Metal Coating Patents (Class 427/404)
-
Patent number: 10815161Abstract: The present invention is directed to embodiments of reactive material (RM) and an associated chemical time delay that includes an RM, according to an embodiment of the present invention. One embodiment includes a delay material that is an RM patterned on a substrate using lithographic techniques. Another embodiment includes a delay material that is an RM deposited on a patterned substrate such as a mesh. The present invention also includes a chemical time delay that includes either embodiment of the delay material, or any variation on the delay material that would be known to or conceivable to one of skill in the art.Type: GrantFiled: May 11, 2018Date of Patent: October 27, 2020Assignee: The Johns Hopkins UniversityInventors: Timothy P. Weihs, Kyle Overdeep
-
Patent number: 10711370Abstract: An epitaxial growing device to increase the speed of epitaxial deposition comprises a cavity comprising a reaction chamber, a gas supply unit, a vacuum pumping unit, a first electrode, a second electrode, and a carbon nanotube structure. A gas supply unit and the vacuum pumping unit are connected to the reaction chamber, the first electrode, the second electrode, and the carbon nanotube structure being located in the reaction chamber. The carbon nanotube structure is electrically connected to the first electrode and the second electrode and suspended through the first electrode and the second electrode and is heatable in itself. A method for growing an epitaxial layer using such device is also provided.Type: GrantFiled: April 17, 2018Date of Patent: July 14, 2020Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.Inventors: Peng Lei, Peng Liu, Kai-Li Jiang, Shou-Shan Fan
-
Patent number: 10388590Abstract: A cooling bond layer for a power electronics assembly is provided. The cooling bond layer includes a first end, a second end spaced apart from the first end, a metal matrix extending between the first end and the second end, and a plurality of micro-channels extending through the metal matrix from the first end to the second end. The plurality of micro-channels are configured for a cooling fluid to flow through and remove heat from the cooling bond layer. In some embodiments, the plurality of micro-channels are cylindrical shaped micro-channels. In such embodiments, the plurality of micro-channels may have a generally constant average inner diameter along a thickness of the cooling bond layer. In the alternative, the plurality of micro-channels may have a graded average inner diameter along a thickness of the cooling bond layer. In other embodiments, the plurality of micro-channels may have a wire mesh layered structure.Type: GrantFiled: January 31, 2018Date of Patent: August 20, 2019Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.Inventors: Shailesh N. Joshi, Ercan Mehmet Dede
-
Patent number: 10242763Abstract: A joined body 20 includes a first member 22 having a thermal expansion coefficient of 8 ppm/K or less, a second member 24 having a thermal expansion coefficient of 12 ppm/K or more, and a joining portion 30 composed of an electrically conductive oxide containing 50% by mass or more of a spinel-type ferrite phase, the joining portion 30 joining the first member and the second member. The electrically conductive oxide preferably contains Fe and element A (where element A represents one or more selected from the group consisting of Mg, Mn, Co, Ni, Cu, and Zn). The molar ratio of element A to Fe, i.e., A/Fe, is 0.5 or less.Type: GrantFiled: March 2, 2016Date of Patent: March 26, 2019Assignee: NGK Insulators, Ltd.Inventors: Yunie Izumi, Yoshimasa Kobayashi
-
Patent number: 9961819Abstract: An auxiliary adhesive dispensing apparatus is connected to a printed circuit board (PCB) through an opening on a side surface of a shielding cover above the PCB, and the auxiliary adhesive dispensing apparatus includes a flow guiding groove, an adhesive-injection opening connected to an end of the flow guiding groove, and a fixing part connecting the flow guiding groove and the PCB. The auxiliary adhesive dispensing apparatus is connected to a PCB through an opening on a side surface of a shielding cover above the PCB. By means of the auxiliary adhesive dispensing apparatus, an adhesive dispensing operation can still be performed after a shielding cover is mounted, so that the adhesive dispensing operation can be performed after second-reflow soldering processing.Type: GrantFiled: March 4, 2015Date of Patent: May 1, 2018Assignee: HUAWEI DEVICE (DONGGUAN) CO., LTD.Inventors: Fuqiang Ma, Haixing Ding
-
Patent number: 9802390Abstract: Cracking of a laminated glass assembly having a device encapsulated therein during the manufacturing process is prevented. The laminated glass assembly includes a first and a second glass sheet; a first, a second and a third intermediate film interposed between the first and second glass sheets, in that order; an organic EL panel interposed between the first and second intermediate films and provided with a terminal member; and a first wiring member consisting of a metallic thin strip connected to the terminal member in a thickness-wise direction via a first solder; wherein at least one of the two glass sheets has a thickness of 1.0 mm to 1.6 mm; and at a connecting portion of the terminal member, the first solder and the first wiring member, the first wiring member has a thickness of 0.05 mm to 0.10 mm and a width of 3 mm to 15 mm, and the first solder has a thickness of 0.01 mm to 0.20 mm; and a total thickness of the terminal member, the first solder and the first wiring member is 0.16 mm to 0.40 mm.Type: GrantFiled: October 30, 2013Date of Patent: October 31, 2017Assignees: Nippon Sheet Glass Co., Ltd., Pilkington Group LimitedInventors: Hisashi Ogawa, Hisashi Asaoka, Mark A. Chamberlain
-
Patent number: 9765423Abstract: A coated substrate. The coated substrate includes a unitary substrate having a major surface. A first coating is applied to a first surface segment of the major surface. A second coating applied to a second surface segment of the major surface. The first coating is different than the second coating.Type: GrantFiled: March 5, 2015Date of Patent: September 19, 2017Assignee: APOGEE ENTERPRISES, INC.Inventors: Russell Huffer, Randy Leland Stull, Henry Boyum, Keith Grubb, Kristin Sumner
-
Patent number: 9452475Abstract: Various methods of treating a chromium iron interconnect for a solid oxide fuel cell stack and coating the interconnect with a ceramic layer are provided.Type: GrantFiled: February 28, 2013Date of Patent: September 27, 2016Assignee: BLOOM ENERGY CORPORATIONInventors: Tad Armstrong, James Wilson, Harald Herchen, Daniel Darga, Manoj Pillai
-
Publication number: 20150111063Abstract: This invention relates generally to an article that includes a base substrate, an intermediate layer including at least one element or compound selected from titanium, chromium, indium, zirconium, tungsten, and titanium nitride on the base substrate, and a hydrophobic coating on the base substrate, wherein the hydrophobic coating includes a rare earth element material (e.g., a rare earth oxide, a rare earth carbide, a rare earth nitride, a rare earth fluoride, and/or a rare earth boride). An exposed surface of the hydrophobic coating has a dynamic contact angle with water of at least about 90 degrees. A method of manufacturing the article includes providing the base substrate and forming an intermediate layer coating on the base substrate (e.g., through sintering or sputtering) and then forming a hydrophobic coating on the intermediate layer (e.g., through sintering or sputtering).Type: ApplicationFiled: October 30, 2014Publication date: April 23, 2015Inventors: Sami Khan, Gisele Azimi, Adam T. Paxson, Kripa K. Varanasi
-
Patent number: 9012043Abstract: A medical implant device or component thereof comprising a metal substrate and a coating layer structure provided on the substrate. The coating layer structure comprises an outermost layer of a ceramic material. A bonding structure is deposited between the metal substrate and the coating layer structure. The bonding structure comprises a chromium rich layer, which is deposited onto the metal substrate surface and has a higher concentration of chromium than the metal substrate, as well as a gradient layer having a composition gradient from the chromium rich layer towards the surface of the device providing increasing proportions of a gradient material which has structural correspondence with the layer of the coating layer structure that is most adjacent to the bonding structure.Type: GrantFiled: December 21, 2009Date of Patent: April 21, 2015Assignee: Sandvik Intellectual Property ABInventors: Ola Wilhelmsson, Tom Eriksson, Per Mårtensson
-
Patent number: 9005713Abstract: A process for improving the adherence of a thermal barrier coating to a substrate includes the steps of providing a substrate, depositing a masking layer of aluminum, an aluminum alloy, or titanium alloy, or titanium on a surface of the substrate, depositing a non-thermally grown oxide layer of alumina or titania on the masking layer, and depositing a thermal barrier coating on the oxide layer.Type: GrantFiled: August 20, 2013Date of Patent: April 14, 2015Assignee: United Technologies CorporationInventors: Brian S. Tryon, Joseph Parkos, Jr.
-
Patent number: 8999452Abstract: The present invention provides a surface-independent surface-modifying multifunctional biocoating and methods of application thereof. The method comprises contacting at least a portion of a substrate with an alkaline solution comprising a surface-modifying agent (SMA) such as dopamine so as to modify the substrate surface to include at least one reactive moiety. In another version of the invention, a secondary reactive moiety is applied to the SMA-treated substrate to yield a surface-modified substrate having a specific functionality.Type: GrantFiled: July 11, 2013Date of Patent: April 7, 2015Assignee: Northwestern UniversityInventors: Phillip B. Messersmith, Haeshin Lee
-
Publication number: 20150090434Abstract: Embodiments of the present invention include methods of disposing a metallic coating layer comprising a metal in an amorphous and/or fine grain microstructure over at least a portion of a surface of a pyrolytic graphite substrate, the metal comprising Nickel, Iron, a Nickel-Iron Alloy, or any combination thereof, and the grains of the metal being of 1 nm to 10000 nm in size. Embodiments of the invention also encompass the coated pyrolytic graphite articles. The coated substrate exhibits a thermal conductivity not less than the uncoated substrate.Type: ApplicationFiled: September 26, 2014Publication date: April 2, 2015Inventors: Richard James Lemak, Robert John Moskaitis
-
Publication number: 20150086796Abstract: A layer system is provided that has at least: a substrate, a ceramic layer and an outermost layer, which has an aluminum-rich form, in particular directly on the ceramic layer, and optionally a metallic bonding layer between the substrate and the ceramic layer, and in which the outermost layer has aluminum particles, in particular aluminum particles with a particle size of 100 nm to 50 ?m. As a result of applying particles of aluminum to an outermost layer, the ceramic layer is better protected against what is known as CMAS (calcium, magnesium, aluminum and silicon) attacks.Type: ApplicationFiled: December 13, 2012Publication date: March 26, 2015Applicant: Siemens AktiengesellschaftInventors: Maria del Mar Juez Lorenzo, Vladislav Kolarik, Veronica Kuchenreuther, Werner Stamm
-
Patent number: 8980387Abstract: A method of coating a surface, preparing a doped metal-ion precursor solution for coating, and an article including a component coated by the described method are disclosed. The method of coating includes applying a fluoro-silane doped metal-ion precursor solution on the surface to form a coated surface. The metal-ion precursor solution includes greater than about 0.6 molar percent concentration of a metal-ion precursor in a solvent comprising an alcohol. The method of preparing the doped metal-ion precursor solution includes dissolving a metal-ion precursor in a solvent comprising an alcohol at a temperature greater than about 100° C. and refluxing at a temperature greater than about 150° C. such that the concentration of metal-ion precursor in the solution is greater than 0.6 molar percent of the solution, and adding a fluoro-silane to the metal-ion precursor solution.Type: GrantFiled: October 27, 2011Date of Patent: March 17, 2015Assignee: General Electric CompanyInventors: Kevin Paul McEvoy, Ambarish Jayant Kulkarni, James Anthony Ruud
-
Patent number: 8974864Abstract: A method of coating a substrate is disclosed. The method includes providing a substrate; depositing an infrared reflecting layer over at least a portion of a substrate; depositing a primer layer over at least a portion of the infrared reflective layer; depositing a dielectric layer over at least a portion of the primer layer; and forming an absorbing layer. The absorbing layer includes an alloy and/or mixture of (a) a metal having an index of refraction at 500 nm less than or equal to 1.0 and (b) a material having a ?G°f of greater than or equal to ?100 at 1000° K. The metal can be silver and the material can be tin.Type: GrantFiled: April 22, 2010Date of Patent: March 10, 2015Assignee: PPG Industries Ohio, Inc.Inventors: James J. Finley, James P. Thiel, Harry Buhay
-
Publication number: 20150050494Abstract: A multi-walled titanium-based nanotube array containing metal or non-metal dopants is formed, in which the dopants are in the form of ions, compounds, clusters and particles located on at least one of a surface, inter-wall space and core of the nanotube. The structure can include multiple dopants, in the form of metal or non-metal ions, compounds, clusters or particles. The dopants can be located on one or more of on the surface of the nanotube, the inter-wall space (interlayer) of the nanotube and the core of the nanotube. The nanotubes may be formed by providing a titanium precursor, converting the titanium precursor into titanium-based layered materials to form titanium-based nanosheets, and transforming the titanium-based nanosheets to multi-walled titanium-based nanotubes.Type: ApplicationFiled: March 19, 2013Publication date: February 19, 2015Applicant: The Hong Kong University of Science and TechnologyInventors: King Lun Yeung, Shammi Akter Ferdousi, Wei Han
-
Patent number: 8956510Abstract: The present invention relates generally to methods for producing metallic products comprising a substrate and a metallic, external coating. In preferred embodiments, the metallic products are jewelry articles.Type: GrantFiled: June 1, 2012Date of Patent: February 17, 2015Assignee: Frederick Goldman, Inc.Inventor: Andrew Derrig
-
Publication number: 20150036716Abstract: A symmetrical, flat laminate structure used to minimize variables in a test structure to experimentally gauge white bump sensitivity to CTE mismatch is disclosed. The test structure includes a flat laminate structure. The method of using the test structure includes isolating a cause of a multivariable chip join problem that is adversely impacted by warpage and quantifying a contribution of the warpage, itself, in a formation of the multivariable chip join problem.Type: ApplicationFiled: October 17, 2014Publication date: February 5, 2015Inventors: William E. Bernier, Timothy H. Daubenspeck, Virendra R. Jadhav, Valerie A. Oberson, David L. Questad
-
Patent number: 8932663Abstract: Methods for forming bone implants for the repair of the ends of bones at orthopedic joints, which implants have a Young's modulus close to that of human cortical bone. Substrates of dense isotropic graphite are coated overall with hard, microporous, isotropic pyrocarbon of specific character such that it can be polished to serve as an articular surface and can also securely receive an anchoring first metal layer through PVD. The first layer has a character such that, by thermal spraying a second biocompatible metal layer thereupon, fusion occurs and thereby anchors an outermost layer that is formed with a network of randomly interconnected pores and a surface character of peaks and valleys designed to promote enhanced appositional growth of cortical bone at the interface therewith.Type: GrantFiled: February 19, 2013Date of Patent: January 13, 2015Assignee: Ascension Orthopedics, Inc.Inventors: Joseph P. Ritz, Clive Scott
-
Publication number: 20150004323Abstract: Catalysts include five-membered nitrogen containing heterocyclic compounds as ligands for metal ions which have catalytic activity. The catalysts are used to electrolessly plate metal on metal clad and un-clad substrates.Type: ApplicationFiled: June 28, 2013Publication date: January 1, 2015Inventors: Kristen M. MILUM, Donald E. CLEARY, Maria Anna RZEZNIK
-
Patent number: 8920881Abstract: For producing a component, especially a gas turbine component, coated with a wear-protection, corrosion-protection or erosion-protection coating, a method includes the following steps: providing a component (10) to be coated on a component surface (13); at least partially coating the component (11) on its component surface with an at least two-layered protective coating (14), which includes at least one relatively soft layer (15) and at least one relatively hard layer (16); and then surface densifying the at least partially coated component on its coated component surface by ball blasting or shot peening.Type: GrantFiled: October 7, 2005Date of Patent: December 30, 2014Assignee: MTU Aero Engines AGInventors: Wolfgang Eichmann, Karl-Heinz Manier, Markus Uecker, Thomas Uihlein
-
Publication number: 20140376349Abstract: Devices that include a near field transducer (NFT), the NFT having a disc and a peg, and the peg having five surfaces thereof; and at least one adhesion layer positioned on at least one of the five surfaces of the peg, the adhesion layer including one or more of the following: rhenium, osmium, iridium, platinum, hafnium, ruthenium, technetium, rhodium, palladium, beryllium, aluminum, manganese, indium, boron, and combinations thereof beryllium oxide, silicon oxide, iron oxide, zirconium oxide, manganese oxide, cadmium oxide, magnesium oxide, hafnium oxide, and combinations thereof tantalum carbide, uranium carbide, hafnium carbide, zirconium carbide, scandium carbide, manganese carbide, iron carbide, niobium carbide, technetium carbide, rhenium carbide, and combinations thereof chromium nitride, boron nitride, and combinations thereof.Type: ApplicationFiled: June 24, 2014Publication date: December 25, 2014Inventors: Yuhang Cheng, Tong Zhao, Michael C. Kautzky, Ed F. Rejda, Kurt W. Wierman, Scott Franzen, Andrew J. Boyne, Michael Allen Seigler, Sethuraman Jayashankar
-
Publication number: 20140370259Abstract: A method for depositing a metal containing material onto a porous substrate, the method comprises forming a seed coating on the substrate, wherein the seed coating at least partially covers the substrate, the seed coating being substantially free of precious metal and applying a metal containing material to the seed coating, wherein the surface area of the substrate is greater than 0.02 m2/cc, as determined prior to coating the substrate. Non-porous substrates may also be coated using a similar process.Type: ApplicationFiled: February 1, 2013Publication date: December 18, 2014Inventors: Geoffrey Allan Edwards, Quansheng Song, Peter Anthony George
-
Publication number: 20140370295Abstract: Disclosed is graphene. More particularly, disclosed are a method for manufacturing graphene to grow graphene with high quality and graphene manufactured by the same. The method includes preparing a thermal-expansion compensation substrate, forming a metal layer on the thermal-expansion compensation substrate, and forming graphene on the metal layer.Type: ApplicationFiled: March 7, 2014Publication date: December 18, 2014Applicant: LG ELECTRONICS INC.Inventors: Minseok CHOI, Taehyeong KIM, Jinsan MOON, Mynghee JUNG
-
Patent number: 8900660Abstract: Disclosed is a method for producing a silver (Ag) coating pigment. The method for producing a silver coating pigment according to the present invention comprises: a step of forming a tin compound pretreatment layer on the matrix surface; and a step of forming a silver coating layer on the lower portion of the tin compound pretreatment layer through a reflux and electroless plating process using a diluted solution of silver nitrate, ammonia water, a citric acid solution, and a diluted solution of potassium hydroxide.Type: GrantFiled: April 12, 2012Date of Patent: December 2, 2014Assignee: CQV Co., Ltd.Inventors: Dong-Min Heo, Jae-Il Jeong, Kwang-Choong Kang, Byung-Ki Choi, Kwang-Soo Lim, Kil-Wan Chang, Man-Su Lee, Gun-Eik Jang
-
Patent number: 8900467Abstract: A method for making a chemical contrast pattern uses directed self-assembly of block copolymers (BCPs) and sequential infiltration synthesis (SIS) of an inorganic material. For an example with poly(styrene-block-methyl methacrylate) (PS-b-PMMA) as the BCP and alumina as the inorganic material, the PS and PMMA self-assemble on a suitable substrate. The PMMA is removed and the PS is oxidized. A surface modification polymer (SMP) is deposited on the oxidized PS and the exposed substrate and the SMP not bound to the substrate is removed. The structure is placed in an atomic layer deposition chamber. Alumina precursors reactive with the oxidized PS are introduced and infuse by SIS into the oxidized PS, thereby forming on the substrate a chemical contrast pattern of SMP and alumina. The resulting chemical contrast pattern can be used for lithographic masks, for example to etch the underlying substrate to make an imprint template.Type: GrantFiled: May 25, 2013Date of Patent: December 2, 2014Assignee: HGST Netherlands B.V.Inventors: Yves-Andre Chapuis, Ricardo Ruiz, Lei Wan
-
Patent number: 8876949Abstract: A method of preparing a palladium-silver alloy gas separation membrane system, wherein the surface of the palladium layer or a silver layer is activated by a non-chemical activation method involving abrasion to a controlled surface roughness and abrasion pattern, thereby permitting the plating or deposition of an overlayer of silver on the palladium layer, silver on a silver layer, or palladium on a silver layer. The palladium and silver layers are preferably supported on a porous metal support to which an intermetallic diffusion barrier has been applied.Type: GrantFiled: December 18, 2012Date of Patent: November 4, 2014Assignee: Shell Oil CompanyInventor: John Charles Saukaitis
-
Patent number: 8877320Abstract: A microfluidic device comprising: a substrate having a microfluidic channel, an electrically conductive feature comprising an electrically conductive layer arranged on a primer layer and positioned with reference to the microfluidic channel, wherein the primer layer comprises: (i) an organic polymer selected from the group consisting of. (a) a homopolymer or copolymer including a vinyl lactam repeating unit, (b) a cellulose ether; (c) polyvinyl alcohol; and (d) unmodified or modified gelatin; and (ii) a porous particulate material, the organic polymer being dispersed in the porous particulate material, is provided. Methods for manufacturing the microfluidic devices and their use in a number of applications are also provided.Type: GrantFiled: February 17, 2012Date of Patent: November 4, 2014Assignee: Sony DADC Austria AGInventors: Andrew John Naisby, Miguel Angel Torello Arevalo, Josef Kugler, Wolfgang Franz Reiter
-
Patent number: 8876948Abstract: A method of making a composite gas separation module by providing a porous support material having deposited thereon a metal membrane layer, by imposing upon the surface of the metal membrane layer certain surface characteristics including an abrasion pattern and a relatively high surface roughness that provides for surface activation that enhances the placement thereon of a subsequent metal membrane layer without the use of a chemical activating solution. The composite gas separation module is useful in the separation of hydrogen from hydrogen-containing gas streams.Type: GrantFiled: December 18, 2012Date of Patent: November 4, 2014Assignee: Shell Oil CompanyInventor: John Charles Saukaitis
-
Patent number: 8871306Abstract: A method to improve corrosion, abrasion, and fire resistant properties of structural components for use in oil, gas, exploration, refining and petrochemical applications is provided. The structural component is suitable for as refinery and/or petrochemical process equipment and piping, include but are not limited to process vessels, transfer lines and process pipes, heat exchangers, cyclones, and distillation columns. The method comprises providing the structural component with a plurality of layers, a corrosion resistant layer in contact with the corrosive petroleum products comprising a material selected from amorphous metals, ceramic materials, or combinations thereof; a structural layer; and an outer layer comprising a fire resistive material. In one embodiment, the structural component is further provided with at least another layer selected from a metal sheeting layer, an adhesive layer, and a containment layer.Type: GrantFiled: April 16, 2010Date of Patent: October 28, 2014Assignee: Chevron U.S.A. Inc.Inventors: Edwin H. Niccolls, Grzegorz Jan Jusinski
-
Publication number: 20140310940Abstract: According to an embodiment, a method of protecting at least a liner of an explosive charge from an environment comprises: applying a material onto or adjacent to the liner of the explosive charge, wherein prior to the step of applying, the liner is capable of being exposed to the environment, and wherein the material is capable of providing a protective barrier to at least the liner against the environment.Type: ApplicationFiled: March 28, 2013Publication date: October 23, 2014Applicant: HALLIBURTON ENERGY SERVICES, INC.Inventor: HALLIBURTON ENERGY SERVICES, INC.
-
Publication number: 20140313100Abstract: An object of the present invention is to provide an electromagnetic wave penetrative metal film having high mass productivity and an extremely low attenuation rate in the electromagnetic wave penetrated through, a manufacturing method of the electromagnetic wave penetrative metal film, and a radome for a vehicle-mounted radar devices using the electromagnetic wave penetrative metal film. To achieve the object, the present invention provides an electromagnetic wave penetrative metal film composed of more than 10000 of fine metal film pieces per unit area (1 mm2) provided on a surface of a substrate through an electroless plating step, wherein fine metal film pieces adjacent to each other are electrically isolated, a manufacturing method of the electromagnetic wave penetrative metal films, and a radome for a vehicle-mounted radar devices using the electromagnetic wave penetrative metal films.Type: ApplicationFiled: November 2, 2012Publication date: October 23, 2014Inventor: Shuji Yamamoto
-
Publication number: 20140308531Abstract: An ink composition is provided, a method of metalizing a surface of an insulation substrate and an article obtainable by the method are also provided. The ink composition may comprise a metal compound and an ink vehicle, the metal compound is at least one selected from a group consisting of a compound of formula I and a compound of formula II, TiO2-?(I), M1M2pOq (II), 0.05??<1.8, M1 is at least one element selected from a group consisting of groups 2, 9-12 of the periodic table according to IUPAC nomenclature, M2 is at least one element selected from a group consisting of groups 3-8, 10 and 13 of the periodic table according to IUPAC nomenclature, and 0<p?2, and 0<q<4.Type: ApplicationFiled: June 25, 2014Publication date: October 16, 2014Inventor: Weifeng MIAO
-
Patent number: 8859093Abstract: Embodiments of the present invention include low emissivity (low-E) coatings and methods for forming the coatings. The low-E coating comprises a self-assembled monolayer (SAM) on a glass substrate, where one surface of the SAM is disposed in contact with and covalently bonded to the glass substrate, and one surface of the monolayer is disposed in contact with and covalently bonded to a metal layer. In some embodiments, the low-E coating comprises an assembly of one or more monomeric subunits of the following structure: Si—(CnHy)-(LM)m where n is from 1 to 20, y is from 2n?2 to 2n, m is 1 to 3, L is a Group VI element, and M is a metal, such as silver. In some embodiments, (CnHy) can be branched, crosslinked, or cyclic. The coating can further comprise an antireflection coating on the metal layer.Type: GrantFiled: December 27, 2012Date of Patent: October 14, 2014Assignee: Intermolecular, Inc.Inventors: Xuena Zhang, Dipankar Pramanik
-
Publication number: 20140295087Abstract: The invention relates to a method for additively manufacturing an article made of a difficult-to-weld highly-precipitation-strengthened Ni-base super alloy that comprises Al and Ti in the sum of more than 5 wt.-% or a difficult-to weld carbide/solution-strengthened cobalt (Co)-base super alloy, whereby a metal particle mixture of at least a first phase and a second phase is provided as a starting material, said first phase of the mixture being a base material and said second phase of the mixture being a material which is a derivative of the first material and has relative to said material of said first phase an improved weldability, and whereby the metal particle mixture is processed by means of an additive manufacturing process which is one of selective laser melting (SLM), selective laser sintering (SLS), electron beam melting (EBM), laser metal forming (LMF), laser engineered net shape (LENS), or direct metal deposition (DMD).Type: ApplicationFiled: June 13, 2014Publication date: October 2, 2014Inventors: Lukas Emanuel RICKENBACHER, Alexander STANKOWSKI, Simone HOEVEL, Thomas ETTER
-
Publication number: 20140272373Abstract: A ceramic matrix composite having improved operating characteristics includes a barrier layer.Type: ApplicationFiled: March 14, 2014Publication date: September 18, 2014Inventors: Adam L. Chamberlain, Andrew J. Lazur, Robert J. Shinavski
-
Publication number: 20140272388Abstract: Composite coating materials comprising a hard carbide phase and a metallic binder that are resistant to molten metals such as aluminum are disclosed. The hard carbide phase of the composite coatings may comprise tungsten carbide, and the metallic binder may comprise a nickel-based alloy. A thin oxide layer comprising oxides of the binder metal may be provided on the surface of the composite coating. The composite coatings exhibit desirable non-wetting behavior when exposed to molten metals.Type: ApplicationFiled: March 14, 2013Publication date: September 18, 2014Applicant: KENNAMETAL INC.Inventors: Michael Knight, Cliff Garrigus, Hongbo Tian
-
Patent number: 8828503Abstract: A method of making a multi-layer micro-wire structure includes providing a substrate having a surface and forming a plurality of micro-channels in the surface. A first material composition is located in a first layer only in each micro-channel and not on the surface. A second material composition different from the first material composition is located in a second layer different from the first layer only in each micro-channel and not on the surface. The first material composition in the first layer and the second material composition in the second layer form an electrically conductive multi-layer micro-wire in each micro-channel.Type: GrantFiled: February 28, 2013Date of Patent: September 9, 2014Assignee: Eastman Kodak CompanyInventors: Hwei-Ling Yau, David Paul Trauernicht, John Andrew Lebens, Yongcai Wang, Ronald Steven Cok
-
Publication number: 20140242631Abstract: Novel Mn2+-doped quantum dots are provided. These Mn2+-doped quantum dots exhibit excellent temperature sensitivity in both organic solvents and water-based solutions. Methods of preparing the Mn2+-doped quantum dots are provided. The Mn2+-doped quantum dots may be prepared via a stepwise procedure using air-stable and inexpensive chemicals. The use of air-stable chemicals can significantly reduce the cost of synthesis, chemical storage, and the risk associated with handling flammable chemicals. Methods of temperature sensing using Mn2+-doped quantum dots are provided. The stepwise procedure provides the ability to tune the temperature-sensing properties to satisfy specific needs for temperature sensing applications. Water solubility may be achieved by passivating the Mn2+-doped quantum dots, allowing the Mn2+-doped quantum dots to probe the fluctuations of local temperature in biological environments.Type: ApplicationFiled: October 18, 2012Publication date: August 28, 2014Inventors: Haw Yang, Chih-Hao Hsia
-
Patent number: 8808803Abstract: A coating method includes depositing substantially pure hafnium metal, that is free of other elements that are present in more than trace amounts as inadvertent impurities, onto a metallic substrate, and heat treating the metallic substrate to react the hafnium metal with at least one other element to form a protective coating on the metallic substrate.Type: GrantFiled: January 7, 2013Date of Patent: August 19, 2014Assignee: United Technologies CorporationInventor: Benjamin Joseph Zimmerman
-
Patent number: 8809236Abstract: A method for manufacturing a high temperature superconductor (=HTS) coated tape (20), with the following steps: preparation of a substrate tape (1), deposition of at least one buffer layer (2), deposition of an HTS film (3), deposition of a metallic protection layer (35) on the HTS film (3) and deposition of a metallic shunt layer (36) is characterized in that, prior to deposition of the metallic shunt layer (36), the partially prepared coated tape (10) undergoes a laser beam cutting in order to provide a desired tape form, wherein the laser beam cutting is applied together with a gas flow and/or a liquid flow (23). The method reduces the loss of critical current and reduces or avoids a deterioration of the critical temperature in a HTS coated tape due to tape cutting.Type: GrantFiled: February 15, 2012Date of Patent: August 19, 2014Assignees: Oswald Elektromotoren GmbH, Bruker HTS GmbHInventors: Johannes Oswald, Bernhard Oswald, Thomas Reis, Alexander Rutt, Alexander Usoskin
-
Publication number: 20140227513Abstract: The present invention relates to an electronic equipment case including: a polylactic acid resin-based substrate; a polylactic acid resin-based adhesion layer that is coated on the substrate; a resin layer that has high adhesiveness with the adhesion layer and is capable of being plated with a metal; and a metal plating that is formed on the resin layer. According to the present invention, a bioplastic molded body having sufficient electromagnetic wave shielding performance and a high-adhesion metal plating can be provided.Type: ApplicationFiled: September 19, 2012Publication date: August 14, 2014Applicant: NEC CORPORATIONInventor: Yukihiro Kiuchi
-
Patent number: 8802183Abstract: The system of the present invention includes a conductive element, an electronic component, and a partial power source in the form of dissimilar materials. Upon contact with a conducting fluid, a voltage potential is created and the power source is completed, which activates the system. The electronic component controls the conductance between the dissimilar materials to produce a unique current signature. The system can also measure the conditions of the environment surrounding the system.Type: GrantFiled: July 11, 2011Date of Patent: August 12, 2014Assignee: Proteus Digital Health, Inc.Inventors: Jeremy Frank, Peter Bjeletich, Hooman Hafezi, Robert Azevedo, Robert Duck, Iliya Pesic, Benedict Costello, Eric Snyder
-
Publication number: 20140208929Abstract: A durable ceramic and metallic coating has been applied to ceramic tiles to protect the tiles while undergoing a molten metal casting operation. The plasma sprayed coating consists of a ceramic top coat layer of aluminum oxide, zirconium oxide, or other oxides with or without a metallic bond coat layer and with or without a functionally gradient coating. This coating protects the underlying ceramic tile, which is composed of boron carbide, silicon carbide, alumina (Al2O3) or other type of hard ceramic, from reacting chemically with the molten metal. The molten metal is cast around the ceramic tiles to create a lattice of ceramic tiles that are used for protection from projectiles and shrapnel.Type: ApplicationFiled: September 19, 2013Publication date: July 31, 2014Applicants: BUYCASTINGS.COM, INC., APS MATERIALS, INC.Inventors: Robert W. Willson, Michael C. Willson, Anil R. (Neil) Chaudhry
-
Publication number: 20140202170Abstract: An article has a polymeric substrate and a coating system. The coating system includes a metallic plating and a polymeric coating atop the metallic plating. The metallic plating has a thickness of at least 0.05 mm.Type: ApplicationFiled: November 20, 2012Publication date: July 24, 2014Applicant: United Technologies CorporationInventor: United Technologies Corporation
-
Patent number: 8785352Abstract: Provided, among other things, is a multiplex assay comprising: conducting a fluorescence-developing assay on microtabs having at least one surface that shows plasmonic enhancement, wherein a plurality of the microtabs have unique probes affixed to their plasmonically enhanced surfaces; and measuring the fluorescence associated with the substrates and identifying the correlated probe by for the microtab. The microtabs can be, for example, MTPs that send a unique identifier, and the correlated probe can be identified by querying the MTPs for their identifier.Type: GrantFiled: April 29, 2011Date of Patent: July 22, 2014Assignee: Pharmaseq, Inc.Inventors: Wlodek Mandecki, Ji Li, Zhuying Wang
-
Patent number: 8784944Abstract: A ceramic thermal barrier coating having improved erosion resistance includes a metallic layer and a ceramic layer positioned on the metallic layer. The ceramic layer includes a first powder, a second powder, and a third powder. The first powder and the second powder are alloyed together prior to being mixed with the third powder.Type: GrantFiled: November 29, 2006Date of Patent: July 22, 2014Assignee: United Technologies CorporationInventors: Kevin W. Schlichting, Paul H. Zajchowski
-
Patent number: 8784931Abstract: A method of manufacturing ULSI wiring in which wiring layers are separately formed via a diffusion prevention layer and an insulating interlayer portion made of SiO2. The method comprises the steps of treating, with a silane compound, a SiO2 surface of the insulating interlayer portion on which the diffusion layer is to be formed, performing catalyzation with an aqueous solution containing a palladium compound, forming the diffusion prevention layer by electroless plating, and then forming the wiring layer on this diffusion prevention layer. A capping layer may be formed on the wiring layer by electroless plating. Consequently, a diffusion prevention layer having good adhesive properties can be formed through a simple wet process, and, the wiring layer can directly be formed on this diffusion prevention layer by a wet process. The capping layer can also be directly formed on the wiring layer by electroless plating.Type: GrantFiled: September 23, 2009Date of Patent: July 22, 2014Assignees: Waseda University, Renesas Electronics CorporationInventors: Kazuyoshi Ueno, Tetsuya Osaka, Nao Takano
-
Patent number: RE45154Abstract: A tool for machining is made from a hard-metal, cermet or ceramic base material and a single-layer or multi-layer hard material coating on the base material. An additional coating of one or more metals from the group of aluminum, copper, zinc, titanium, nickel, tin or base alloys of these metals is applied to the hard material coating.Type: GrantFiled: February 28, 2012Date of Patent: September 23, 2014Assignee: Ceratizit Austria Gesellschaft mbHInventors: Wolfgang Wallgram, Uwe Schleinkofer, Karl Gigl, Josef Thurner, Wilfried Schintlmeister