Metal Or Metal Alloy Coating Patents (Class 427/455)
  • Publication number: 20080090071
    Abstract: The present invention relates to a method of coating a surface with nanoparticles, to a nanostructured coating that can be obtained by this method, and also to a device for implementing the method of the invention. The method is characterized in that it comprises an injection of a colloidal sol of said nanoparticles into a plasma jet that sprays them onto said surface. The device (1) comprises: a plasma torch (3); at least one container (5) containing the colloidal sol (7) of nanoparticles; a device (9) for fixing and for moving the substrate(S); and a device (11) for injecting the colloidal sol into the plasma jet (13) of the plasma torch. The present invention has applications in optical, electronic and energy devices (cells, thermal barriers) comprising a nanostructured coating that can be obtained by the method of the invention.
    Type: Application
    Filed: October 20, 2005
    Publication date: April 17, 2008
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE
    Inventors: Karine Valle, Philippe Belleville, Karine Wittmann-Teneze, Luc Bianchi, Franck Blein
  • Publication number: 20080081122
    Abstract: The present invention is directed to an improved process for manufacturing a rotary anode for an x-ray tube, said rotary anode comprising a molybdenum support member on which a target layer consisting essentially of tungsten or a tungsten-rhenium alloy is provided by plasma spraying, the improvement comprising: a) preheating the support member to a temperature of from 1150° C. to 1600° C., b) placing the support member in a gaseous atmosphere containing hydrogen and having a pressure of from 0.5 to 0.9 bars and wherein hydrogen is present in a molar ratio of hydrogen to tungsten dioxide of from 5:1 to 50:1, and c) plasma spraying the target layer onto the support layer in said gaseous atmosphere. The invention is also directed to the anode produced by the process.
    Type: Application
    Filed: October 3, 2006
    Publication date: April 3, 2008
    Inventors: Leah F. Haywiser, Leonid N. Shekhter
  • Patent number: 7351450
    Abstract: Disclosed is a method for repairing defects in kinetically sprayed surfaces. The typical defects comprise isolated or connected conical shaped holes in the kinetic spray coating. The repair involves thermally spraying a molten material into the defective area to fill in the cone followed by continued kinetic spraying to complete the coating.
    Type: Grant
    Filed: October 2, 2003
    Date of Patent: April 1, 2008
    Assignee: Delphi Technologies, Inc.
    Inventors: Brian K Fuller, Alaa A. Elmoursi, Kenneth M Rahmoeller
  • Publication number: 20080072790
    Abstract: Methods of making a metallic or cerment coating include suspending solid fine metal or cerment particles in a liquid to form a liquid feedstock and injecting the liquid feedstock into an high-velocity oxygen fuel flame gun to thermally spray the liquid feedstock on a substrate to form a coating thereon.
    Type: Application
    Filed: September 20, 2007
    Publication date: March 27, 2008
    Applicant: Inframat Corporation
    Inventors: Xinqing Ma, Jeffrey Roth, T. Danny Xiao
  • Publication number: 20080076328
    Abstract: A method for producing surface coatings on gas turbine components and/or for measuring abrasive material residues on gas turbine components, including: -abrasively blasting a surface of the component using an abrasive material, a portion of this abrasive material remaining on or in this surface of the component; -detecting abrasive material which has remained on or in the surface of the component; and -applying a coating to the surface of the component is disclosed.
    Type: Application
    Filed: June 25, 2007
    Publication date: March 27, 2008
    Applicant: MTU Aero Engines GmbH
    Inventors: Guenter Zenzinger, Herbert Zisik
  • Patent number: 7341758
    Abstract: An article having a thermal-spray coating thereon is prepared by thermally spraying a coating material onto a surface of a substrate article. The coated article is nondestructively tested by directing a transmitted ultrasonic signal into the coated article, receiving a received ultrasonic signal from the coated article, and evaluating a near-bondline region of the coated article located adjacent to the surface of the article using the received ultrasonic signal.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: March 11, 2008
    Assignee: General Electric Company
    Inventors: Matthew Stewart, Thomas J. Tomlinson, David J. Dietz, Patsy Augustine Ruzzo
  • Patent number: 7341533
    Abstract: A continuously variable transmission (CVT) includes an aluminum housing member having a bore formed therein. A rotatable pulley member is supported on a bearing within the bore. The bore includes a layer of thermal spray coating for improved wear resistance so that the bore supports the bearing without a steel sleeve therebetween.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: March 11, 2008
    Assignee: General Motors Corporation
    Inventors: Yucong Wang, Sime Stavreski, Jasbir Singh
  • Patent number: 7339142
    Abstract: The invention relates to a heating device (1) comprising a metallic substrate (2) whose at least one part is coated with a self-cleaning coating. The inventive coating consists of an external layer (4) contacting ambient air and comprising at least one type of oxidation catalyst selected from platinoid oxides, at least one internal layer (3) which is arranged between the metallic substrate and the external layer and comprises at least one type of oxidation catalyst selected from transition elements oxides of 1b group. The inventive heating device can be embodied, for instance in the form of an iron soleplate consisting of a heating base (6) provided with heating elements (7) or a cooking appliance. Said metallic substrate can be covered with an intermediary enamel layer (5). A method for coating the metallic substrate of a heating device with said coating is also disclosed.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: March 4, 2008
    Assignee: SEB S.A.
    Inventors: Stéphanie Pessayre, Henry Boulud
  • Publication number: 20070275174
    Abstract: A method of coating a fishing lure such as a fly and/or a fly fishing line with a fluorocarbon dissolved or dispersed in a liquid diluent is disclosed.
    Type: Application
    Filed: May 23, 2007
    Publication date: November 29, 2007
    Inventors: Eric L. Hanson, Eric L. Bruner
  • Patent number: 7294413
    Abstract: A protected article includes a substrate having a surface, and a protective system overlying and contacting a first portion of the surface of the substrate. The protective system has a nickel-base superalloy bond coat, an aluminide layer overlying and contacting the bond coat, and a dense vertically microcracked ceramic thermal barrier coating overlying and contacting the aluminide layer.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: November 13, 2007
    Assignee: General Electric Company
    Inventors: Bangalore Aswatha Nagaraj, D. Keith Patrick, Thomas John Tomlinson, David Walter Parry
  • Patent number: 7291384
    Abstract: The piston ring of the present invention comprises a thermal spray coating comprising chromium carbide particles having an average particle size of 5 ?m or less, and a matrix metal composed of a Ni—Cr alloy or a Ni—Cr alloy and Ni at least on an outer peripheral surface, said thermal spray coating having an average pore diameter of 10 ?m or less and a porosity of 8% or less by volume. A piston ring having excellent wear resistance, scuffing resistance and peeling resistance with little attackability on a mating member is obtained by forming a homogeneous thermal spray coating having a fine microstructure.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: November 6, 2007
    Assignee: Kabushiki Kaisha Riken
    Inventors: Ryou Obara, Katsumi Takiguchi, Yukio Hosotsubo
  • Publication number: 20070254181
    Abstract: Methods and apparatus for thermal barrier coatings are provided. The thermal barrier coating system includes a bond coat, a first thermal barrier coating comprising a thermal conductivity, kA having a first value, and a second thermal barrier coating including a thermal conductivity, kB having a second value wherein the second value is different than the first value.
    Type: Application
    Filed: May 1, 2006
    Publication date: November 1, 2007
    Inventors: Ravindra Annigeri, David Vincent Bucci
  • Patent number: 7278353
    Abstract: Shaped charge liners are made of reactive materials formed by thermal spray techniques. The thermally sprayed reactive shaped charge materials have low porosity and high structural integrity. Upon detonation, the reactive materials of the shaped charge liner undergo an exothermic reaction that raises the temperature and the effectiveness of the liner.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: October 9, 2007
    Assignee: Surface Treatment Technologies, Inc.
    Inventors: Timothy Langan, Michael A. Riley, W. Mark Buchta
  • Patent number: 7279078
    Abstract: A process for coating a non-uniform, thin-film, dichroic pattern to a wheel rim or motorcycle part. The thin-film coating adds a colored or iridescent pattern to the wheel rim or motorcycle part, while maintaining other characteristics, such as brilliance, shine, durability and general appearance. The coating is intentionally non-uniform. It may be varied, and may have different patterns and color among different articles, and even among different areas on the same article. The thin-film coating may be added by various techniques known in the art, but is preferably applied by sputtering a silicon or titanium target to obtain the thin-film on a chromed wheel rim.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: October 9, 2007
    Inventors: Micha Kapourchali, Nima Khalilian
  • Patent number: 7265048
    Abstract: A method and apparatus for forming layers on a substrate comprising depositing a metal seed layer on a substrate surface having apertures, depositing a transition metal layer over the copper seed layer, and depositing a bulk metal layer over the transition metal layer. Also a method and apparatus for forming a via through a dielectric to reveal metal at the base of the via, depositing a transition metal layer, and depositing a first metal layer on the transition metal layer. Additionally, a method and apparatus for depositing a transition metal layer on an exposed metal surface, and depositing a layer thereover selected from the group consisting of a capping layer and a low dielectric constant layer.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: September 4, 2007
    Assignee: Applied Materials, Inc.
    Inventors: Hua Chung, Seshadri Ganguli, Christophe Marcadal, Jick M. Yu
  • Patent number: 7254888
    Abstract: A method of fabricating a heat sink includes preparing a surface of a graphite-based substrate and removing particulate matter generated from the preparation of the surface of the substrate. A metal-based coating is applied at the surface of the prepared substrate. The prepared substrate having the metal-based coating is arranged to form a heat sink structure.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: August 14, 2007
    Assignee: International Business Machines Corporation
    Inventors: Richard C. Chu, Michael J. Ellsworth, Jr., Egidio Marotta, Prabjit Singh
  • Patent number: 7250222
    Abstract: A system for bonding layers (1) of different chemical compositions, such as bonding a thermal barrier layer to a metal substrate on a surface of a gas turbine component. A substrate (4) made either of a ceramic material or particularly of a metal super-alloy may be bonded to an outer layer (16) such as a ceramic by means of a fine-grained intermediate layer (7) bonded to the substrate (4), and a coarse-grained layer (10) bonded to the intermediate layer (7) to create a studded surface (9). The fine and coarse layers (7, 10) provide a transition between the substrate (4) and the outer layer (16) for improved bonding between them. The studded surface (9) may provide at least a 20% increase in bonding surface area for the outer layer (16). Additionally, a medium-grained layer (13) may be applied to the studded surface (9) before applying the outer layer(16).
    Type: Grant
    Filed: October 30, 2003
    Date of Patent: July 31, 2007
    Assignee: Siemens Aktiengesellschaft
    Inventors: Knut Halberstadt, Werner Stamm
  • Patent number: 7250194
    Abstract: A method of making an article having both a polymeric substrate and a metallic spray deposited layer is disclosed. The coefficients of thermal expansion of the polymeric substrate and the metallic layer are preferably similar.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: July 31, 2007
    Assignee: GMIC, Corp.
    Inventors: Edmund Aversenti, Charles P. Covino
  • Patent number: 7244512
    Abstract: A method of manufacturing electric machines comprised of geometrically patterned arrays of permanent magnets, soft magnetic materials, and electrical conductors deposited by kinetic spraying methods directly atop a carrier. The magnets and planar coils of the present invention may be integrally formed atop carriers to form electrical machines such as motors, generators, alternators, solenoids, and actuators. The manufacturing techniques used in this invention may produce highly defined articles that do not require additional shaping or attaching steps. Very high-purity permanent and soft magnetic materials, and conductors with low oxidation are produced.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: July 17, 2007
    Assignee: Ford Global Technologies, LLC
    Inventors: John Ginder, Robert McCune, Franco Leonardi
  • Patent number: 7229661
    Abstract: A method for fabricating and testing an article having a thermal-spray coating thereon. The method includes providing a substrate article having a surface, thermally spraying a coating material onto the surface of the substrate article, wherein a surface of contact between the coating material and the substrate article is a bondline, and nondestructively testing the coated article. Nondestructively testing includes generating an eddy current in the coated article, measuring the eddy current in the coated article, and evaluating a near-bondline region of the coated article located adjacent to the bondline using the measured eddy current.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: June 12, 2007
    Assignee: General Electric Company
    Inventors: Patsy Augestine Ruzzo, Matthew Stewart, Anthony William Mellors
  • Patent number: 7229700
    Abstract: A novel coating composition is provided for imparting corrosion and wear resistance to metal substrates. The novel coating composition is thermally applied and comprises an aluminum alloy mixed with a hard, inert matrix. The coating composition has found particular use in providing corrosion and wear resistance to metal seat rails used to secure aircrafts seats to the aircraft frame.
    Type: Grant
    Filed: October 26, 2004
    Date of Patent: June 12, 2007
    Assignee: BASF Catalysts, LLC.
    Inventors: Peter F. Ruggiero, Marc J. Froning
  • Patent number: 7211177
    Abstract: Electrode at least comprising an electroconductive support of a titanium-palladium alloy, titanium, tantalum or compounds or alloys of titanium or of tantalum, an electrochemically active coating and an interlayer between the support and the electrochemically active coating, wherein the interlayer consists of titanium carbide and/or titanium boride and is applied to the support by flame or plasma spraying. Process for producing these electrodes and their use in an electrochemical cell for producing chlorine or chromic acid.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: May 1, 2007
    Assignees: Bayer Aktiengesellschaft, DeNora Elettrodi S.p.A.
    Inventors: Fritz Gestermann, Hans-Dieter Pinter, Gerd Speer, Peter Fabian, Robert Scannel
  • Patent number: 7201945
    Abstract: A fiber product offering health-enhancing effects is obtained by causing a fibrous substrate to contain or be bonded with finely divided titanium powder through the process of impregnation with a water solution containing finely divided titanium powder, which is obtained by dissolving metallic titanium via the combustion gas produced by combusting a gaseous oxygen/hydrogen mixture in high-pressure water in a pressure-resistant tank.
    Type: Grant
    Filed: November 29, 2000
    Date of Patent: April 10, 2007
    Assignee: Phild Co., Ltd.
    Inventors: Yoshihiro Hirata, Yoshio Ueda, Hiroaki Takase, Kazuaki Suzuki
  • Patent number: 7179539
    Abstract: An electric machine made from kinetically sprayed permanent magnet material and a binder material form a composite admixture having microstructure of permanent magnet material embedded in the binder material. The admixture has a permanent magnetic moment. The magnets of the present invention may be integrally formed atop carriers to form electrical machines such as motors, generators, alternators, solenoids, and actuators. The manufacturing techniques used in this invention may produce highly defined articles that do not require additional shaping or attaching steps. Very high-purity permanent and soft magnetic materials, and conductors with low oxidation are produced.
    Type: Grant
    Filed: July 29, 2002
    Date of Patent: February 20, 2007
    Assignee: Ford Global Technologies, LLC
    Inventors: Franco Leonardi, John Matthew Ginder, Robert Corbly McCune
  • Patent number: 7179507
    Abstract: A thermal spray composition and method of deposition for abradable seals for use in gas turbine engines, turbochargers and steam turbines. The thermal spray composition includes a solid lubricant and a ceramic preferably comprising 5 to 60 wt % total of the composition in a ratio of 1:7 to 20:1 of solid lubricant to ceramic, the balance a matrix-forming metal alloy selected from Ni, Co, Cu, Fe and Al and combinations and alloys thereof. The solid lubricant is at least one of hexagonal boron nitride, graphite, calcium fluoride, lithium fluoride, magnesium fluoride, barium fluoride, tungsten disulfide and molybdenum disulfide particles. The ceramic includes at least one of albite, illite, quartz and alumina-silica.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: February 20, 2007
    Assignee: Sulzer Metco (Canada) Inc.
    Inventors: Petr Fiala, Anthony Peter Chilkowich, Karel Hajmrle
  • Patent number: 7150921
    Abstract: A bi-layer bond coating for use on metal alloy components exposed to hostile thermal and chemical environment, such as a gas turbine engine, and the method for applying such coatings. The preferred coatings include a bi-layer bond coat applied to the metal substrate using high velocity oxy-fuel (HVOF) thermal spraying. Bi-layer bond coatings in accordance with the invention consist of a dense first inner layer (such as iron, nickel or cobalt-based alloys) that provides oxidation protection to the metal substrate, and a second outer layer having controlled porosity that tends to promote roughness, mechanical compliance, and promotes adherence of the thermal barrier coating (TBC). Preferably, the outer, less dense layer of the bi-layer bond coat is formed from a mixture of metallic powder and polyester to adjust and control the porosity, but without sacrificing mechanical compliance.
    Type: Grant
    Filed: May 18, 2004
    Date of Patent: December 19, 2006
    Assignee: General Electric Company
    Inventors: Warren Arthur Nelson, Jon Conrad Schaeffer, Sharon Trombly Swede, David Vincent Bucci, Joseph Debarro, Terry Howard Strout, Tyrone Robert Mortensen
  • Patent number: 7125586
    Abstract: Disclosed is a process for applying a kinetic spray coating of powder particles onto a substrate covered in a plastic-type material without first removing the plastic-type material. In one use of the process a mask is used to enable a single kinetic spray pass to both remove the plastic covering and bind particles having average nominal diameters of from 60 to 250 microns to the underlying substrate. In another use of the process the particles have an average nominal diameter of from 250 to 1400 microns and the use of a mask is optional because the particles can penetrate the plastic material and bind directly to the substrate. The process finds special use in forming electrical connections or solderable pads anywhere along the length of a flexible circuit.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: October 24, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Thomas Hubert Van Steenkiste, Daniel William Gorkiewicz, John R. Smith, Martin Stier, George Albert Drew
  • Patent number: 7108893
    Abstract: Disclosed is a system and a method for simultaneously applying a kinetic spray coating and a thermal spray coating onto a substrate using a single application nozzle to produce a combined coating. The system may include a higher heat capacity gas heater to permit both the thermal spray and the kinetic spray. The method involves providing two populations of particles to the nozzle simultaneously wherein one population is thermally softened in the nozzle under the spray parameters and the other is not. The system increases the versatility of the spray nozzle and addresses several problems inherent in kinetic spray applied coatings.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: September 19, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Thomas Hubert Van Steenkiste, Brian K Fuller
  • Patent number: 7108894
    Abstract: Methods and apparatus for the deposition of a source material (10) are disclosed. An atomizer (12) renders a supply of source material (10) into many discrete particles. A force applicator (14) propels the particles in continuous, parallel streams of discrete particles. A collimator (16) controls the direction of flight of the particles in the stream prior to their deposition on a substrate (18). In an alternative embodiment of the invention, the viscosity of the particles may be controlled to enable complex depositions of non-conformal or three-dimensional surfaces. The invention also includes a wide variety of substrate treatments which may occur before, during or after deposition. In yet another embodiment of the invention, a virtual or cascade impactor may be employed to remove selected particles from the deposition stream.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: September 19, 2006
    Assignee: Optomec Design Company
    Inventor: Michael J. Renn
  • Patent number: 7105205
    Abstract: A thermal spray mixed with a substrate using a non-consumable cylindrical rotating tool. The process may be repeated to create a composite-like coating or material. The coating or material may be machine to improve surface quality.
    Type: Grant
    Filed: March 29, 2004
    Date of Patent: September 12, 2006
    Assignee: Research Foundation of the State of New York
    Inventors: Clive Clayton, Herbert Herman, Henry White
  • Patent number: 7094450
    Abstract: A method applying a thermal barrier coating to a metal substrate, or for repairing a thermal barrier coating previously applied by physical vapor deposition to an underlying aluminide diffusion coating that overlays the metal substrate. The aluminide diffusion coating is treated to make it more receptive to adherence of a plasma spray-applied overlay alloy bond coat layer. An overlay alloy bond coat material is then plasma sprayed on the treated aluminide diffusion coating to form an overlay alloy bond coat layer. A ceramic thermal barrier coating material is plasma sprayed on the overlay alloy bond coat layer to form the thermal barrier coating. In the repair embodiment of this method, the physical vapor deposition-applied thermal barrier coating is initially removed from the underlying aluminide diffusion coating.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: August 22, 2006
    Assignee: General Electric Company
    Inventors: Bangalore Aswatha Nagaraj, Eva Zielonka Lanman, Deborah Anne Schorr, Thomas John Tomlinson, Raymond William Heidorn, David Allen Kastrup, Craig Douglas Young
  • Patent number: 7081276
    Abstract: A method for thermally spraying a film on an inner face of a bore of a cylinder block. A pair of suction pipes generates a spiraling air current in the bore, creating an air flow toward the center of the bore. A spraying device sprays molten metal partaicles including fumes toward the inner face of the bore. The fumes are captured by the spiraling air current and removed from molten metal particles directing toward the inner face of the bore. Molten metal particles from which the fumes are removed form the thermally sprayed film on the inner face of the bore. High-quality thermally sprayed film scarcely containing fumes can be formed on the inner face of the bore.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: July 25, 2006
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Noritaka Miyamoto, Eiji Itakura
  • Patent number: 7078073
    Abstract: According to an embodiment of the invention, a method for repairing a coated high pressure turbine blade, which has been exposed to engine operation, to restore coated airfoil contour dimensions of the blade, is disclosed. The method comprises providing an engine run high pressure turbine blade including a base metal substrate made of a nickel-based alloy and having thereon a thermal barrier coating system. The thermal barrier coating system comprises a diffusion bond coat on the base metal substrate and a top ceramic thermal barrier coating comprising a yttria stabilized zirconia material. The top ceramic thermal barrier coating has a nominal thickness t. The method further comprises removing the thermal barrier coating system, wherein a portion of the base metal substrate also is removed, and determining the thickness of the base metal substrate removed. The portion of the base metal substrate removed has a thickness, ?t.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: July 18, 2006
    Assignee: General Electric Company
    Inventors: Joseph D. Rigney, Ching-Pang Lee, Ramgopal Darolia
  • Patent number: 7044191
    Abstract: The invention relates to a molten material processing device having an elongated thermal element like a heating element, a thermocouple, a sensor, a heatpipe and a cooling pipe which is characterised in that said elongated thermal element (2) is located in a recess (3) provided in a surface (6) of the molten material processing device (1), the recess (3), comprising a first portion (4) and a second portion (5), has a cross-section which is larger than a cross-section of the thermal element (2), so as to provide a clear space (7) between the thermal element (2) and the surface (6) of the processing device (1), the clear space (7) which is limited by the first portion (4) and the thermal element (2) is filled by a thermally sprayed material (8) and the second portion (5), which is adapted to the cross-section of the thermal element (2), partially surrounds and directly contacts same.
    Type: Grant
    Filed: May 25, 2001
    Date of Patent: May 16, 2006
    Assignee: Mold-Masters Limited
    Inventors: Jonathon Fischer, Dan Zuraw
  • Patent number: 7026016
    Abstract: The method of fabricating free standing objects using thermal spraying, preferably of a metal, in the following process. A wire mesh is formed into a three dimensional shape of the desired finished product and the shaped mesh is then thermally sprayed with a coating material to substantially cover the visible portions of the mesh. The preferred coating material is metal.
    Type: Grant
    Filed: January 2, 2004
    Date of Patent: April 11, 2006
    Inventor: Eric C. Bauer
  • Patent number: 7008674
    Abstract: A thermal barrier coating for an underlying metal substrate of articles that operate at, or are exposed to, high temperatures, as well as being exposed to environmental contaminant compositions. This coating comprises an optional inner layer nearest to the underlying metal substrate comprising a non-alumina ceramic thermal barrier coating material in an amount up to 100%, and an outer layer having an exposed surface and comprising at least about 50% of a non-alumina ceramic thermal barrier coating material and alumina in an amount up to about 50% and sufficient to protect the thermal barrier coating at least partially against environmental contaminants that become deposited on the exposed surface. This coating can be used to provide a thermally protected article having a metal substrate and optionally a bond coat layer adjacent to and overlaying the metal substrate.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: March 7, 2006
    Assignee: General Electric Company
    Inventors: Bangalore Aswatha Nagaraj, Brett Allen Boutwell, Robert George Baur
  • Patent number: 7005404
    Abstract: A substrate having a catalytic surface thereon characterized as a coating of metal oxide and noble metal particles in the nominal diameter size distribution range of <3 microns, and more particularly <1 micron, is produced by thermal spraying a mixture of large size particles (e.g., in a nominal size distribution range of >10 micrometers) of hydroxides, carbonates or nitrates of the metals: cerium, aluminum, tin, manganese, copper, cobalt, nickel, praseodymium or terbium particles; and hydroxides, carbonates or nitrates of the noble metals: ruthenium, rhodium, palladium, silver, iridium, platinum and gold onto the substrate. The coating adheres to the surface and provides desirable catalyst properties.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: February 28, 2006
    Assignee: Honda Motor Co., Ltd.
    Inventor: Ting He
  • Patent number: 7001670
    Abstract: The invention relates to a wear protection layer for piston rings in internal combustion engines consisting essentially of chromium carbides, wolfram carbide, chromium and nickel. The wear protection layer is formed from a mixture of powders in which the first powder consists of at least the alloy components chromium carbide, chromium and nickel, in the form of an agglomerated and sintered powder, and which has not been subjected to any secondary heat treatment that would make the powder brittle, such as plasma refinement, the carbides in the powder having an average diameter of essentially not more than 3 ?m. A second powder, also in the form of an agglomerated and sintered powder, contains wolfram carbide and is applied to at least one peripheral surface of the piston rings by thermal injection, so that two distinctive coating areas are produced in the wear protection layer. A first area, predominantly rich in chromium, and a second area, mainly rich in wolfram carbide are formed.
    Type: Grant
    Filed: November 17, 2001
    Date of Patent: February 21, 2006
    Assignee: Federal-Mogul Burscheid GmbH
    Inventor: Christian Herbst-Dederichs
  • Patent number: 6994800
    Abstract: Volatile liquid precursors are provided for use in the formation of alkali metal-containing materials. The compound includes an alkali metal and an amide ligand and is a liquid at a temperature of less than about 70° C.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: February 7, 2006
    Assignee: President and Fellows of Harvard College
    Inventors: Roy G. Gordon, Randy N. R. Broomhall-Dillard
  • Patent number: 6923241
    Abstract: Method and apparatus for controlling stresses in a spray form process makes use of one dimensional modeling in which characteristics of a geometrical point are quantified by iterative detection, such as taking a surface temperature reading using a pyrometer. This temperature information is used in a one dimensional simulation to predict characteristics for a column from the point down through a spray-formed article to an interface with a substrate. The modeling technique can used with a plurality of geometrical points to model the whole article, and the one dimensional simulation can be integrated with robotic spray-forming controls to minimize residual stress in the spray-formed article.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: August 2, 2005
    Assignee: Ford Motor Company
    Inventors: Allen Dennis Roche, Samir Samir, Chijoke Mgbokwere, Mark Lusk
  • Patent number: 6924249
    Abstract: Disclosed is a method for direct application of a catalyst to a substrate for treatment of atmospheric pollution including ozone. The method includes applying a catalytic metal to a substrate utilizing a thermal spray process. The process can be utilized to apply a base metal such as copper to a substrate and the base metal becomes the catalytically active oxide during and following application to the substrate. This system replaces a multi-step process within a single step process to provide a catalytically active surface that can be utilized to reduce ground level ozone and other atmospheric pollutants.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: August 2, 2005
    Assignee: Delphi Technologies, Inc.
    Inventors: John R. Smith, Michel Farid Sultan, Ming-Cheng Wu, Zhibo Zhao, Bryan A. Gillispie
  • Patent number: 6904950
    Abstract: Method and apparatus for controlling a spray-forming process incorporating time, temperature, and transformation dependent stress relief techniques involves the manipulation of both temperature and time for strategic phase changes that result in a specific and planned volumetric increase. This manipulation is made based on controlling ongoing spray parameters to spray-form an article having a mixed-phase and interspersed makeup of metallic phases that minimizes residual stress in the article.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: June 14, 2005
    Assignee: Ford Motor Company
    Inventors: Allen Dennis Roche, Samir Samir, Chijoke Mgbokwere, Mark Lusk
  • Patent number: 6902768
    Abstract: The cylinder walls of light metal engine blocks are thermally spray coated with a ferrous-based coating including aluminum using an HVOF device. A ferrous-based wire is fed to the HVOF device to locate a tip end of the wire in a high temperature zone of the device. Jet flows of oxygen and gaseous fuel are fed to the high temperature zone and are combusted to generate heat to melt the tip end. The oxygen is oversupplied in relation to the gaseous fuel. The excess oxygen reacts with and burns a fraction of the ferrous-based feed wire in an exothermic reaction to generate substantial supplemental heat to the HVOF device. The molten/combusted metal is sprayed by the device onto the walls of the cylinder by the jet flow of gases.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: June 7, 2005
    Assignee: General Motors Corporation
    Inventors: John Robert Smith, David Rudolph Sigler, Richard Earl Teets, Larry Edward Byrnes, Martin Stephen Kramer
  • Patent number: 6896933
    Abstract: A method of maintaining a non-obstructed interior opening in a kinetic spray nozzle is disclosed. The method includes the steps of providing a mixture of particles including first particle population and a second particle population; entraining the mixture of particles into a flow of a gas at a temperature below the melt temperature of the particle populations; and directing the mixture of particles entrained in the flow of gas through a supersonic nozzle to accelerate the first particle population to a velocity sufficient to result in adherence of the first particle population on a substrate positioned opposite the nozzle. The operating conditions of the kinetic spray system are selected such that the second particle population is not accelerated to a velocity sufficient to result in adherence when it impacts the substrate.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: May 24, 2005
    Assignee: Delphi Technologies, Inc.
    Inventors: Thomas Hubert Van Steenkiste, John R. Smith, Daniel William Gorkiewicz, Alaa A. Elmoursi, Bryan A. Gillispie, Nilesh B. Patel
  • Patent number: 6897921
    Abstract: A reflecting member having roughness is formed on a surface above a substrate and transferred onto a film with an adhesive layer interposed therebetween. For example, a removable organic insulating layer having roughness on a surface thereof is formed above a glass substrate, and then a metal layer is formed on the rough surface of the organic insulating layer, thus forming a reflecting member. The reflecting member is then transferred onto the film with and adhesive layer interposed therebetween.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: May 24, 2005
    Assignee: Kyodo Printing Co., Ltd.
    Inventors: Tadahiro Furukawa, Kimikazu Okayasu, Hisashi Sato, Tatsuhiko Murai
  • Patent number: 6887530
    Abstract: A thermal spray composition and method of deposition for abradable seals for use in gas turbine engines, turbochargers and steam turbines. The thermal spray composition includes a solid lubricant and a ceramic preferably comprising 5 to 60 wt % total of the composition in a ratio of 1:7 to 20:1 of solid lubricant to ceramic, the balance a matrix-forming metal alloy selected from Ni, Co, Cu, Fe and Al and combinations and alloys thereof. The solid lubricant is at least one of hexagonal boron nitride, graphite, calcium fluoride, lithium fluoride, magnesium fluoride, barium fluoride, tungsten disulfide and molybdenum disulfide particles. The ceramic includes at least one of albite, illite, quartz and alumina-silica.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: May 3, 2005
    Assignee: Sulzer Metco (Canada) Inc.
    Inventors: Petr Fiala, Anthony Peter Chilkowich, Karel Hajmrle
  • Patent number: 6883581
    Abstract: A method for implementing post-heat treatment during spray forming to achieve stress control in the manufacture of a spray formed metallic tool involves applying a metallic spray-forming material onto a mold substrate and causing substantially homogenous metallic phase transformations from the austenite phase, for example, via manipulation of either or both of the substrate temperature and the spray forming cell environment temperature.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: April 26, 2005
    Assignee: Ford Motor Company
    Inventors: Allen Dennis Roche, Samir Samir, Chijoke Mgbokwere, Mark Lusk
  • Patent number: 6884516
    Abstract: It is to propose an internal member for a plasma treating vessel having excellent resistances to chemical corrosion and plasma erosion under an environment containing a halogen gas and an advantageous method of producing the same, which is a member formed by covering a surface of a substrate with a multilayer composite layer consisting of a metal coating formed as an undercoat, Al2O3 film formed on the undercoat as a middle layer and Y2O3 sprayed coating formed on the middle layer as a top coat.
    Type: Grant
    Filed: May 21, 2004
    Date of Patent: April 26, 2005
    Assignees: Tocalo Co., Ltd., Tokyo Electron Co., Ltd.
    Inventors: Yoshio Harada, Junichi Takeuchi, Tatsuya Hamaguchi, Nobuyuki Nagayama, Kouji Mitsuhashi
  • Patent number: 6878412
    Abstract: A process of fabricating a corrosion and erosion resistant component. In one embodiment, the process entails applying one or more corrosion resistant materials onto a pre-formed, sacrificial core and then enclosing this first material and the core with a surrounding capsule. Any space within the capsule is then substantially filled with a second material, after which the capsule is sealed and treated to cause the second material to densify and to metallurgically bond to the first material. Thereafter, the core material and capsule are removed via chemical and/or mechanical processes to yield a component with a shape that approximates the space that existed between the capsule and the first material, and with an outer surface that reflects the shape of the outer surface of the core and the inner surface of the capsule.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: April 12, 2005
    Assignee: Bodycote IMT, Inc.
    Inventors: John C. Hebeisen, Stephen J. Mashl
  • Patent number: 6875476
    Abstract: A method for masking at least one turbine engine component wherein the method includes providing at least one masking member, securing each masking member to the at least one turbine engine component, and applying a metal coating to the at least one turbine engine component.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: April 5, 2005
    Assignee: General Electric Company
    Inventors: Philip Robert Hawtin, Michael Smith