Coating Material Consists Of Charged Particles (e.g., Paint, Pigment, Dye, Etc.) Patents (Class 427/469)
  • Patent number: 10158083
    Abstract: The present invention relates to compounds of the formula (1), which are suitable for use in electronic devices, in particular in organic electroluminescent devices.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: December 18, 2018
    Assignee: Merck Patent GmbH
    Inventors: Philipp Stoessel, Irina Martynova, Elvira Montenegro, Teresa Mujica-Fernaud, Frank Voges, Jonas V. Kroeber, Frank Stieber
  • Patent number: 9327450
    Abstract: A device and a method for manufacturing a three-dimensional object (3) by solidifying layers (25) of a material in powder form at those positions corresponding to the respective cross-section of the object (3) are provided. The device comprises an application device (40) for applying layers of the material in powder form (47) in the building area (5), which can be moved over the building area (5). The application device (40) is formed to have a first longitudinal wall (41a) and a second longitudinal wall (41b) that are connected to one another via two side walls. The application device (40) is provided with a fluidization device for homogenizing the material in powder form (47). This fluidization device comprises at least one hollow body having escape openings in its walls, through which escape opening a gas can flow from the hollow body into the material in powder form (47).
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 3, 2016
    Assignee: EOS GMBH ELECTRO OPTICAL SYSTEMS
    Inventors: Peter Hein, Frank Müller
  • Patent number: 9059407
    Abstract: A method for manufacturing a uniform organic semiconductor thin film consisting of single organic molecule with extremely few pinholes and of which both quality and thickness are uniform when the organic semiconductor thin film is manufactured by printing process. The uniform organic semiconductor thin film is manufactured by steps of: preparing a first ink obtained by dissolving a high concentration of the organic semiconductor in an organic solvent with high affinity for the organic semiconductor, and a second ink consisting of an organic solvent having a low affinity for the organic semiconductor; mixing the first and second inks on a substrate by simultaneously or alternately discharging the first and second inks from each ink head.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: June 16, 2015
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Tatsuo Hasegawa, Hiromi Minemawari, Toshikazu Yamada, Hiroyuki Matsui
  • Patent number: 9034438
    Abstract: A deposition method includes placing fine particles in an airtight container, the fine particles being obtained by forming a coating layer on a surface of a matrix, the coating layer being more liable to be charged than the matrix with respect to a material of a conveying path, generating an aerosol of the fine particles by introducing a career gas into the airtight container, transporting the aerosol via a transfer tubing to a deposition chamber which is maintained at a pressure lower than that in the airtight container while charging the fine particles by friction with the inner surface of the transfer tubing, the transfer tubing being connected to the airtight container and having a nozzle at the tip, and depositing the charged fine particles on a substrate placed in the deposition chamber by spraying the aerosol from the nozzle.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: May 19, 2015
    Assignees: Fuchita Nanotechnology LTD., National University Corporation Nagoya University
    Inventors: Eiji Fuchita, Yasutoshi Iriyama
  • Publication number: 20150017341
    Abstract: A method and an arrangement are disclosed for producing an electrically conductive pattern on a surface. Electrically conductive solid particles are transferred onto an area of predetermined form on a surface of a substrate. The electrically conductive solid particles are heated to a temperature that is higher than a characteristic melting point of the electrically conductive solid particles, thus creating a melt. The melt is pressed against the substrate in a nip, wherein a surface temperature of a portion of the nip that comes against the melt is lower than said characteristic melting point.
    Type: Application
    Filed: January 30, 2013
    Publication date: January 15, 2015
    Inventors: Petri Sirviö, Juha Maijala
  • Publication number: 20150004325
    Abstract: An ink composition for making a conductive silver structure comprises a silver salt and a complex of (a) a complexing agent and a short chain carboxylic acid or (b) a complexing agent and a salt of a short chain carboxylic acid, according to one embodiment. A method for making a silver structure entails combining a silver salt and a complexing agent, and then adding a short chain carboxylic acid or a salt of the short chain carboxylic acid to the combined silver salt and a complexing agent to form an ink composition. A concentration of the complexing agent in the ink composition is reduced to form a concentrated formulation, and the silver salt is reduced to form a conductive silver structure, where the concentrated formulation and the conductive silver structure are formed at a temperature of about 120° C. or less.
    Type: Application
    Filed: December 20, 2012
    Publication date: January 1, 2015
    Inventors: Steven B. Walker, Jennifer A. Lewis
  • Publication number: 20140360252
    Abstract: There is provided a method of manufacturing a pattern substrate in which a pattern is formed on the surface of the substrate. The manufacturing method includes a step of preparing the substrate and a step of arranging a liquid-repellent or lyophilic material on the surface of the substrate so as to form the pattern on the surface of the substrate in which the surface of the substrate has a liquid-repellent region and a lyophilic region, the pattern is formed by one of the liquid-repellent region and the lyophilic region and the pattern is used to locate a component by the surface tension of a liquid member.
    Type: Application
    Filed: June 4, 2014
    Publication date: December 11, 2014
    Inventors: Naoki YAMAMOTO, Kanji NAKAYAMA, Keita SAITO, Dai SUWAMA
  • Patent number: 8828497
    Abstract: A method for providing a metallic coat covering a surface is disclosed, which comprises: (i) applying an electrically conductive two component binder on said surface; (ii) electrostatic spraying a metal powder on the binder applied in step (i); wherein the metal powder comprises metal particles with an average diameter less than 80 micron.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: September 9, 2014
    Assignee: De Heller Design B.V.
    Inventors: Robert Alexander Jonker, Arnoldus G. W. Van Andel
  • Patent number: 8778461
    Abstract: A method is provided for surface treating a substrate utilizing powder coating so that the substrate can be adorned with a decorative pattern and/or color, and can have a durable, aesthetically appealing finish. The decorative pattern can be applied via transfer printing processes, for example, by a sublimation process or a hydrographic process. The method optionally can be used to produce a visually perceivable transition between a decorative pattern, for example, a camouflage pattern, and a generally solid color on the substrate. The transition can be gradual, so that the decorative pattern appears to fade into the generally solid color to provide an appealing visual effect on a product. The method can be used to surface treat a variety of products, for example, archery products and/or firearm products.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: July 15, 2014
    Assignee: Grace Engineering Corp.
    Inventors: Joel D. Harris, Brian J. Anderson
  • Patent number: 8747554
    Abstract: A unibody, multi-piece crucible for use in for use in elemental purification, compounding, and growth of semi-conductor crystals, e.g., in the process of molecular beam epitaxy (MBE) for melting silicon and the like at high temperature. The crucible has an outer coating layer that fixedly joins the multi pieces making up the crucible. The invention also provides a method for making a unibody containing structure comprising pyrolytic boron nitride having a negative draft, which method obviates the need of complicated overhang structure of graphite mandrels or the removal of the graphite mandrels by burning at high temperatures.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: June 10, 2014
    Assignee: Momentive Performance Materials Inc.
    Inventors: Yuji Morikawa, Kazuo Kawasaki, Sun-joong Hwang, Marc Schaepkens
  • Patent number: 8747957
    Abstract: A coating method wherein in order to simplify the coating method and increase the flexibility thereof with respect to respective desired coatings, provision is made that a powder lacquer layer (3) is applied to a surface (2) of the component (1), and an imprint (4) is applied to the powder lacquer layer (3), preferably by an inkjet method.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: June 10, 2014
    Assignee: Diehl Aircabin GmbH
    Inventors: Mathias Gruen, Dietmar Voelkle, Benedict Michelis, Florian Hesselbach
  • Patent number: 8673403
    Abstract: Provided is a method of forming a fine pattern of a polymer thin film using a phenomenon that another material having a large difference in surface energy in comparison with a polymer thin film pattern is dewetted on the polymer thin film pattern. Two polymer materials having a large difference in surface energy can be applied to readily and conveniently form a fine pattern of a polymer thin film of micrometer or sub-micrometer grade.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: March 18, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seong Hyun Kim, Sang Chul Lim, Yong Suk Yang, Zin Sig Kim, Doo Hyeb Youn
  • Patent number: 8663747
    Abstract: A process for manufacturing a coated panel. The process can comprise providing a panel of a desired dimension or cutting a panel to a desired dimension. In some embodiments a panel can be provided with joining functionality. A surface of the panel can be coated with a powder and the powder cured to thereby treat a surface of the panel.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: March 4, 2014
    Assignee: Pergo (Europe) AB
    Inventors: Magnus Quist, Peter Miller, Jan Ericsson
  • Patent number: 8608896
    Abstract: Methods for liquid adhesive lamination for precision adhesive control are provided. Precision liquid adhesive control can be obtained by first patterning liquid adhesive in a thin pre-coat layer on a substrate. A second adhesive layer can then be patterned on top of the pre-coat layer. When the second substrate is pressed onto the first substrate, the second substrate first comes into contact with the second adhesive layer. The adhesive can then be spread uniformly across the two substrates without forming voids. Alternatively, a single liquid adhesive layer can be formed in a three dimensional gradient pattern.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: December 17, 2013
    Assignee: Apple Inc.
    Inventors: Ralf Horstkemper, Casey J. Feinstein, Kuo-Hua Sung
  • Patent number: 8603589
    Abstract: A method and system for printing on glass boards is provided. The method may include jetting, from an inkjet printing system onto a glass board, a glass-based ink having solid glass particles to form a printed glass board; heating the glass board prior to jetting the glass-based ink; heating the glass board after jetting to fix the ink onto the glass board; conveying the printed glass board to a furnace; and firing the printed glass board in the furnace at temperature of no less than 550° c. to melt the solid glass particles onto the glass board and complete fixation of the glass-based ink.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: December 10, 2013
    Assignee: DIP Tech Ltd.
    Inventor: Gera Eron
  • Patent number: 8507037
    Abstract: Printing one or more layers using toner and/or laminates to form one or more multi-channeled layers, with a particular pattern, including forming a desired image, for example, electrographically, on a receiver member. The multi layered channel printing apparatus and related method and print incorporates one or more static layers, and one or more moveable layers that allow a fluid to move through the micro channels via an opening or through a direct fill. It also incorporates particles in the channels to act as a packing material for separation of components of samples. The packing material can either be applied directly or using the electrographic printing process. An optional capping layer or substrate may then be applied.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: August 13, 2013
    Assignee: Eastman Kodak Company
    Inventors: Lee W. Tutt, Donna P. Suchy
  • Publication number: 20130156970
    Abstract: A coating apparatus produces a spray of charged droplets and controls the spray angle of travel of the spray toward the object to be coated. Electrically charging droplets minimizes the amount of coating material required to uniformly coat a surface as compared to conventional web coating techniques such as blade coating. An inductive ring guides the spray charged droplets as they exit the nozzle of a spray device. The electrostatic repulsion between the charged droplets insures that a uniform coating of liquid formulation can be applied to a web surface.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 20, 2013
    Applicant: Honeywell ASCa Inc.
    Inventor: Jonathan Crawford
  • Publication number: 20130108832
    Abstract: The invention relates to a process for the production of a transparent support covered with a deposit of inorganic nanoparticles, said deposit having micro gaps, comprising the following steps: application of a solution of polyelectrolyte having ionised functional groups to a transparent support, followed by at least one washing and drying step to form a charged polyelectrolyte deposit on said support; application of a solution of polymer microparticles having ionised groups with charges opposed to those of the polyelectrolyte deposit to said polyelectrolyte deposit, followed by at least one washing step for the formation of a deposit of charged polymer microparticles on the polyelectrolyte deposit; covering the deposit of charged polymer microparticles with a solution of polyelectrolyte having ionised functional groups with charges opposed to those of the charged polymer microparticles of step (b), followed by at least one washing and drying step to form a charged polyelectrolyte deposit; application of a s
    Type: Application
    Filed: July 18, 2011
    Publication date: May 2, 2013
    Applicant: AGC Glass Europe
    Inventors: Benoit Domercq, Ingrid Marenne, Samuel Martinquet, Guillaume Lamblin, Christine Dupont
  • Patent number: 8420156
    Abstract: A method of forming a pattern and a method of manufacturing an organic light emitting device, the method of forming a pattern including providing an electromagnetic substrate for generating an electromagnetic field at a selectively controllable position by selectively controlling where current flows through the electromagnetic substrate; providing a patterning substrate for forming a pattern; aligning the electromagnetic substrate to a first surface of the patterning substrate; selectively applying current to the electromagnetic substrate to form the electromagnetic field at the predetermined position; providing masking powder in a vicinity of a second surface of the patterning substrate such that the masking powder reacts to the electromagnetic field; supplying a pattern forming material to the second surface of the patterning substrate; and cutting off the current to the electromagnetic substrate.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: April 16, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyun-Chul Lee, Jae-Seok Park, Cheol-Lae Roh, Won-Kyu Lim
  • Publication number: 20130084402
    Abstract: An electrostatic painting apparatus (1) includes: a paint gun (4) that has a bell cup (4a) serving as an atomization portion that atomizes a paint, and an air nozzle (7) serving as an air discharge portion that discharges shaping air for controlling a diffusion pattern of the atomized paint; a high-voltage generator (5) that applies a high voltage to the paint gun (4); and a controller (6) that controls the high voltage to be applied from the high-voltage generator (5), wherein the high-voltage generator (5) generates a high positive voltage.
    Type: Application
    Filed: June 7, 2011
    Publication date: April 4, 2013
    Inventors: Isamu Yamasaki, Kimiyoshi Nagai, Atsushi Kawamoto
  • Publication number: 20130053542
    Abstract: Monatomic metal anions are generated in the gas phase by collision-induced dissociation of the anions [26] of a dicarboxylic acid salt of the metal. This method is applicable to a number of metals, including sodium, potassium, cesium, and silver. The metal anions produced in this way can subsequently be stored in an ion trap [88] or transmitted as a focused beam [52]. The metal anions of this invention undergo collisional cooling and have low kinetic energy, which distinguishes them from ions produced by other high energy processes (with kinetic energy in excess of 1 keV). Metal anions so produced can be used to pattern nanoscale features on surfaces [56], used as electron transfer agents or reducing agents in ion-molecule reactions, or used for surface [122] modification of biomaterials [124].
    Type: Application
    Filed: March 23, 2011
    Publication date: February 28, 2013
    Applicant: The Trustees of the Stevens Institute of Technology
    Inventors: Athula Buddhagosha Attygalle, Carl S. Weisbecker
  • Patent number: 8372478
    Abstract: A method is provided for surface treating a substrate utilizing powder coating so that the substrate can be adorned with a decorative pattern and/or color, and can have a durable, aesthetically appealing finish. The decorative pattern can be applied via transfer printing processes, for example, by a sublimation process or a hydrographic process. The method optionally can be used to produce a visually perceivable transition between a decorative pattern, for example, a camouflage pattern, and a generally solid color on the substrate. The transition can be gradual, so that the decorative pattern appears to fade into the generally solid color to provide an appealing visual effect on a product. The method can be used to surface treat a variety of products, for example, archery products and/or firearm products.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: February 12, 2013
    Assignee: Grace Engineering Corp.
    Inventors: Joel D. Harris, Brian J. Anderson
  • Patent number: 8372489
    Abstract: A method for depositing material on a substrate is described. The method comprises directionally depositing a thin film on one or more surfaces of a substrate using a gas cluster ion beam (GCIB) formed from a source of precursor to the thin film, wherein the deposition occurs on surfaces oriented substantially perpendicular to the direction of incidence of the GCIB, and deposition is substantially avoided on surfaces oriented substantially parallel to the direction of incidence.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: February 12, 2013
    Assignee: TEL Epion Inc.
    Inventor: John J. Hautala
  • Patent number: 8361562
    Abstract: A light-cyan radiation-curable gel ink including at least one curable monomer, at least one organic gellant, at least one photoinitiator, and a colorant. The colorant includes a cyan colorant, a hue-adjusting colorant that absorbs light having a wavelength of from about 500 to about 600 nm, and an optional shade-adjusting colorant that absorbs light having a wavelength of from about 400 to about 500 nm.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: January 29, 2013
    Assignee: Xerox Corporation
    Inventors: Daryl W. Vanbesien, Edul N. Dalal, Karen A. Moffat, Michelle N. Chretien, Barkev Keoshkerian, Richard P. N. Veregin, Jordan H. Wosnick, Valerie M. Farrugia
  • Publication number: 20130022753
    Abstract: A method includes receiving a primary image as input data and receiving textured image data for rendering a perceived non-uniform texture on a printed output of the primary image. The primary image input data is used for determining a low coverage portion and a high coverage portion. The method then includes applying clear toner to the low coverage portion and applying colored toner at variable anisotropic orientations to the high coverage portion.
    Type: Application
    Filed: July 19, 2011
    Publication date: January 24, 2013
    Applicant: XEROX CORPORATION
    Inventors: Mu Qiao, Marc Rene, William A. Fuss, Shen-ge Wang, Paul Conlon
  • Patent number: 8342120
    Abstract: A system that incorporates teachings of the present disclosure may include, for example, an apparatus having a tube with an ingress opening to receive a liquid, and an egress opening to release the liquid, a conductor positioned in a conduit of the tube, the conductor and the conduit having dimensions to cause a surface tension of the liquid to prevent a constant flow of the liquid from the egress opening, and a power supply coupled to the conductor to apply a charge to the liquid to overcome the surface tension and form at the egress opening a single jet stream of the liquid applicable on a substrate to create a pattern. The single jet stream can be controllable in part by a viscosity of the liquid. Additional embodiments are disclosed.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: January 1, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Kyekyoon Kim, Hyungsoo Choi, Philip Edward Heil, III
  • Publication number: 20120328794
    Abstract: An anisotropic conductive film, containing a resin film; and conductive particles aligned into a monolayer within the resin film adjacent to or on one plane of the resin film with respect to a thickness direction of the resin film, wherein a distance between the one plane of the resin film and a center of the conductive particle is 9 ?m or less based on 10-point average.
    Type: Application
    Filed: September 7, 2012
    Publication date: December 27, 2012
    Applicant: Sony Chemical & Information Device Corporation
    Inventors: Masahiko ITO, Daisuke Masuko
  • Patent number: 8329258
    Abstract: The method according to the invention for electrostatic coating of an electrically conducting workpiece with coating powder includes the following steps. The workpiece is earthed. Then an electrode has a negatives potential applied to it compared to that of the workpiece and a counter-electrode has a positive potential applied to it compared to that of the workpiece. The potential in the area of the workpiece in which the workpiece is to be coated is set to zero, by means of a control unit. Afterwards the workpiece is sprayed with coating powder in the area to be coated using a powder spray gun.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: December 11, 2012
    Assignee: J. Wagner AG
    Inventor: Kurt Seitz
  • Patent number: 8323724
    Abstract: A liquid droplet discharging apparatus includes a substrate having a plurality of film formation regions; a plurality of nozzles discharging droplets of a liquid, the nozzles being positioned facing the substrate and moved relatively with respect to the substrate to perform a scanning operation so as to discharge the droplets in the film formation regions during the scanning operation; a first moving mechanism moving the substrate relatively with the nozzles in a first direction; a plurality of driving units provided, each corresponding to one of the nozzles; a nozzle driving section generating a plurality of driving signals to supply one of the driving signals changing amounts of the droplets to be discharged to the driving units so as to allow the droplets to be discharged from the nozzles; and a control section controlling the first moving mechanism to allow the scanning operation to be performed a plurality of times over a same film formation region and controlling the nozzle driving section to allow a pr
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: December 4, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Toru Shinohara
  • Publication number: 20120231175
    Abstract: A process for building three-dimensional objects based on electrophotographic printing is disclosed, comprising the steps of depositing a first layer of powdered base material on a substrate, operating an imaging member, a charging device, an image generating device and an image developing device, in that order, to deliver and deposit filler material onto the layer of powdered base material in an image-wise manner to produce a layer of bonded base material that correspond to the first cross-section of the three-dimensional object being built, repeating all the above steps for as many times as required to form successive layers that constitute the three-dimensional object, said filler material further causing adjacent layers to be bonded with one another; and removing unbonded material to cause the three-dimensional object to appear.
    Type: Application
    Filed: November 26, 2009
    Publication date: September 13, 2012
    Inventor: Yu En Tan
  • Patent number: 8258204
    Abstract: An inkjet printing composition comprises an aqueous liquid vehicle; at least one pigment having a concentration of about 1 to 5 wt %; and a latex polymer having a concentration of about 2.5 to 8 wt % and comprising a polymerized mixture of styrene, butyl acrylate, at least one of methacrylonitrile and acrylonitrile, methacrylic acid, and ethylene glycol dimethacrylate. An inkjet ink printing system comprises a vinyl medium; the at least one inkjet printing composition; and a heating device, wherein the system is configured such that upon applying heat from the heating device to the inkjet ink printed on the vinyl medium, the latex particles fuse, thereby forming a printed image with a film encapsulating at least a portion of the pigment on the vinyl medium. A method of forming a printed image of the latex polymer using the inkjet ink printing system is also provided.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: September 4, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Sivapackia Ganapathiappan, Howard S. Tom, Hou Ng
  • Patent number: 8252385
    Abstract: Processes for printing conductors, insulators, dielectrics, phosphors, emitters, and other elements containing elongated functional particles aligned along the axis of a spun fiber or film that can be for electronics and display applications are provided. Also provided are viscoelastic compositions used in the processes, and devices made therefrom.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: August 28, 2012
    Assignee: E I du Pont de Nemours and Company
    Inventors: Steven Dale Ittel, Jennifer Leigh White
  • Patent number: 8227255
    Abstract: A biosensor capable of analyzing an object, such as antigen, antibody, DNA or RNA, through detection of magnetic field to thereby allow washout of unbound label molecules to be unnecessary, which biosensor is compact and available at low price, excelling in detection precision. Coils are arranged at an upper part and a lower part of a magnetic sensor using a hall element as a magnetic field detection element. An object and magnetic particles having an antibody capable of specific bonding with the object bound to the surface thereof are introduced in the magnetic sensor having a molecular receptor capable of specific bonding with the object attached to the surface thereof. Therefore, a change in magnetic field by magnetic particles bonded through the molecular receptor to the surface of the magnetic sensor is detected by means of the hall element.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: July 24, 2012
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventor: Hirofumi Fukumoto
  • Patent number: 8211509
    Abstract: A method and apparatus is provided for printing using paste like inks such as those used in intaglio printing, wherein the inks include specialty flakes such as thin film optically variable flakes, or diffractive flakes. The invention discloses an apparatus having an energy source such as a heat source for temporarily lessening the viscosity of the ink during alignment of the flakes within the ink.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: July 3, 2012
    Inventors: Vladimir P. Raksha, Dishuan Chu, Thomas Mayer, Charles T. Markantes, Paul G. Coombs
  • Patent number: 8114923
    Abstract: A smear resistant inkjet ink formulation includes ink includes between 0.1 and 6% colorant, between 1 and 40% solvent, between 0.3 and 10% latex binder having a particle size between 100 and 300 nm and a glass transition temperature between ?20 and +100 degrees Celsius, water, and between 0.1 and 4% hydrophobic styrene-acrylic or acrylic resin having an acid number between 50 and 250 and a molecular weight between 1,000 and 60,000 or a polyurethane resin having an acid number between 40 and 200 and a molecular weight between 3,000 and 400,000.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: February 14, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: George M. Sarkisian, Phillip C. Cagle
  • Publication number: 20110311731
    Abstract: A system that incorporates teachings of the present disclosure may include, for example, an apparatus having a plurality of applicators, each applicator with an ingress opening to receive a liquid, and an egress opening to release the liquid, and a conductor positioned in a conduit of each of the plurality of applicators, the conductor and the conduit having dimensions to cause a surface tension of the liquid to prevent a constant flow of the liquid from the egress opening. Each conductor of the plurality of applicators can be coupled to one of one or more power sources operable to apply a charge to the liquid to overcome the surface tension and form at the egress opening of each applicator a plurality of jet sprays of the liquid applicable on a substrate to form a thin film. Additional embodiments are disclosed.
    Type: Application
    Filed: August 26, 2011
    Publication date: December 22, 2011
    Applicant: THE BOARD OF TRUSTEES OF THE UNIVIERSITY OF ILLINOIS
    Inventors: KYEKYOON KIM, Hyungsoo Choi
  • Patent number: 8057863
    Abstract: An embodiment of a method of depositing graphene includes bringing a stamp into contact with a substrate over a contact area. The stamp has at least a few layers of the graphene covering the contact area. An electric field is developed over the contact area. The stamp is removed from the vicinity of the substrate which leaves at least a layer of the graphene substantially covering the contact area.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: November 15, 2011
    Assignee: The Regents of the University of California
    Inventor: Xiaogan Liang
  • Patent number: 8053035
    Abstract: An assembly and associated method of manufacture are provided in which electrostatic deposition is used to directly apply and/or apply without solvents an electrode to one of an ion-conducting member, a member adapted to hold an ion-conducting member and a gas diffusion layer of the assembly.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: November 8, 2011
    Assignee: FuelCell Energy, Inc.
    Inventors: Matthew Lambrech, Pinakin Patel
  • Patent number: 7976737
    Abstract: The present invention relates to solution type silver organo-sol ink for forming electrically conductive patterns. The present invention provides silver organo-sol ink of solution type for forming electrically conductive pattern comprising effective amount of silver aromatic carboxylate and a reactive organic solvents, which can form chelate or complex with silver, are, for example, organic solvents having keton, mercapto, carboxyl, aniline or sulfurous functional group, substituted or unsubstituted. By the present invention, silver organo-sol ink of solution type basically having higher content of silver is obtained. The solution type ink of the present invention can be used for forming conductive patterns in flat panel display such as plasma display panel(PDP) to reduce the numbers of steps for pattern forming drastically.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: July 12, 2011
    Assignee: Exax Inc.
    Inventors: Soon Yeong Heo, Dong Sung Seo, Eun Ji Lee, Hyun Myung Jang
  • Publication number: 20110159201
    Abstract: A method of forming a pattern includes: providing a heating substrate that selectively controls positions where heat is generated by controlling locations where electric current flows; forming a pattern forming material on a surface of the heating substrate; aligning a patterning substrate, on which a pattern may be formed, to face a surface of the heating substrate; and selectively applying electric current to the heating substrate to transfer some of the pattern forming material onto the patterning substrate. According to the method of forming the pattern and a method of fabricating an OLED, the pattern is transferred by heating the pattern forming material formed on the heating substrate, and thus, the pattern may be formed with high accuracy without using a mask, and the pattern forming material remaining on the heating substrate may be re-used.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 30, 2011
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Jae-Seok PARK, Hyun-Chul Lee
  • Publication number: 20110104386
    Abstract: Printing one or more layers using toner and/or laminates to form one or more multi-channeled layers, with a particular pattern, including forming a desired image, for example, electrographically, on a receiver member. The multi layered channel printing apparatus and related method and print incorporates one or more static layers, and one or more moveable layers that allow a fluid to move through the micro channels via an opening or through a direct fill. It also incorporates particles in the channels to act as a packing material for separation of components of samples. The packing material can either be applied directly or using the electrographic printing process. An optional capping layer or substrate may then be applied.
    Type: Application
    Filed: October 29, 2009
    Publication date: May 5, 2011
    Inventors: Lee W. Tutt, Donna P. Suchy
  • Patent number: 7910175
    Abstract: A coating of an encapsulated electrophoretic medium is formed on a substrate (106) by dispersing in a fluid (104) a plurality of electrophoretic capsules (102), contacting at least a portion of a substrate (106) with the fluid (104); and applying a potential difference between at least a part of the portion of the substrate (106) contacting the fluid (104) and a counter-electrode (110) in electrical contact with the fluid (104), thereby causing capsules (102) to be deposited upon at least part of the portion of the substrate (106) contacting the fluid (102). Patterned coatings of capsules containing different colors may be deposited in registration with electrodes using multiple capsule deposition steps. Alternatively, patterned coatings of capsules may be formed by applying a fluid form of an electrophoretic medium to a substrate, and applying a temporally varying voltage between an electrode and the substrate. The process may be repeated to allow for deposition of full color displays.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: March 22, 2011
    Assignee: E Ink Corporation
    Inventors: Richard M. Webber, Thomas H. Whitesides, Craig A. Herb, Guy M. Danner, Charles Howie Honeyman, Michael D. McCreary, Shamus Ford Patry, Richard J. Paolini, Jr., Michael D. Walls, Stephen P. Dudek
  • Patent number: 7905199
    Abstract: A method for growing material on a substrate is described. The method comprises directionally growing a thin film on one or more surfaces of a substrate using a gas cluster ion beam (GCIB) formed from a source of precursor for the thin film, wherein the growth occurs on surfaces oriented substantially perpendicular to the direction of incidence of the GCIB, and growth is substantially avoided on surfaces oriented substantially parallel to the direction of incidence.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: March 15, 2011
    Assignee: TEL Epion Inc.
    Inventors: John J. Hautala, Martin D. Tabat
  • Patent number: 7862866
    Abstract: Methods form multi-color electrophoretic displays. The method includes providing a solution containing microcapsules, wherein the microcapsules comprise a shell that is transparent and a display medium within the shell, wherein the display medium comprised of either (a) at least two sets of differently colored particles in a substantially clear fluid, or (b) at least one set of colored particles in a differently colored fluid. The method includes dispensing the solution onto a substrate, wherein a display layer of microcapsules is formed on the substrate. The method includes positioning a conductive substrate adjacent to the substrate, wherein the substrate is located between the display layer and the conductive substrate, wherein the conductive substrate applies an electric field to at least one microcapsule of the display layer, wherein the sets of particles of each microcapsule in the display layer are movable within the microcapsule by the electric field to be displayed.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: January 4, 2011
    Assignee: Xerox Corporation
    Inventors: Pinyen Lin, David H. Pan, Naveen Chopra, Peter M. Kazmaier
  • Patent number: 7851028
    Abstract: Elongated molecules are stretched across a substrate by controlled fluid flow.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: December 14, 2010
    Assignee: The Invention Science Fund I, LLC
    Inventors: Roderick A. Hyde, Lowell L. Wood, Jr.
  • Patent number: 7829151
    Abstract: The invention relates to a method for modifying piece surfaces consisting in bringing pieces into contact with at least one type of a modifying agent in such a way that the modification of the surface is carried out.
    Type: Grant
    Filed: March 17, 2004
    Date of Patent: November 9, 2010
    Assignee: BEHR GmbH & Co. KG
    Inventors: Snjezana Boger, Peter Englert, Mathias Pfitzer, Ingo Trautwein, Sabine Sedlmeir
  • Publication number: 20100178430
    Abstract: A method of fabricating electro-phoretic display is performed by the steps of: providing a first electrode substrate and a second electrode substrate disposed above the first electrode substrate in an electro-phoretic liquid, wherein the first electrode substrate comprises a substrate and a plurality of pixel electrodes disposed on the substrate; putting at least a charged micro-capsule between the first electrode substrate and the second electrode substrate in the electro-phoretic liquid; making the electricity of a portion of the pixel electrodes is opposite to the electricity of the charged micro-capsules for attracting the charged micro-capsules to above the portion of the pixel electrodes.
    Type: Application
    Filed: March 19, 2009
    Publication date: July 15, 2010
    Inventors: Yi-Ching WANG, Po-Wen Hsiao, Ted-Hong Shinn
  • Patent number: 7741380
    Abstract: The invention provides (1) an ink composition including a polymerization initiator and at least one compound selected from the group consisting of (meth)acrylic acid and monofunctional (meth)acrylic acid esters and amides each having a carboxy group in the molecule, (2) an ink composition including a polymerization initiator, at least one compound selected from the group consisting of (meth)acrylic acid and monofunctional (meth)acrylic acid esters and amides each having a carboxy group in the molecule, and a monofunctional (meth)acrylic acid ester or amide having an alkylene oxide repeating unit in the molecule, and (3) an ink composition including a polymerization initiator and a monofunctional (meth)acrylic acid ester or amide having a basic group in the molecule; and an ink jet recording method, a method for producing a planographic printing plate and a planographic printing plate produced by the method for producing a planographic printing plate using the above-mentioned ink compositions.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: June 22, 2010
    Assignee: FUJIFILM Corporation
    Inventor: Ippei Nakamura
  • Patent number: 7737349
    Abstract: Apparatus and methods of decorating guitars and other stringed musical instruments are disclosed. In one aspect, a method may include UV printing a first portion of a decoration over a first region of at least part of a guitar using a first ink drop size, and UV printing a second portion of the decoration over a second region of said at least part of the guitar using a second ink drop size. In another aspect, a method may include UV printing a mask layer over a surface of at least a portion of a guitar using a first amount of image constriction and a first amount of feathering, and UV printing a decorative layer over at least a portion of the mask layer using a second amount of image constriction and a second amount of feathering.
    Type: Grant
    Filed: August 9, 2007
    Date of Patent: June 15, 2010
    Assignee: Art Guitar, LLC
    Inventors: Stephen L. Spurgeon, Tyler Nylund
  • Patent number: 7732007
    Abstract: This invention relates to polarizing plates and their manufacturing process. More particularly, this invention provides a method of making a polarizing plate comprising, providing a polarizing film, coating at least one optical film solution to both sides of the polarizing film simultaneously or near simultaneously, and drying the optical film coating solution to form an optical film on each side of the polarizing film.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: June 8, 2010
    Assignee: Eastman Kodak Company
    Inventor: Brent C. Bell