Andrew J. Horlock
  • Patent number: 7976896
    Abstract: A spin chuck rotatably holds a semiconductor wafer, while resist is dropped on a surface of the semiconductor wafer through a resist application nozzle and thus applied thereon, and before the resist applied on the wafer dries, a cleaning liquid is supplied through a bevel cleaning nozzle to a portion of the wafer located at a peripheral portion thereof in a vicinity of a beveled portion to remove the resist adhering to the beveled portion. Thereafter, a film of the resist that is formed on the surface of the wafer is dried.
    Type: Grant
    Filed: October 2, 2006
    Date of Patent: July 12, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Yoshiteru Fukuda, Nobuhiro Ogata, Takayuki Ishii, Keiji Tanouchi
  • Patent number: 7923071
    Abstract: The invention comprises methods for the photolithographic patterning of features in a photo-curable polymer composition coated onto a plastic substrate. In one embodiment of this invention, the plastic substrate is coated with a reflective film such as a metallic barrier. In another embodiment, the plastic substrate is coated or co-extruded with a polymer barrier layer containing an additive that absorbs the photo-curing radiation. In yet another embodiment the plastic substrate contains an intrinsic additive that absorbs the photo-curing radiation. Combinations of these embodiments are also within the scope of this invention. The methods of the present invention may be advantageously applied to the fabrication of optical waveguides comprising a photo-curable polymer supported on a plastic substrate, but are applicable to the fabrication of any device or object comprising a photo-curable polymer supported on a plastic substrate.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: April 12, 2011
    Assignee: RPO Pty Limited
    Inventors: Robert Charters, Dax Kukulj
  • Publication number: 20110027517
    Abstract: Methods for improving surface roughness of an environmental barrier coating including providing a component having a plasma sprayed environmental barrier coating; applying a slurry to the environmental barrier coating of the component, the slurry being a transition layer slurry or an outer layer slurry; drying the environmental barrier coating having the applied slurry; and sintering the component to produce a component having an improved surface roughness where the slurry includes a solvent; a primary transition material, or a primary outer material; and a slurry sintering aid selected from iron oxide, gallium oxide, aluminum oxide, nickel oxide, titanium oxide, boron oxide, alkaline earth oxides, carbonyl iron, iron metal, aluminum metal, boron, nickel metal, iron hydroxide, gallium hydroxide, aluminum hydroxide, nickel hydroxide, titanium hydroxide, alkaline earth hydroxides, iron carbonate, gallium carbonate, aluminum carbonate, nickel carbonate, boron carbonate, alkaline earth carbonates, iron oxalate, g
    Type: Application
    Filed: December 18, 2009
    Publication date: February 3, 2011
    Inventors: GLEN HAROLD KIRBY, Brett Allen Boutwell
  • Publication number: 20100263106
    Abstract: A method for manufacturing a foamed polymer is disclosed, the method comprising, providing a precursor dispersion comprising a precursor of a gellable polymer, particles of a water-swellable polymer and water, and gelling the gellable polymer to form a solid polymer. The method may be used to manufacture a garment, especially a glove. Also disclosed are gloves comprising a liner and at least one foamed polymer layer coated on the liner the foamed polymer layer comprising micropores formed by water swelling and contraction of particles of a water swellable polymer and mesopores formed by gas incorporated in the foamed polymer.
    Type: Application
    Filed: April 20, 2010
    Publication date: October 21, 2010
    Applicant: MIDAS SAFETY, INC.
    Inventors: Mikhail Kassam, Aziz Navrozally, Akil Jaffer
  • Patent number: 7803425
    Abstract: A nanoporous film and fabrication method thereof. The method for fabricating nanoporous film comprising: providing a substrate with a surface; forming a coating of a composition on the surface, curing the coating to polymerize the oxide gel, thereby forming an organic/inorganic hybrid film; and dissolving the template from the organic/inorganic hybrid film by an organic solvent. Specifically, the composition comprises the following components: an oxide gel, a template and an initiator.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: September 28, 2010
    Assignee: Industrial Technology Research Institute
    Inventors: Wu-Jing Wang, Yen-Po Wang, Yun-Ching Lee, Joung-Yei Chen, Hsi-Hsin Shih, Hsein-Pin Chen